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Abstract 

Reliability is vital for safe and efficient operation 
of systems. Decisions about the configuration and 
selection of parts within a system, and the development 
activities to prove the chosen design, will influence the 
inherent reliability. Modelling provides a mechanism 
for explicating the relationship between the engineering  
activities and the statistical measures of reliability so 
that useful estimates of reliability can be obtained. 
Reliability modelling should be aligned to support the 
decisions taken during design and development. We 
examine why and how a reliability growth model can be 
structured, the type of data required and available to 
populate them, the selection of relevant summary 
measures, the process for updating estimates and 
feeding back into design to support planning decisions. 
The modelling process described is informed by our 
theoretical background in management science and our 
practical experience of working with UK industry.   
 

1. Introduction 
 Reliability is a key operating objective for many 
organisations. Some industries have a long tradition of 
reliability analysis, such as those operating safety-
critical plant which are highly regulated and for which 
analysis contributes evidence about the safe and 
effective operation. For organisations which seek to sell 
quality products, reliability is an important feature 
because it represents quality through time. For example, 
reliability is used widely in marketing campaigns for 
consumer durables and can be used to differentiate 
products from competitors through, for example, the 
provision of extended warranties.   
 Some markets have business models that provide 
financial incentives for designing reliability into 
products. This is consistent with the goal of minimising 
failures in operation and the associated costs, tangible 
and intangible, that any loss of service incurs. Such 
models have existed in some sectors, such as consumer 
products, for some time. While in others, such as the 
aerospace and defences industries, the adoption of 
performance based contracts is more recent and requires 
a shift in reliability culture from one where suppliers are 
passive and failure is implicitly condoned to a more 
proactive approach. Performance based contracts give 
manufacturers an incentive to design high availability 
systems to maximize income and to minimise any 
financial penalties if agreed service is not realised.  

 
Designing reliability into systems does not 

necessarily mean designing perfect reliability. While 
“zero failures” may be a laudable goal, realistically it 
may not always be achievable. There is a need to trade-
off the cost of finding potential failures, which are a 
source of unreliability, and the cost of responding to 
failures in operation. How such trade-offs are made will 
depend on the product and its market; see, for example, 
[1, 2].  

In this paper we introduce a modelling framework 
to support estimation of reliability during product 
development, and the trade-offs between alternative 
strategies to grow reliability so that the operational 
requirements are achieved within budget. We begin by 
discussing the role of reliability modelling within the 
systems engineering process in Section 2 and outlining 
the key stages of the modelling process. In Section 3 we 
describe each key stage of modelling showing insights 
into the logic, the input data structures, the types of 
output provided and the way in which these can be used 
to support engineering management decisions. The 
approach developed and described is grounded in our 
practical work in the UK aerospace industry and has 
been applied in industrial cases through which it has 
been validated. 

 
2. Reliability in Systems Engineering  

 Systems engineering is described [3] as ”a robust 
approach to the design, creation, and operation of 
systems”. Reliability is a characteristic of the 
performance of an operational system, but inherent 
reliability is built into the product during its design.  
 Conceptually, system reliability will reflect the 
inherent strength of the design relative to the stresses to 
which it is exposed. Failure will occur when strength 
exceeds stress. Designers are likely to have more 
control over the product strength than the stresses to 
which it will be exposed. Consider the International 
Electrotechnical Vocabulary (IEV) [4] definition of 
reliability “the ability of an item to perform its intended 
function for a required period of time under specified 
conditions”. Understanding the operating environment 
is paramount to designing reliable systems, yet the true 
conditions are not typically directly observable and 
under the direct control of engineers. Further, even 
features affecting the strength of the product, which 
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Fig. 1 Overview of reliability modelling process 
 
 
can be controlled during the design process does not 
mean that estimating system reliability is predictable 
because there will exist uncertainties in the system 
interactions due to, for example, unexpected reactions 
between connected parts, as well as interactions 
between the product and its operating environment. 
These systemic effects may be difficult to identify, 
although depending upon the class of design, there may 
be opportunities to learn from heritage systems and to 
exploit engineering knowledge to better understand the 
implications of design decisions; whether they are 
changes to earlier product generations intended to 
remove design weaknesses or innovations that introduce 
new technology. 
 To assess reliability during design, we need to be 
able to estimate appropriate measures of reliability and 
communicate these in such a way that they can be used 
to inform engineering and management decisions. 
Integrating reliability into the development process is 
important because it allows identification of relevant 
data to feed into analysis and the opportunity for results 
of analysis to feedback to the design team.   

Figure 1 shows the proposed modelling process 
which takes as inputs the product requirements, 
information about the relationships to the product 
family and relevant data in the form of, for example, 
operational experience and engineering judgement 
about what reliability problems have been experienced 
by heritage products and when they occurred. The 
outputs of the model will be information about 
reliability concerns for the new design, statistical 
estimates of reliability, information about predicted 
impact of reliability development options and other 
information that will contribute to design reviews and 
planning decisions.  
 

3. Reliability Growth Modelling 
Many texts [5, 6] provide details about the standard 

reliability modelling methods including Fault and Event 
Trees, Lifetime Data Analysis, Reliability Growth  

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Fig. 2  Key modelling steps 

 
 
modelling. This list is not exhaustive. Influenced by the 
theory underpinning such modelling approaches and the 
practice of supporting reliability decisions using 
relevant data, we develop a stochastic model whose key 
steps are shown in Figure 2. That is, we use a mix of 
engineering judgements and statistical experience data 
as inputs to modelling. The positive loop implies that 
we believe a virtuous, iterative cycle exists between the 
two data sources. We focus our model on supporting the 
types of decisions to be made by engineers and 
management so that they may take actions, from which 
new data will be generated and fed-back into the cycle 
of modelling thus allowing reliability growth and level 
to be estimated to support assessment and planning. 

In the following subsections, we shall discuss the 
reasoning of the analyst in approaching the development 
of the reliability model. Note that the practical stages in 
implementing the reliability model in the engineering 
context, as shown in Figure 1 and 2, will differ from this 
process of thinking through the rationale of the model 
from the perspective of the analyst.  
3.1 Reliability indicators relevant to decisions 
Reliability models should provide information that 
assists the engineer to assess how forecast performance 
matches user requirements, to understand the strengths 
and weaknesses of the design appreciating how this 
engineering understanding translates to a credible 
estimate, and to measure the potential and actual impact 
of downstream activities such as test and analysis.  
 Consider, for example, how we might translate 
requirements into reliability parameters. A requirement 
that the expected time to the first failure of a complex 
system is at least Y hours can translate to the calculation 
of the expectation of the distribution of the times to first 
failure of the population of items which is compared 
against Y hours. For further discussion of how product 
requirements can be specified and translated into 
meaningful statistics see [7]. The example given 
suggests point estimates only, but of course these can, 
and indeed should, be developed to include appropriate 
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interval estimates to capture our uncertainties and they 
should be amenable to updating as the design matures 
through development.  
3.2  Relevant data available to populate model By 
data, we mean an appropriate combination of hard 
numerical information about failure events to related 
products through to soft judgemental data representing 
the engineering state of knowledge about a design. 
Tension will invariably exist between the data available 
and the data required to populate a model. The scientific 
process indicates that the model should be specified in 
advance so that the data requirements can be established 
and relevant data collected by an effective and efficient 
process. Pragmatically, exploratory analysis will 
endeavour to make best use of the relevant operational 
and knowledge data that is accessible and affordable.  
  Consider typical sources and types of data 
available to support reliability analysis, in particular at 
the early design stage. The experience of the relevant 
engineers who are involved in the design, test, 
manufacture, operation and maintenance of the new 
system and any related products or parts will be 
fundamental. This knowledge will be invaluable in 
providing insights into possible weaknesses of the 
proposed design that may lead to failures in operating 
system and hence diminished reliability. An issue to 
beware is the potential biases inherent in judgements, 
the most obvious being the very different mind-set of 
the design and reliability engineers. The former will be 
focussed upon designing a system to deliver 
functionality, while the latter will be risk averse in 
thinking about ways in which the system will fail to 
deliver its functionality. There is a need to manage the 
elicitation of engineering knowledge to provide useful, 
relevant data [8]. 
 Hard quantitative data can be regarded as more 
respectable than soft judgements, although whether this 
will always be true is open to debate. Many 
organisations routinely collect data about the 
performance of their products in service [9, 10]. The 
primary use may be management reports for the product 
in the market, but such data can be extremely valuable 
to the design of new systems, especially if they share 
common features or environments. Usually such data 
are transformed from its raw state, which could be 
conceptualised as sequences of events through time, for 
example, into failure rates.  
 It is common, particularly in industries operating 
safety-critical process plants, to share data across 
organisations and even nations, for common parts. 
Examples include, although are not limited to, OREDA 
for North Sea Offshore Oil and Gas Industry, MIK-
HDBK-217 for electronic components, EiReDA for 
European nuclear power plants. Such databases 
typically contain failure rates, and confidence limits, for 
specific parts operating in given environments. If a 
match can be made between an element in the new 
design and a database entry, then the data can be used as 
an estimate of the part reliability and propagated 
through the system reliability model. 

As a design progresses through development, new 
data will be forthcoming from test and analysis of the 
prototype system or parts. New data can include details 
of failure modes realised, test hours until failures were 
observed, as well as forensic analysis to investigate the 
root cause of the failure. As a consequence of 
development, engineering knowledge will change 
through interpretation of the results. When in service, 
experience data can be collected in the form of, for 
example, the population of systems at risk and the times 
at which intended, or unintended, events take place. The 
former will include inspections, maintenance and repair, 
while the latter may be failure events. Such data will not 
only provide estimates of the operational reliability, 
which can be used to update earlier estimates and to 
calibrate the modelling process, but also as information 
to be fed-forward to new system design analysis. 
3.3 Concepts of stochastic reliability model We 
assume that a new system design contains enumerable 
engineering concerns (N), which may be residual 
weaknesses not fully addressed by the re-design or 
uncertainties arising through innovation. We use the 
term system in its broadest sense and, for any 
application, the item of interest may correspond to, for 
example, an integrated system, a line replaceable unit, a 
sub-assembly or some other part that is considered an 
entity. A concern represents an engineering explanation 
of why a system may be in a faulty state. We use the 
term concern deliberately as it represents the 
engineering epistemic uncertainty about the new design. 
A concern maps to a potential root cause of failure if we 
were to use conventional reliability terminology as 
discussed in [12].  

Concerns should be elicited from relevant 
engineering experts drawing on, for example, their 
knowledge of the product, the technology, processes 
and environment. Concerns represent their beliefs about 
potential reliability problems or faults in the system.  
These beliefs may transpire to be true faults in the 
system which in turn might result in operational failures 
should no action be taken to remove them during 
development. Figure 3 shows this reasoning process for 
the case of a single concern. We represent the 
uncertainties probabilistically. For example, p 
represents that chance that a given concern will 
correspond to a fault and the probability distribution, 
represented here in the form of the reliability or survivor 
function, R(t), represents the probability that a fault is 
realised as a failure after operational time t, expressed in 
appropriate units such as hours of operation. Similarly, 
F(t) represents the complementary probability that a 
fault is realised as a failure prior to operational time, t. 
The probability distribution might be populated using 
event data from heritage systems or it may be assessed 
using expert judgement.  Following the probability logic 
implied by the tree, we can estimate, for example, the 
probability that the system fails by operational time t, 
which is given by p(1-R(t)), and similarly for the other 
paths. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Model logic linking subjective engineering 
concerns about the design to realized failures in 
operation 

 
This line of reasoning can be extended to multiple 

concerns as shown below so that we may express the 
system estimate by the product function, assuming that 
concerns are statistically independent 

. 
 
 
 
 
 
 
 
 
 
 
 
 
More formally we can write this stochastic model 

generally as follows. A failure taxonomy is defined a 
priori and comprises C classes, which categorise the 
concern according to root cause. The number of 
concerns in class i is denoted by Ni and the distribution 
function of the operational time, t, to realise a particular 
concern in class i is denoted by Fi(t). For class i, we 
form a prior distribution to describe the experts’ belief 
in the number of concerns, Ni, likely to be inherent in 
the design. The prior is denoted by πi(Ni=ni) and can be 
elicited using a structured process [13].  

The density function of the time to realise the kth 
concern within a particular class can be expressed as: 
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Assuming the realisation of concerns is 
independent, the distribution function of the time to first 
failure of the system is given by: 
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The distribution of time until all concerns have been 
realised for the C classes is constructed by a similar 
argument giving: 
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The realisation of concerns through failure can be 
conceptualised as a point process. Using the same 
assumptions as before, the expected number of concerns 
that have been realised by time t are:  
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3.4 Estimating the reliability function The modelling 
analysis can be represented graphically. Figure 4 shows 
the reliability functions for three failure classes. Class 1 
has the poorest profile and class 3 the best. Combining 
reliability profiles of all relevant failure classes with 
engineering judgement for the number and type of 
concerns, gives the modelling outputs shown in Figure 5. 
Three reliability functions are shown. Current represents 
the estimate at the given point in development, while 
early refers to an initial estimate at some previous 
design review. By exploring possible future scenarios 
which might lead to the removal of faults, we can also 
make a forecast of the reliability function.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Reliability function estimated from historical data 

from earlier product generation 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Estimated and predicted reliability function for 

new system design 

0

0.5

1

0 25000 50000

Opertional time to failure

Re
lia

bi
lit

y 
fu

nc
tio

n

Failure Class 1

Failure Class 2

Failure Class 3

0

0.5

1

0 25000 50000

Opertional time to failure

Re
lia

bi
lit

y 
fu

nc
tio

n

Failure Class 1

Failure Class 2

Failure Class 3

Failure Class 1

Failure Class 2

Failure Class 3

R
el

ia
bi

lit
y

Operational Time (hrs)

Early Design

R
el

ia
bi

lit
y

Operational Time (hrs)

Early Design

Concern is n
ot a fault

Concern is a fault Fault re
sults i

n failure after 

t hours o
f operation

Fault results in failure before 

t hours of operation

System
 does not fail w

ith respect
to this concern before t hours 

of operation

System
 fails by t hours 

of operation

p

1-p

R(t)

1-R(t)

1-p

p R(t)

p (1-R(t))

Expert Judgement Expert Judgement
or Heritage Data

Concern is n
ot a fault

Concern is a fault Fault re
sults i

n failure after 

t hours o
f operation

Fault results in failure before 

t hours of operation

System
 does not fail w

ith respect
to this concern before t hours 

of operation

System
 fails by t hours 

of operation

p

1-p

R(t)

1-R(t)

1-p

p R(t)

p (1-R(t))

Expert Judgement Expert Judgement
or Heritage Data

Concern Probability of not failing before time t
(i.e. all events except failing before t)

1

2

( )( ) ( )( ) ( )( ) ( )( )
n

i i 1 1 2 2 n n
i 1

1 F t p 1 F t p 1 F t p ... 1 F t p
=

− = − × − × × −∏

n

( )1 11 F t p−

( )2 21 F t p−

( )n n1 F t p−

( ) ( )1 1 1R t p 1 p= + −

( ) ( )2 2 2R t p 1 p= + −

( ) ( )n n nR t p 1 p= + −

Concern Probability of not failing before time t
(i.e. all events except failing before t)

Concern Probability of not failing before time t
(i.e. all events except failing before t)

1

2

( )( ) ( )( ) ( )( ) ( )( )
n

i i 1 1 2 2 n n
i 1

1 F t p 1 F t p 1 F t p ... 1 F t p
=

− = − × − × × −∏ ( )( ) ( )( ) ( )( ) ( )( )
n

i i 1 1 2 2 n n
i 1

1 F t p 1 F t p 1 F t p ... 1 F t p
=

− = − × − × × −∏

n

( )1 11 F t p−

( )2 21 F t p−

( )n n1 F t p−

( ) ( )1 1 1R t p 1 p= + −

( ) ( )2 2 2R t p 1 p= + −

( ) ( )n n nR t p 1 p= + −



 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 Extended model logic to include effectiveness of 

activities in exposing faults 
 
 
3.5 Supporting reliability planning During 
development, different reliability activities, such as test 
and analysis, can be conducted to learn about the state 
of the system and understand what concerns may or 
may not be faults. However such activities will be of 
different durations, vary in cost and efficacy. Hence 
there is a need to be able to select a cost-effective 
portfolio of activities.  

The proposed model can be extended to help us 
assess the value of information from such activities 
prior to their implementation and so inform such 
planning decisions.  Figure 6 shows the extended model 
reasoning to support an assessment of the effectiveness 
of development activities in exposing faults. 

This extended model can be formulated as a binary 
integer programming problem and used to select those 
activities that will minimise cost subject to the 
reliability requirements.  This can be expressed formally 
as:   

 
 
 
 
 
 
 
 
 
 
 
 

 
This analysis will require additional data about the 

about the resources required to conduct the activities 
(e.g. cost or time) and the engineering probability 
assessments of the likely efficacy of the activities.  Such 
data may be conceptualised in the form shown in Figure 
7 where we have a vector of probabilities with each 
element representing the engineering judgement about 
the likelihood of a given concern being a fault (pi) and a 
matrix whose elements represent the probabilities (qij) 
of each test activity (j) being able to expose a particular 
fault (i) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7  Structure of elicited probabilities of concerns and 

probabilities of each test exposing a given fault 
conditional on existence of that fault 

 
3.6 Updating estimates through development Two 
possible ways of updating reliability estimates as 
information becomes available through development are, 
firstly, the re-elicitation of the probability assessments 
of concerns from engineers and, secondly, Bayesian 
updating.  The former requires the elicitation process to 
be conducted again so that engineering experts can re-
assess their probabilities of concerns in the light of the 
new evidence from the results of test and analysis.  
Taking these new assessments as input, the model can 
be re-run to generate updated estimates.   

An alternative is to use Bayesian updating. Again a 
probability tree representation illustrates the principles 
of Bayesian updating as shown in Figure 8 where we 
note the prior probabilities (as a function of q) 
associated with the exposure, or otherwise, of faults on 
test, conditional upon whether that fault exists or not 
(which are denoted by p or 1-p respectively). Using 
Bayes Theorem we can find the chance that a fault 
exists giving that nothing is exposed on test as follows:  
 
 
  

 
The outcomes of test and analysis will be 

dichotomous because the fault will have been exposed 
or not and can be used to obtain the posterior 
probabilities.  For example, Figure 9 shows a plot of the 
posterior against prior probabilities for multiple tests.  
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Probability tree showing chance of test exposing 

fault conditional on existence of fault 
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Fig. 9  Comparison of prior and posterior probability 
estimates from Bayesian updating 

 
4.  Summary and Conclusions 

 This article has discussed why it is important to 
ensure reliability is considered during product design 
and examined how we might use a stochastic model to 
support insights into reliability performance and so 
inform design and programme management decisions. 
The specific stochastic model for reliability growth 
explained has been structured based on our theoretical 
knowledge of reliability growth modelling and our 
practical experience of reliability analysis in the design 
of aerospace systems. Based on our evaluation of the 
application of the model in several cases [14], we 
believe the strengths of the approach proposed are: to 
explicate reliability statistics with engineering concerns; 
to use heritage operational data to minimise cognitive 
burden on engineering experts; and to reflect the real 
operating stresses. However, the modelling approach 
proposed also has limitations. These include: the model 
as implemented represents a first order approximation 
only; the elicitation of engineering concerns from 
engineers is non-trivial that is resource and cognitively 
intensive; and we focus only on reliability rather than 
availability. Further research will address these 
limitations. 
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