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The properties of systems composed of atoms interacting though discrete potentials are dictated by
a series of events which occur between pairs of atoms. There are only four basic event types for
pairwise discrete potentials and the square-well/shoulder systems studied here exhibit them all.
Closed analytical expressions are derived for the on-event kinetic energy distribution functions for
an atom, which are distinct from the Maxwell–Boltzmann distribution function. Exact expressions
are derived that directly relate the pressure and temperature of equilibrium discrete potential systems
to the rates of each type of event. The pressure can be determined from knowledge of only the rate
of core and bounce events. The temperature is given by the ratio of the number of bounce events to
the number of disassociation/association events. All these expressions are validated with
event-driven molecular dynamics simulations and agree with the data within the statistical precision
of the simulations. © 2010 American Institute of Physics. �doi:10.1063/1.3486567�

I. INTRODUCTION

The interaction energy between two square-well/
shoulder atoms, one of type � and the other of type ��,
separated by a distance r is given by

u�r� = � � for 0 � r � ����

����� for ���� � r � ��������

0 for �������� � r
� , �1�

where ���� is the exclusion diameter of the pair of atoms,
���� is a positive value that characterizes the strength of the
interaction between the atoms, and ���� characterizes the
range of the interaction �see Fig. 1�. Square-shoulder �+� and
square-well systems �	� differ only in the sign of the �����
term. The square-well potential is particularly interesting as
it captures the essential physics of the interactions between
real atoms: short-ranged excluded volume repulsions and in-
termediate ranged attractions.

Due to their fundamental importance and the relative
ease of their simulation, the properties of square-well and
square-shoulder systems are well characterized. Numerous
molecular dynamics and Monte Carlo simulations have been
performed to determine their structure,1–6 thermodynamic
properties,7–14 liquid-vapor phase behavior15–22 and interfa-
cial tension,21,23–27 solid-liquid phase behavior,28–31 solid-
solid phase behavior,32,33 and transport coefficients.34–44

The square-well model can also be extended to molecu-
lar systems by bonding atoms together via infinitely deep
square-well potentials, as was first done by Rapaport.45

These types of models have been used to investigate the

properties of polymer systems,46 including the freezing be-
havior of single square-well chains,47,48 helix formation and
aggregation,49,50 coarse grained models for proteins,51–53 and
even for fibril formation by peptides.54,55

A slight generalization of the square-well potential is the
discrete, or stepped, potential, which is composed of a se-
quence of square-wells/shoulders of various widths and
depths. Stepped potentials can be used to approximate con-
tinuous potentials, such as the Lennard-Jones potential.56,57

The number of steps can be adjusted to increase the accuracy
or the computational speed of the representation. Force fields
based on stepped potentials have been used to approximate
the thermodynamics and phase behavior of “simple” mol-
ecules, such as step potentials for equilibria and discontinu-
ous molecular dynamics �SPEADMD�,58,59 and even of pep-
tide and protein solutions, such as PRIME.54 In this article,
we study square-well and square-shoulder systems �see Fig.
1� as they contain all the basic components of a stepped
potential. The results obtained here are directly applicable to
arbitrarily stepped potentials.

The dynamics of discrete potential systems is driven by
events which occur when a pair of atoms are located at the
edge of a “step” in the interaction potential �e.g., at r=����
or r=�������� in Fig. 1�. In the case of hard sphere systems,
these events are just the collisions between the spheres. The
static and dynamical properties of the system are completely
specified by the rate of these events and their characteristics
�e.g., the transfer of momentum, kinetic energy, etc.�. For
example, the pressure of a hard sphere system is directly
related to the collision rate.60 In this work, we examine the
collision and velocity statistics of systems composed of
stepped potential systems, which include the square-well and
square-shoulder potentials. Specifically, we study the veloc-
ity distributions of atoms when they are undergoing an event,
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which is different from the Maxwell–Boltzmann distribution.
In addition, the rate of these events are explicitly related to
thermodynamic properties of the system, such as the pressure
and the temperature.

The remainder of this paper is organized as follows. The
Maxwell–Boltzmann velocity distribution is quickly re-
viewed in Sec. II. Then in Sec. III, we review the different
types of events that can occur between two square-well or
square-shoulder atoms. Then the statistical properties of the
atoms are examined while they undergo each of these types
of events. In Sec. IV, these relative velocity distributions are
then used to derive expressions for the kinetic energy of
atoms immediately prior to each type of event. The rates of
these events are related to the pair correlation function in
Sec. V. This allow us to relate the temperature of the system
to the event rates. In Sec. VI, the pressure is directly related
to the event rates. Finally, in Sec. VII, the main results of the
paper are summarized.

II. MAXWELL–BOLTZMANN VELOCITY STATISTICS

In a classical atomic system at equilibrium, the velocity
v of each atom is distributed independently according to the
Maxwell–Boltzmann distribution

fMB�v� = �
m�

2�
	3/2

e−
m�v2/2, �2�

where m� is the mass of the atom, 
= �kBT�−1, kB is the
Boltzmann constant, and T is the absolute temperature. This
is the probability density that a single atom has a particular
velocity at any given moment.

Because the degrees of freedom corresponding to the
momenta of the system are not coupled to the degrees of
freedom corresponding to the positions, the velocity distribu-
tion of the atoms in the system are independent of each other.
Consequently, the velocity distribution of a pair of atoms i
�of type �� and j �of type ��� is given by the product of the
two single particle velocity distributions

f ij�vi,v j� = fMB�vi�fMB�v j� , �3�

where vi is the velocity of atom i and v j is the velocity of
atom j. The velocities of the pair of atoms can also be de-
scribed in terms of the center of mass Vij = �m�vi

+m��v j� /M���, where M���=m�+m�� is the total mass of
the pair of atoms, and the relative velocity vij =vi−v j of the
two atoms

f ij
MB�vi,v j� = fcm

MB�Vij�f rel
MB�vij� , �4�

where

fcm
MB�Vij� = �
M���

2�
	3/2

exp�−

M���Vij

2

2
	 , �5�

and

f rel
MB�vij� = �
����

2�
	3/2

exp�−

����vij

2

2
	 , �6�

where ����=m�m�� / �m�+m��� is the reduced mass of the
pair of atoms. Note that the relative and center-of-mass ve-
locities are statistically independent of each other. Although
these distributions are on average correct, the on-event dis-
tributions can differ significantly and are discussed in the
following section.

III. ON-EVENT VELOCITY STATISTICS

The dynamics of discrete potential systems are driven by
a series of events. In this section, we discuss the velocity
distribution of a pair of atoms on an event. This distribution,
in general, differs from the Maxwell–Boltzmann distribution,
which was discussed in Sec. II. This is due to the fact that the
rate at which an atom undergoes each type of event depends
on its velocity and potential energy change.

Each event involves a pair of atoms i and j and occurs
when they are separated by a distance corresponding to a
discontinuity in the interaction potential. Between events, no
forces act and these atoms have constant velocities vi and v j.
Upon execution of the event, the relative velocity of the at-
oms is instantaneously altered. The change in the relative
velocity vij depends on the change in interaction energy �
and the speed at which the atoms are moving toward each
other. This speed is given by bij = r̂ij ·vij, where rij =ri−r j is a
vector that points from the center of atom j to the center of
atom i and r̂ij =rij / 
rij
 is the corresponding unit vector.

Before discussing the types of events in the square-well/
shoulder system, we must first discuss the general collision
rules. When two atoms encounter a discontinuity in the po-
tential, they must have sufficient kinetic energy if they are to
overcome the energy barrier �. This condition can be ex-
pressed through

2�/���� � bij
2 . �7�

If this expression holds true, the particles have sufficient en-
ergy to cross the discontinuity and their velocities are altered
by

m�vi = − m��v j

= − �����bij − sign�bij��bij
2 −

2�

����
	1/2�r̂ij . �8�

However, if the particles have insufficient energy to cross the
discontinuity, then the particles undergo specular reflection

FIG. 1. Potential energy u as a function of atomic separation for a �a�
square-well and �b� square-shoulder system. The arrows indicate the types
of events occurring at the discontinuities in the potential �at r=� and
r=��� and are numbered as described in Sec. III.
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m�vi = − m��v j = − 2����bijr̂ij . �9�

There are four different types of events that can occur be-
tween two square-well �square-shoulder� atoms: core, cap-
ture �association�, disassociation �release�, and bounce.
These are well described in Ref. 61 and are also summarized
below and in Fig. 1.

• Type 1, Core: A core event involves a collision be-
tween the hard cores of the two atoms. A core event
occurs between two square-well/shoulder atoms when
the distance between their centers becomes equal to
their hard sphere event diameter 
rij
=����. In addition,
the spheres must be approaching each other, which im-
plies that the event diameter must satisfy bij �0. These
events are precisely the same as those that occur in the
hard sphere system. As the potential energy change
across the discontinuity is infinite ��→��, Eq. �7� is
always false and the change of the velocities of the
atoms after a core event is given by Eq. �9�

• Type 2, Capture: In a capture event, two square-well
atoms become bound inside the attractive square-well.
Immediately before a capture event, the centers of the
square-well atoms initially lie outside the interaction
well �i.e., 
rij
=��������

+ �. As the change in potential
energy �=−���� is negative, Eq. �7� is always true and
after the event, the atoms lie just inside the interaction
well �i.e., 
rij
=��������

− �. In addition, the spheres must
be approaching each other �i.e., bij �0� for this event to
occur.

• Type 2+, Release: A release event occurs for square-
shoulder atoms when they exit each other’s repulsive
well �
rij
=��������

− →��������
+ �. The potential energy

change �=−���� is again negative and Eq. �7� is al-
ways true; however, in this case, the collision diameter
is restricted to receding atoms �bij �0�.

• Type 3, Disassociation: In a disassociation event, two
square-well atoms inside the attractive well are receding
from each other with a relative velocity that is great
enough to escape the attractive well �
rij
=��������

−

→��������
+ �. The positive kinetic energy change ��

=+����� and Eq. �7� restrict the event diameter to
�2���� /�����

1/2�bij �� and if this is not satisfied, a
type 4 bounce event occurs.

• Type 3+, Association: An association event occurs
when two square-shoulder atoms approach each other
with sufficient speed to enter the repulsive potential
�
rij
=��������

+ →��������
− �. The collision diameter is

then restricted to −�2���� /�����
1/2�bij �−� by Eq. �7�

and �=+����; however, if this is not satisfied, a type
4+ bounce event occurs.

• Type 4, Bounce: In square-well systems, two particles
undergo a bounce event when they are moving away
from each other but their relative speed is too slow for
them to escape the attractive well. Consequently, the
event diameter is restricted to values in the range 0
�bij � �2���� /�����

1/2.

• Type 4+, Bounce: For square-shoulder atoms, the
bounce event occurs when the atoms approach each
other but do not have a sufficient relative speed to over-
come the repulsive interaction. This only occurs for col-
lision diameters in the range −�2���� /�����

1/2�bij �0.

In contrast to the velocities at a general time, the veloci-
ties of two atoms immediately prior to an event are not in-
dependent of each other, due to the constraints imposed by
the impending event. In addition, they are also dependent on
the relative separation and orientation �with respect to the
relative velocity� of the atoms. However, the center-of-mass
and relative velocities of the pair remain independent. There-
fore, the distribution of the atom velocities f ij

�k� can be fac-
tored as

f ij
�k��vi,v j, r̂ij� = fcm

MB�Vij�pcoll
�k� �vij, r̂ij� , �10�

where pcoll
�k� is distribution of the relative velocity of two at-

oms on an event of type k.
The relative velocity is dependent on the relative orien-

tation r̂ij of the atoms; however, the components of the rela-
tive velocity are independent of each other. It is convenient
to consider the relative velocity in terms of the component
parallel to r̂ij �i.e., bij� and the two components v�,1 and v�,2

perpendicular to r̂ij. The perpendicular velocity components
v�,1 and v�,2 are distributed according to the Maxwell–
Boltzmann distribution �see Eq. �6��. The collision diameter
bij is also distributed according to the Maxwell–Boltzmann
distribution; however, its values are restricted according to
the type of event that the atoms undergo. Consequently, it is
distributed according to

TABLE I. Parameters for the on-event distribution of the collision diameter.

k Event type a
���
�k�

A
���
�k�

bij,min
�k� bij,max

�k�

1 Core ����
+

	1 −� 0

2 Capture ��������
+

	1 −� 0

2+ Release ��������
− 1 0 �

3 Disassociation ��������
− e
���� �2���� /�����

1/2 �

3+ Association ��������
+ −e
���� −� −�2���� /�����

1/2

4 Bounce ��������
− �1−e−
�����−1 0 �2���� /�����

1/2

4+ Bounce ��������
+ −�1−e−
�����−1 −�2���� /�����

1/2 0

124506-3 On-event expressions for discrete potentials J. Chem. Phys. 133, 124506 �2010�
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f �k��bij� = A�k�
����bije
−
����bij

2 /2, �11�

where A�k� is a normalization constant. A summary of the
properties of each type of event is given in Table I. With this
choice of variables, pcoll

�k� can be written as

pcoll
�k� �vij, r̂ij�dr̂ijdvij

= f �k��bij�

����

2�
e−
�����v�,1

2 +v�,2
2 �/2dr̂ijdbijdv�,1dv�,2.

�12�

In Sec. IV, we will use this on-event velocity distribution to
analyze the statistics of the kinetic energy of an atom on-
event and then proceed to relate the event rates to the system
pressure.

IV. ON-EVENT DISTRIBUTION OF THE KINETIC
ENERGY

In this section, we determine the distribution fKE
�k� of the

kinetic energy of an atom just prior to an event of type k. The
atom is labeled i and its partner in the event is labeled j. The
kinetic energy Ei of atom i can be determined from the ve-
locity distribution of a pair of atoms on an event as

fKE
�k� �
Ei� = dr̂ijdvijdVijpcoll

�k� �r̂ij,vij�fcm
MB�Vij�

���
Ei −

m�

2
�Vij

2 + 2
����

m�

Vij · vij

+ �����

m�
	2

vij
2		 , �13�

where Ei is the kinetic energy of atom i. Note that the speed
distribution fcoll

�k� of an atom just prior to an event of type k is
directly related to fKE

�k� as

fcoll
�k� �vi� = 
m�vi fKE

�k� �
m�vi
2

2
	 .

The integral in Eq. �13� is difficult to evaluate directly; how-
ever, progress can be made if we work with the Laplace

transform of the kinetic energy distribution f̃KE
�k� , which is

defined as

f̃KE
�k� �s� = 

0

�

d
Ee−s
EfKE
�k� �
E� .

This can be determined as

f̃KE
�k� �s� = dr̂ijdvijdVijpcoll

�k� �r̂ij,vij�fcm
MB�Vij�exp�− s


m�

2
�Vij

2 + 2
����

m�

Vij · vij + �����

m�
	2

vij
2	�

= � M���/m�

s + M���/m�
	3/2 dr̂ijdvijpcoll

�k� �r̂ij,vij�exp�−
sM���/m�

s + M���/m�


����
2 vij

2

2m�
�

= � M���/m�

s + M���/m�
	3/2

0

�

dv�v�
bij,min

�k�

bij,max
�k�

dbijA
�k��
�����

2bijexp�−

����

2
�bij

2 + v�
2 � −

sM���/m�

s + M���/m�

�bij
2 + v�

2 �

����

2

2m�
�

= A�k�� m�

M���
	1/2 �s + M���/m��1/2

�s + 1�2 �exp�−

m��

2 � s + 1

s + M���/m�
	�bij,min

�k� �2� − exp�−

m��

2 � s + 1

s + M���/m�
	�bij,max

�k� �2�� .

�14�

The general form of the Laplace transform of the kinetic
energy distribution of an atom immediately prior to an event
is the same for each type of event; only the values of the
parameters A�k�, bij,min

�k� , and bij,max
�k� , which can be found in

Table I, differ. This expression is independent of the size of
the colliding atoms or the density of the system. However,
the kinetic energy distribution of atom i does depend on the
mass m�� of its collision partner. As a comparison, the cor-
responding expression for the Laplace transform of the
Maxwell–Boltzmann distribution is

f̃KE
MB�s� = �s + 1�−3/2. �15�

The Laplace transform of the kinetic energy distribution also
allows for the convenient calculations of the moments of the
distribution

��
Ei�n��k� = �− 1�n�n f̃MB
�k� �0�
�sn ,

where �¯ ��k� is an average over events of type k.
In the remainder of this section, we will examine in

more detail the behavior of the kinetic energy distribution for
atoms on each type of event. All results are validated against
results obtained from event-driven simulations in the canoni-
cal �NVT� and microcanonical �NVE� ensemble. All sys-
tems, if not otherwise specified, consisted of 32 000 atoms at
a temperature/well energy of 
�=1, a well width of �=1.5,
and a number density of N /V=1.1. Multicomponent systems
consisted of equal numbers of the two atom species, simu-
lated over a range of mass ratios. The NVT simulations uti-
lized an Andersen thermostat which accounted for around
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5% of the total number of events. NVT simulations were run
for an equilibration period of 2�107 events before data were
collected over 2�107 events. NVE simulations used the out-
put of the NVT simulations with the thermostat disabled and
exhibited a temperature within 0.5% of the NVT tempera-
ture. These were then run for 2�107 events to collect statis-
tical data. The energy histograms were collected using a bin
width of 
�=0.1.

A. Core event

For an atom on a core event, the Laplace transform of
the kinetic energy distribution is

f̃KE
�1� �s� = � m�

M���
	1/2 �s + M���/m��1/2

�s + 1�2 . �16�

This is precisely the same form as found for hard spheres on
a collision in three dimensions.60 The inverse Laplace trans-
form can be performed analytically �see Appendix� to give

fKE
�1� �
E� = � m�

M���
	1/2

h0�
E,M���/m��

= � m�

M���
	1/2

�
E�1/2� e−�m��/m��
E

�1/2

+
1 + 2�m��/m��
E

2��m��/m��
E�1/2erf��m��

m�


E	1/2	�e−
E.

�17�

The shape of the distribution of 
E is independent of the
temperature, density, and composition of the system. It does,
however, depend on the relative masses of the colliding pair
of atoms. The kinetic energy distribution of an atom on a
core event is plotted in Fig. 2 for collision partners of differ-
ent masses. The lines are the predictions of Eq. �17� and the
symbols are from event-driven molecular dynamics simula-
tions. As the mass of the collision partner increases, the on-
collision kinetic energy of the atom shifts to higher values.
The kinetic energy of an atom on a core event is generally
higher than that of the Maxwell–Boltzmann distribution. The

thick solid line is the Maxwell–Boltzmann distribution,
which is the inverse Laplace transform of Eq. �15�

fKE
MB�
E� =

2

�1/2 �
E�1/2e−
E. �18�

The thick dashed line is the on-collision kinetic energy dis-
tribution for an atom in the limit that the collision partner has
an infinite mass.

The on-collision distribution differs from the Maxwell–
Boltzmann distribution because atoms that move faster col-
lide more frequently. Consequently, these atoms are
“sampled” more often than the slower moving atoms, and,
therefore, the on-collision distribution is shifted to higher
values of the kinetic energy.

As the relative mass of the partner atom j increases, the
kinetic energy of the atom i increases. The mean kinetic
energy of an atom on a core event is

�
E��1� = 2 −
1

2� m�

M���
	 ,

which is greater the Maxwell–Boltzmann value �
E�MB

=3 /2.
In the limit that the mass of the collision partner is much

smaller than the mass of the atom �i.e., m�� /m�→0�, the
on-event kinetic energy distribution approaches the
Maxwell–Boltzmann distribution. This can be understood by
the fact that a collision with a massless particle will not
affect the trajectory of an atom.

Pairs of atoms with a higher relative speed will collide
more often. The mean speed of an atom will decrease as its
mass increases. Therefore, as the mass of the collision part-
ner j of an atom i increases, thereby “slowing” down, atom i
must itself be faster to provide the same relative speed. This
explains the shift of the distribution to higher kinetic ener-
gies with increasing mass of the collision partner. As the
mass of the collision partner becomes much greater than the
mass of the atom �i.e., m�� /m��1�, the distribution shifts to
lower values of the kinetic energy and eventually approaches

fKE
�1� �
E� → 
Ee−
E.

This corresponds to the collision of a particle with an infi-
nitely massive particle or with an immovable surface.

B. Capture and release events

The kinetic energy distribution of a particle on a capture
event is identical to that for an atom on a core event �see Eq.
�17��. This is also the case for atoms prior to a release event
in the case of square-shoulder atoms. Both these distributions
are plotted in Fig. 2 for an atom with collision partners of
differing masses.

C. Disassociation and association events

For an association event for square-shoulder systems, the
kinetic energy distribution is identical to that for atoms on a
disassociation event. For an atom immediately prior to a dis-
association or association event, Eq. �14� becomes

FIG. 2. Kinetic energy distribution for an atom of mass m� on a core, a
capture, or a release event with an atom of mass m�� in a multicomponent
square-well/shoulder system, where �i� m�� /m�=0.2 �solid line�, �ii�
m�� /m�=0.5 �long dashed line�, �iii� m�� /m�=1 �dotted line�, �iv� m�� /m�

=2 �dashed-dotted line�, and �v� m�� /m�→� �thick dashed line�. The thick
solid line is the result of the Maxwell–Boltzmann distribution, which also
corresponds to the case m�� /m�=0. The circles are from NVE MD simula-
tions and the crosses are from NVT MD simulations for core events.
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f̃KE
�3� �s� = e
����� m�

M���
	1/2 �s + M���/m��1/2

�s + 1�2

�exp�− 
�����M���

m�
	� s + 1

s + M���/m�
	� . �19�

This expression can be inverted analytically to yield

fKE
�3� �
E� = � m�

M���
	1/2

e
����h0�
E;M���/m��

− 
�����M���

m�
	1/2

e
����h1�
E;M���/m��

+ � m�

M���
	1/2

e
����h2�
E;M���/

m�,
����M���/m�� , �20�

where the function h1 is defined in Eq. �A4� and the function
h2 is defined in Eq. �A6�.

The distribution of the kinetic energy of a square-well
atom prior to a disassociation or association event is shown
in Fig. 3 for a single component square-well/shoulder system
at various temperatures. The lines are from Eq. �20� and the
symbols are from constant energy and constant temperature
molecular dynamics simulations at various densities. As ex-
pected, the analytical formula agrees with the simulation re-
sults to within the statistical uncertainty of the data.

The kinetic energy of an atom on a core event is gener-
ally higher than that of the Maxwell–Boltzmann distribution.
The mean kinetic energy of an atom on a disassociation
event is

�
E��3� = 2 −
1

2� m�

M���
	 + 
�����1 − � m�

M���
	� ,

which is higher than on either a core or capture event. This is
because the atom must be moving away from its event part-
ner at a sufficiently high speed to escape the attractive well.

In the limit when 
����→0 �i.e., the high temperature
limit�, the kinetic energy distribution approaches that of a

core or capture event. This is expected, as in this situation
the atom will, in general, have a large kinetic energy, and the
attractive well becomes irrelevant.

In Fig. 4, the kinetic energy distribution of an atom on a
disassociation event in a multicomponent square-well system
at 
����=1 is plotted for collision partners of differing
masses. The lines are the predictions of Eq. �20� and the
symbols are from molecular dynamics simulations. When the
mass of the atom i is much larger than its collision partner j
�i.e., m�� /m�→0�, the distribution approaches the Maxwell–
Boltzmann distribution, which is the same as in the case of
the core and capture events. When the mass of the atom i is
much smaller than its collision partner, the kinetic energy
distribution approaches

f �3��
E� → ��E − ������
E − 
�����e

E−
����,

where � is the Heaviside step function. This limit corre-
sponds to the escape of an atom from the attractive well of a
stationary object, such as a wall. Unless the atom has a ki-
netic energy greater than the depth of the attractive well, it
cannot disassociate.

D. Bounce events

The statistics of the kinetic energy for square-shoulder
atoms on a bounce event are the same as that for square-well
atoms on a bounce event. The Laplace transform of the ki-
netic energy distribution of an atom on a bounce event is
given by

f̃KE
�4� �s� =

�m�/M����
1/2

1 − e−
����

�s + M���/m��1/2

�s + 1�2

��1 − exp�− 
�����M���

m�
	� s + 1

s + M���/m�
	�� .

�21�

The corresponding expression for the kinetic energy distribu-
tion is

FIG. 3. Kinetic energy distribution for atoms on a disassociation or associa-
tion event in a single component square-well/shoulder system with �i�

����=0 �solid line�, �ii� 
����=0.5 �dashed line�, �iii� 
����=1.0 �dotted
line�, and �iv� 
����=2.0 �dashed-dotted line�. The thick solid line is the
result of the Maxwell–Boltzmann distribution. The circles are from NVE
MD simulations and the crosses are from NVT MD simulations for disas-
sociation events.

FIG. 4. Kinetic energy distribution for an atom of mass m� on a disassocia-
tion or association event with an atom of mass m�� in a multicomponent
square-well/shoulder system with 
����=1, where �i� m�� /m�=0.2 �solid
line�, �ii� m�� /m�=0.5 �long dashed line�, �iii� m�� /m�=1 �dotted line�, �iv�
m�� /m�=2 �dashed-dotted line�, and �v� m�� /m�→� �thick dashed line�.
The thick solid line is the result of the Maxwell–Boltzmann distribution,
which also corresponds to the case m�� /m�=0. The circles are from NVE
MD simulations and the crosses are from NVT MD simulations for disas-
sociation events.
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fKE
�4� �
E� =

�M���/m��1/2

1 − e−
����

����h1�
E;M���/m��

−
�m�/M����

1/2

1 − e−
����
h2�
E;M���/m�,
����M���/m�� .

The distribution of the kinetic energy of an atom prior to a
bounce event is given in Fig. 5 for a single component
square-well/shoulder system at various temperatures. The
lines are the predictions of Eq. �22� and the symbols are from
molecular dynamics simulations. The two agree within the
statistical uncertainty of the simulation data.

At high temperatures �i.e., 
�����1�, the kinetic energy
distribution of an atom on a bounce event is shifted to lower
values than the Maxwell–Boltzmann distribution. In this
situation, the atom typically has sufficient kinetic energy to
escape the attractive well; therefore, atoms on a bounce event
will have a lower than average kinetic energy. At low tem-
peratures �i.e., 
�����1�, the kinetic energy distribution is
shifted to higher values than that of the Maxwell–Boltzmann
distribution.

The mean kinetic energy of an atom on a bounce event is

�
E��4� = 2 −
1

2� m�

M���
	 −


����

e
���� − 1�1 − � m�

M���
	� .

In the high temperature limit, this becomes

fKE
�4� �
E� � �M���

m�
	1/2

e−
E erf��m��

m�


E	1/2	 + ¯ .

In the low temperature limit �i.e., 
����→��, the kinetic
energy distribution approaches that of the core or capture
events �see Eq. �17��. In this limit, the atom will never have
sufficient kinetic energy to escape the attractive well and the
captured atoms become bonded as in Rapaport’s45 model for
polymers.

The kinetic energy distribution for an atom on a bounce
event with partners of various masses in a multicomponent
square-well system at 
����=1 is shown in Fig. 6. In the
limit that the mass of atom i is much larger than the mass of
its partner on a bounce event, the kinetic distribution ap-

proaches that of the Maxwell–Boltzmann distribution. In the
limit that the mass of atom i is much smaller than its event
partner, the distribution approaches

fKE
�4� �
E� � 
�E + ����� − E���E − ������

e−
E

1 − e−
����
.

E. Summary

Exact analytic expressions have been developed for the
distribution of the kinetic energy of an atom immediately
prior to undergoing an event with another partner atom; these
have been validated with molecular dynamics �MD� simula-
tion data. The on-event kinetic energy distributions are easily
collected in an event-driven MD simulation and, combined
with the above analytical expressions, they offer a sensitive
method for checking if a system has been equilibrated.

V. THE PAIR CORRELATION FUNCTION

In this section, we relate the event rates to the pair cor-
relation functions between atoms. This will provide an ex-
pression for the discontinuity in the pair correlation function
for square-well and square-shoulder systems. It will also lead
to a relationship between the temperature of a system and the
event rates.

Let us determine the average number of events that a
particular atom i of type � experiences in a small interval of
time t with atoms of type ��. Consider an atom j of type ��
which is moving from atom i with a speed bij = r̂ij ·vij. This
atom must be within a distance 
bij
t+a

���
�k� from the center

of atom i if it is to participate in an event of type k with it
within a time t. The number of these atoms which will
collide with atom i is then

N���
�k� �bij� = ���g����a���

�k� �f rel
MB�bij�4��a���

�k� �2
bij
t ,

�22�

where g��� is the pair correlation function.
To get the total number of atoms of type �� which will

collide with a particular atom of type �, we just need to
integrate this expression over all allowable values of the col-
lision diameter bij. Thus, the mean number N

���
�k� of type k

FIG. 5. Kinetic energy distribution for atoms on a bounce event in a single
component square-well/shoulder system with �i� 
����=0 �solid line�, �ii�

����=0.5 �long dashed line�, �iii� 
����=1.0 �dotted line�, �iv� 
����
=2.0 �dashed-dotted line�, and �v� 
����→� �dashed-dotted-dotted line�.
The thick solid line is the result of the Maxwell–Boltzmann distribution. The
circles are from NVE MD simulations and the crosses are from NVT MD
simulations.

FIG. 6. Kinetic energy distribution for an atom of mass m� on a bounce
event with an atom of mass m�� in a multicomponent square-well system
with 
����=1, where �i� m�� /m�=2 �solid line�, �ii� m�� /m�=5 �long
dashed line�, �iii� m�� /m�=10 �dotted line�, and �iv� m�� /m�→� �thick
dashed line�. The thick solid line is the result of the Maxwell–Boltzmann
distribution, which also corresponds to the case m�� /m�=0.
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events experienced by a single atom of type � with atoms of
type �� in a small interval of time t is given by

N���
�k� = ���g����a���

�k� �4��a���
�k� �2

bij,min
�k�

bij,max
�k�

dbij
bij


��
����

2�
	1/2

e−
����bij
2 /2t . �23�

The total number N
���
�k� of events of type k in the system

between atoms of type � and type �� in an interval of time �
is then

N���
�k� =

N��

1 + ����

N���

t
,

where N� is the number of atoms of type � in the system and
���� is the Kronecker delta function. The factor 1+���� pre-
vents the double counting of events between atoms of the
same type.

Therefore, the rate of core, capture, disassociation, and
bounce events are

N���
�1�

N�
=

4��x�x��

�1 + �����
����

3 g��������
+ ��2�
��������

2 �−1/2,

�24�

N���
�2�

N�
=

4��x�x��

�1 + �����
����������

3g������������
+ �

��2�
��������
2

����
2 �−1/2, �25�

N���
�3�

N�
=

4��x�x��

�1 + �����
����������

3g������������
− �

�
e−
����

�2�
��������
2

����
2 �1/2 , �26�

N���
�4�

N�
=

4��x�x��

�1 + �����
����������

3g������������
− �

�
1 − e−
����

�2�
��������
2

����
2 �1/2 , �27�

where N is the total number of atoms in the system and x�

=N� /N is the mole fraction of atoms of type � in the system.
These equations can be used to determine the value of the
pair correlation functions in terms of the event rates

g��������
+ � = �1 + �����

�2�
��������
2 �1/2

4��x�x������
3

N���
�1�

N�
, �28�

g������������
+ � = �1 + �����

�2�
��������
2

����
2 �1/2

4��x�x������
3

����
3

N���
�2�

N�
,

�29�

g������������
− � = �1 + �����

�2�
��������
2

����
2 �1/2

4��x�x������
3

����
3

�e
����
N���

�3�

N�
, �30�

g������������
− � = �1 + �����

�2�
��������
2

����
2 �1/2

4��x�x������
3

����
3

�
e
����

�e
��� − 1�

N���
�4�

N�
. �31�

These expressions have been previously developed by Ein-
wohner and Alder62 for single component systems. Identical
expressions exist for square-shoulder systems.

g������������
− � = �1 + �����

�2�
��������
2

����
2 �1/2

4��x�x������
3

����
3

N���
�2+�

N�
,

�32�

g������������
+ � = �1 + �����

�2�
��������
2

����
2 �1/2

4��x�x������
3

����
3

�e
����
N���

�3+�

N�
, �33�

g������������
+ � = �1 + �����

�2�
��������
2

����
2 �1/2

4��x�x������
3

����
3

�
e
����

�e
��� − 1�

N���
�4+�

N�
. �34�

In the more general case of systems where the atoms interact
through a stepped potential, these expressions relate the
value of the pair correlation function directly before or after
the various steps of the potential to the rate of capture, dis-
association, and bounce �or release, association, and bounce�
events across the steps.

At equilibrium, the interaction energy of the system must
remain constant on average. As a consequence, the number
of capture events must equal the number of disassociation
events �i.e., N

���
�2� =N

���
�3� � at long times. By comparing Eqs.

�29� and �30� �or Eqs. �32� and �33� in the case of square-
shoulder systems�, the values of the pair correlation function
just inside and outside the interaction well are related by

g������������
− � = e
����g������������

+ � . �35�

This relationship can also be derived from the requirement of
the continuity of the indirect correlation function.63

Equations �30� and �31� impose a relationship between
the disassociation and bounce event rates in the system

N���
�4� = �e
���� − 1�N���

�3� . �36�

In the case of square-shoulder systems, an identical relation-
ship holds between the number of association and the bounce
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events. If the temperature of the system, or equivalently 
,
were known, then the dissociation and bounce event rates are
not independent. Therefore, we conclude there are only two
independent event rates in single component square-well or
square-shoulder systems: the core and the bounce event
rates.

In addition, this allows the calculation of the temperature
of the system directly from knowledge of only the event
rates


���� = ln�1 +
N���

�4�

N���
�3� 	 , �37�

which was first realized by Einwohner and Alder.62 This ex-
pression provides an alternate method to the kinetic energy
formula to compute the temperature from a MD simulation
of a discrete potential system. This should be compared to
the expressions for the configurational temperature64–66 for
continuous potential systems.

VI. EQUATION OF STATE

The pressure p of a pairwise additive system can be
determined from the virial theorem


p

�
= 1 +




6N��
jk

r jk · F jk� , �38�

where N is the total number of atoms in the system, � is the
number density of atoms, r jk=r j −rk, and F jk is the force on
atom j due to atom k.

For a discrete potential system �e.g., square-well or
square-shoulder systems�, the virial expression for the com-
pressibility factor can also be written in terms of the event
rates


p

�
= 1 +




3N�
�

event
�rij · m�vi�event, �39�

where � is the total elapsed time of the simulation. The sum-
mation is over all events that occur in the system and i and j
are the atoms involved in the event. In event-driven molecu-
lar dynamics simulations, the pressure is typically calculated
by accumulating the value of rij ·m�vi for each event in the
system and using the above formula.

This expression can be simplified by dividing the events
in the system into their different types and between the dif-
ferent pairs of species of atoms.


p

�
= 1 +




3N�
�
�,��

�N���
�1� �rij · m�vi��1� + N���

�2�

��rij · m�vi��2� + N���
�3� �rij · m�vi��3� + N���

�4�

��rij · m�vi��4�� , �40�

where N
���
�k� is the total number of events of type k between

atoms of type � and �� in the system during the time �. The
brackets �¯ ��k� represent the average over events of type k.
The term �rij ·m�vi��k� is the mean contribution to the virial
of an event of type k. If these were known, then Eq. �40�
would directly relate the pressure of a system to the event

rates between its atoms. In Sec. VI A, we develop an expres-
sion for each of these terms. Then these are used to develop
an expression for the pressure in terms of only the event
rates.

A. Mean contribution of an event to the virial

The mean contribution to the virial by an event of type k
can be determined by averaging the momentum change of an
atom over the on-event distribution of the collision diameter

�rij · m�vi��k� = 
bij,min

�k�

bij,max
�k�

dbij�rij · m�vi�f �k��bij� .

On a core event, we find

�rij · m�vi��1� = 2����� ��2

2
����
	1/2

.

Core events give a positive contribution to the virial, increas-
ing the pressure of the system above that of an ideal gas.

The average contribution to the virial due a capture
event is

�rij · m�vi��2� = ������ ��2

2
����
	1/2

��1 − e
����Q�3/2,
������ , �41�

where Q�n ,x� is the incomplete Gamma function, defined as

Q�n,x� =
1

��n�x

�

dttn−1e−t,

and ��n� is the Gamma function.67 This contribution is al-
ways negative and will, therefore, tend to lower the pressure
of the system. The average change of the virial due to a
disassociation event is precisely the same as that of a capture
event and, therefore, also tends to lower the pressure of the
system. For the square-shoulder potential, the mean contri-
bution of the release �type 2+� and association �type 3+�
events to the virial is the negative of the contribution of the
capture �type 2� events, and therefore, both tend to increase
the pressure of the system.

The mean contribution to the virial due to a bounce
event is

�rij · m�vi��4� = −
2�����

1 − e−
����
� ��2

2
����
	1/2

��1 − Q�3/2,
������ . �42�

This also has a negative contribution to the virial. For the
square-shoulder potential, the bounce contribution has the
opposite sign to the bounce contribution for the square-well
potential and is always positive.

The variation of the contribution to the virial with tem-
perature from each of the types of events is shown in Fig. 7
for a single component system of square-well atoms. In order
to test the formulas for the contribution of each type of event
to the virial, NVT molecular dynamics simulations were per-
formed for single component square-well systems over a
range of temperatures, densities, and well widths. The sym-
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bols are the simulation results and the lines are the predic-
tions. Excellent agreement is found between the two.

B. Event rate expression for the equation of state

Substituting the expressions for the mean contribution to
the virial due to each type of event, developed in Sec. VI A,
into Eq. �40� gives


p

�
= 1 + �

���

�2�
��������
2 �1/2

3N�
�N���

�1� − ����N���
�4� � . �43�

The contribution of the capture and disassociation events
precisely cancel each other. Consequently, the pressure of a
system of square-well atoms can be determined directly from
the rates of only the core and bounce events. Specializing to
the case of one-component systems of square-well atoms of
diameter � interacting with a square-well attractive potential
of width � and depth �, this simplifies to


p

�
= 1 +

��
m�2�1/2

3N�
�N�1� − �N�4�� .

For square-shoulder systems, the corresponding formula is


p

�
= 1 + �

���

�2�
��������
2 �1/2

3N�
�N���

�1� + ����N���
�4+�� .

In the general case of a system of atoms interacting though a
stepped potential, the pressure would be a sum of all the
bounce rates of each of the steps of the potential multiplied
by the distance of interaction. Steps which decrease with
increasing atom separation would give a positive contribu-
tion, while steps which increase with increasing atom sepa-
ration would give a negative contribution.

An alternate manner to derive the collision rate expres-
sion is to use the virial equation written in terms of the pair
correlation function


p

�
= 1 +

2��

3 �
���

x�x�������
3 g��������

+ �

+ ����
3

����
3 �g������������

− � − g������������
+ ��� .

�44�

Then, by using the relationships between the pair correlation
functions and the event rates �see Sec. V�, the event rate
expression for the pressure can be obtained.

VII. CONCLUSIONS

The dynamics of systems composed of atoms interacting
through stepped potentials, including square-well and
square-shoulder systems, is driven by a series of events be-
tween pairs of atoms. These events can be divided into four
types: core, capture/release, disassociation/association, and
bounce. We have presented an analysis of the velocity statis-
tics of atoms when they undergo each of these types of
events. In particular, expressions were developed for the ve-
locity distribution of a pair of atoms on an event.

Using this velocity distribution, the analytical expres-
sions for the distribution of the kinetic energy and speed of
an atom on an event were developed. In general, these differ
from the Maxwell–Boltzmann distribution because atoms of
differing speeds will undergo events at different rates. These
expressions were validated against molecular dynamics
simulation data. The pair correlation functions were related
to the various event rates. From this it was found that the
temperature of the system can be determined from the ratio
of the rate of disassociation and bounce events. Finally, the
mean contribution to the virial of each type of event was
determined and this was used to construct an event rate for-
mula for the pressure, which is only a function of the rate of
core and bounce events.

For a hard sphere system, the pressure is determined
solely by the collision rate. In a single component square-
well system, there are two independent event rates: the core
and bounce rates. The pressure was related to these event
rates; however, the question arises as to whether a thermal
property, such as the internal energy or the heat capacity,
could be directly determined from the event rates. Can the
thermodynamic properties of a discrete potential system be
determined from knowledge of only the event rates?

One of the underlying assumptions of this work is that
the system was large enough such that the velocities of the
atoms could be considered independent and distributed ac-
cording to the Maxwell–Boltzmann distribution. For small
systems, the velocity distribution is not exactly given by the
Maxwell–Boltzmann distribution.68 We plan to examine the
velocity and event statistics in these small systems in future.
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FIG. 7. Mean contribution to the virial of a pair of atoms on a �i� core event
�solid line�, �ii� capture or disassociation event �dashed line�, and �iii�
bounce event �dotted line� in a single component square-well system. The
symbols are results from NVT MD simulations.
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APPENDIX: INVERSION OF THE LAPLACE
TRANSFORMATIONS

In this section, we derive the expressions for the inverse
Laplace transformations that are required for the kinetic en-
ergy distributions discussed in Sec. IV.

f̃�s� = 
0

�

dte−stf�t� . �A1�

We first consider the function

h̃1�s� = �s + 1�−1�s + a�−1/2. �A2�

Given the fact that the inverse Laplace transform of s−1�s
+a�−1/2 is a−1/2 erf��at� �see Ref. 69� and using the relation

f̃�s + a� ↔ e−atf�t� , �A3�

we can derive

h1�t;a� = �a − 1�−1/2erf���a − 1�t�e−t. �A4�

Next, we examine the function

h̃0�s;a� =
�s + a�1/2

�s + 1�2 .

This can be split into two terms

h̃0�s;a� = �s + 1�−1�s + a�−1/2 + �a − 1��s + 1�−2�s + a�−1/2.

With the knowledge of the inverse Laplace transform of
s−1�s+a�−1/2 and using Eq. �A3� and the relation

s−1 f̃�s� ↔ 
0

t

d�f��� ,

we find

h0�t;a� = t1/2� e−�a−1�t

�1/2 +
1 + 2�a − 1�t
2��a − 1�t

erf���a − 1�t��e−t.

Finally, we consider the function

f̃�s� =
�s + a�1/2

�s + 1�2 exp�− w� s + 1

s + a
	� ,

which is required in the kinetic energy distribution for the
disassociation and bounce events �see Sec. IV�. The expo-
nential can be expressed in terms of a power series in the
variable w, which can be grouped into three main terms

f̃�s� = �
n=0

�
�s + 1�n−2

�s + a�n−1/2
�− w�n

��n + 1�
= h̃0�s;a� − wh̃1�s;a�

+ h̃2�s;a,w� ,

where

h̃2�s;a,w� = �
n=0

�
�s + 1�n

�s + a�n+3/2
�− w�n+2

��n + 3�
.

By using the fact that the inverse Laplace transform of s−k is
tk−1 /��k� and the relation69

snf̃�s� − sn−1f�0� − sn−2df�0�
dt

− ¯ s
dn−2f�0�

dtn−2

−
dn−1f�0�

dtn−1 ↔
dnf�t�

dtn , �A5�

we find that the inverse Laplace transform of �s+1�n / �s
+a�n+3/2 is

dn

dtn �tn+1/2e−�a−1�t� = a−1/2��n + 1�t1/2e−atLn
1/2��a − 1�t� ,

where Ln
k is an associated Laguerre polynomial.67 Substitut-

ing this, we find

h2�t;a,w� = t1/2e−at�
n=0

�
Ln

1/2��a − 1�t�
��n + 1/2 + 1�

�− w�n+2

�n + 2��n + 1�

=� t

�
e−at��� w

�a − 1�t
sinh�2�w�a − 1�t�

+ cosh�2�w�a − 1�t��e−w − 1�
−

e−t

4�a − 1
�− 1 + 2w − 2�a − 1�t�

� �erf���a − 1�t − �w� + erf���a − 1�t + �w�

− 2 erf���a − 1�t�� . �A6�

The summation was written in closed form by twice integrat-
ing the following identity:70

�
n=0

�
Ln

k�x�
��n + k + 1�

�− w�n = ew�xw�−k/2Ik�2�xw� ,

where Ik is a modified Bessel function of the first kind, with
respect to w.
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