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Unsteady gravity-driven slender rivulets of a power-law fluid

Y. M. Yatim, S. K. Wilson, B. R. Duffy∗

Department of Mathematics and Statistics, University of Strathclyde,

Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom

Abstract

Unsteady gravity-driven flow of a thin slender rivulet of a non-Newtonian power-law fluid

on a plane inclined at an angle α to the horizontal is considered. Unsteady similarity solutions

are obtained for both converging sessile rivulets (when 0 < α < π/2) in the case x < 0 with

t < 0, and diverging pendent rivulets (when π/2 < α < π) in the case x > 0 with t > 0,

where x denotes a coordinate measured down the plane and t denotes time. Numerical and

asymptotic methods are used to show that for each value of the power-law index N there are

two physically realisable solutions, with cross-sectional profiles that are ‘single-humped’ and

‘double-humped’, respectively. Each solution predicts that at any time t the rivulet widens or

narrows according to |x|(2N+1)/2(N+1) and thickens or thins according to |x|N/(N+1) as it flows

down the plane; moreover, at any station x, it widens or narrows according to |t|−N/2(N+1) and

thickens or thins according to |t|−N/(N+1). The length of a truncated rivulet of fixed volume is

found to behave according to |t|N/(2N+1).
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1. Introduction

Thin films of non-Newtonian fluids occur in many situations, ranging from geophysical con-

texts such as flows of lava and mud to industrial situations such as lubrication and coating

processes (see, for example, Ferguson and Kemblowski [1], Chhabra and Richardson [2] and

Tanner [3]). There is therefore a considerable literature on thin-film flows of non-Newtonian

fluids, both with prescribed rigid boundaries (as is common in, for example, lubrication prob-

lems) and with unknown free surfaces (as in, for example, mud flows). In this paper we shall

be concerned with similarity solutions for flows of the latter type.
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The simplest types of non-Newtonian fluid models are the so-called generalized Newtonian

models, in which the extra stress is proportional to the rate-of-strain tensor, with the viscosity

µ a prescribed function of the local shear rate q; of these, the simplest is the power-law fluid, in

which µ is proportional to qN−1, where N (> 0) is a constant (the power-law index). Power-law

fluids may be shear-thinning (N < 1) or shear-thickening (N > 1), and can be useful models

of non-Newtonian behaviour of many materials over restricted ranges of values of q; the case

N = 1 corresponds to a Newtonian fluid. Barnes et al. [4] give examples of materials that

exhibit power-law behaviour, such as toothpaste and skin cream (which are shear-thinning)

and anti-misting solution in jet fuel (which is shear-thickening). Myers [5] gives comparisons

between predictions of several generalized Newtonian fluids (including power-law fluids) in some

rectilinear flows, and Hamrock [6] and Szeri [7] describe the use of power-law fluids in modeling

non-Newtonian lubricants in geometries with rigid boundaries.

There have been many studies of steady flows of thin films of power-law fluids with a free

surface. For example, following the approach of Smith [8] for a rivulet of a Newtonian fluid,

Wilson and Burgess [9] obtained a similarity solution for the steady gravity-driven spreading

of a rivulet of a power-law fluid down an inclined plane which predicts that the rivulet widens

according to x(2N+1)/(5N+2) and thins according to x−N/(5N+2) (where x is a longitudinal coordi-

nate), but that the profile of the rivulet is rather insensitive to N . Wilson and Burgess [9] noted

a formal analogy between their steady three-dimensional rivulet problem and an unsteady one-

dimensional nonlinear diffusion problem (the time variable t being replaced by a space variable),

and Perazzo and Gratton [10] used this analogy to obtain solutions to a variety of free-surface

flow problems, and, in particular, to recover the similarity solution of Wilson and Burgess [9]

from a known solution of the diffusion problem given by Zel’dovich and Kompaneets [11] and

Pattle [12]. Wilson et al. [13] obtained similarity solutions for the steady spreading of a rivulet

of a power-law fluid driven by either gravity or a constant shear stress at its free surface, for

both weak and strong surface-tension effects.

There have also been studies of unsteady flows of thin films of power-law fluids with a free

surface. Gorodtsov [14] obtained similarity solutions describing unsteady two-dimensional and

axisymmetric gravity-driven spreading of a power-law fluid on a horizontal plane, generalizing

the earlier solutions for a Newtonian fluid given by Smith [15] (for the case when the volume of

fluid is constant) and Huppert [16] (for the case when the volume changes according to some



power of time t). The solutions obtained by Gorodtsov [14] were re-discovered independently by

Pascal [17] (in the two-dimensional constant-volume case), by Pascal [18] (in the axisymmetric

constant-volume case), and by Gratton et al. [19]. Gorodtsov [14] also obtained a similarity

solution describing spreading of a power-law fluid on a horizontal plane with vertical side-

wall boundaries, and Gratton et al. [19] obtained a variety of waiting-time and travelling-wave

solutions for thin-film flows of a power-law fluid on a horizontal plane. Perazzo and Gratton [20]

obtained a similarity solution describing unsteady two-dimensional gravity-driven flow of a

power-law fluid down an inclined plane which predicts that the height of the free surface varies

according to (x/t)N/(N+1), generalizing the result given by Huppert [21] for the Newtonian case

N = 1. Perazzo and Gratton [20, 22] also obtained families of travelling-wave solutions for thin-

film flows of a power-law fluid on an inclined plane. Pascal [23] and Pascal and D’Alessio [24]

investigated the stability of flow of a power-law fluid down a porous inclined plane, and down

an inclined plane subject to a prescribed shear stress at its free surface, respectively.

There have also been studies of both steady and unsteady thin-film flows of power-law fluids

in which surface-tension effects are significant. For example, Witelski [25] derived similarity

solutions relevant to spreading and contracting flows, and Betelú and Fontelos [26, 27] obtained

similarity solutions describing spreading in two-dimensional and axisymmetric geometries, re-

spectively.

In this paper, we use the general approach of our previous work on rivulets of a Newto-

nian fluid (Yatim et al. [28]) to obtain similarity solutions describing unsteady gravity-driven

draining of a rivulet of a non-Newtonian power-law fluid down an inclined plane.

2. Problem Formulation

Consider the unsteady flow of a thin slender rivulet of a non-Newtonian power-law fluid

with constant density ρ and variable viscosity µ = µ0q
N−1, where µ0 (> 0) is a constant, q is

the local shear rate and N (> 0) is the power-law index, down a planar substrate inclined at

an angle α (0 < α < π) to the horizontal subject to gravitational acceleration g when surface-

tension effects are negligible. When 0 < α < π/2 the fluid is on the upper side of the inclined

plane (a sessile rivulet), and when π/2 < α < π it is on the underside of the inclined plane (a

pendent rivulet).

Cartesian coordinates (x, y, z) with the x axis down the line of greatest slope and the z axis



normal to the substrate are adopted, with the substrate at z = 0. We denote the free surface

profile of the rivulet by z = h(x, y, t), where t denotes time, and we restrict our attention to

flows that are symmetric about y = 0 (i.e. to solutions for which h is even in y) with (unknown)

semi-width a = a(x, t), so that h = 0 at the contact lines y = ±a. The geometry of the problem

is sketched in Fig. .1.

With the usual lubrication approximation the velocity (u, v, w) and pressure p of the fluid

satisfy the governing equations

ux + vy + wz = 0, (1)

(µuz)z + ρg sinα = 0, (2)

(µvz)z − py = 0, (3)

− pz − ρg cosα = 0. (4)

Since the rivulet is taken to be thin and slender, and since we will be considering only problems

in which uz is always non-negative, the shear rate is given by q = uz approximately, and

therefore the viscosity µ in (2) and (3) is given by µ = µ0u
N−1
z . Equations (1)–(4) are to be

integrated subject to the boundary conditions of no slip and no penetration on the substrate:

u = v = w = 0 on z = 0, (5)

and balances of normal and tangential stress on the free surface:

p = pa, µuz = µvz = 0 on z = h, (6)

where pa denotes atmospheric pressure, together with the kinematic condition on the free

surface:

ht + ūx + v̄y = 0 on z = h, (7)

and the zero-mass-flux conditions at the contact lines:

v̄ = ±axū at y = ±a, (8)

where the local fluxes ū = ū(x, y, t) and v̄ = v̄(x, y, t) are defined by

ū =

∫ h

0

u dz, v̄ =

∫ h

0

v dz. (9)

Integration of (2)–(4) subject to boundary conditions (5) and (6) yields

p = pa + ρg cosα (h− z) , (10)



u =
N

N + 1

(

ρg sinα

µ0

)
1
N
[

h
N+1
N − (h− z)

N+1
N

]

, (11)

v = − N

N + 1
py

(

(ρg sinα)1−N

µ0

)
1
N
[

h
N+1
N − (h− z)

N+1
N

]

, (12)

and substitution of (11) and (12) into (9) gives

ū =
N

2N + 1

(

ρg sinα

µ0

)
1
N

h
2N+1

N , v̄ = − Npy
2N + 1

(

(ρg sinα)1−N

µ0

)
1
N

h
2N+1

N . (13)

The kinematic condition (7) then yields the governing partial differential equation for h, namely

2N + 1

N
µ0

(

ρg sinα

µ0

)
N−1
N

ht = ρg cosα
[

h
2N+1

N hy

]

y
− ρg sinα

[

h
2N+1

N

]

x
. (14)

Once this is solved for h, the complete solution for p, u and v is given by (10)–(12). Note

that in the special case N = 1, equation (14) reduces to the familiar equation describing the

unsteady gravity-driven flow of a thin slender rivulet of Newtonian fluid. From (13) we have

ū = 0 at y = ±a, so that the zero-mass-flux condition (8) reduces to v̄ = 0 at y = ±a; thus we

have the contact-line conditions

h = 0 at y = ±a, h
2N+1

N hy → 0 as y → ±a. (15)

We shall be concerned with unsteady similarity solutions of (14) of the form

h = h0

∣

∣

∣

x

t

∣

∣

∣

N

N+1

H(η), y = y0

( |x|2N+1

|t|N
)

1
2(N+1)

η, (16)

where H (≥ 0) and η are defined to be dimensionless, and h0 and y0 are positive constants,

which, without loss of generality, we may write as

h0 =

(

µ0

ρg sinα

)
1

N+1

, y0 =

(

N + 1

2N + 1

)
1
2
(

µ0| cosα|N+1

ρg sinN+2 α

)
1

2(N+1)

. (17)

Hence (14) reduces to the ordinary differential equation

St

[

1

2
ηH ′ −H

]

= Sg

[

H
2N+1

N H ′
]′
+ Sx

[

1

2
η(H

2N+1
N )′ −H

2N+1
N

]

(18)

for H , where a dash denotes differentiation with respect to η, and we have introduced the

notation St = sgn(t) = ±1, Sg = sgn(cosα) = ±1 and Sx = sgn(x) = ±1 (so that, in

particular, Sg = +1 for a sessile rivulet and Sg = −1 for a pendent rivulet).



For a symmetric rivulet, appropriate boundary and symmetry conditions are

H = H0, H ′ = 0 at η = 0, (19)

where H0 (> 0) is a free parameter at this stage; the (unknown) position of the contact line is

denoted by η = η0, so that with (15) we have

H = 0 at η = η0, H
2N+1

N H ′ → 0 as η → η0. (20)

The middle height of the rivulet, hm = h(x, 0, t), and the semi-width of the rivulet vary with x

and t according to

hm = h0

∣

∣

∣

x

t

∣

∣

∣

N

N+1
H0, a = y0

( |x|2N+1

|t|N
)

1
2(N+1)

η0, (21)

predicting that at any time t the rivulet widens or narrows according to |x|(2N+1)/2(N+1) and

thickens or thins according to |x|N/(N+1) as it flows down the plane; moreover, at any station

x, it widens or narrows according to |t|−N/2(N+1) and thickens or thins according to |t|−N/(N+1).

The volume flux of fluid across any section x = constant, denoted by Q, is given by

Q = 2

∫ a

0

ū dy =
N(N + 1)

1
2

(2N + 1)
3
2

(

µ3
0| cosα|N+1|x|3(2N+1)

ρ3g3 sinN+4 α |t|5N+2

)

1
2(N+1)

I, (22)

and the cross-sectional area of the rivulet at any station x, denoted by A, is given by

A = 2

∫ a

0

h dy =

(

N + 1

2N + 1

)
1
2
(

µ3
0| cosα|N+1|x|4N+1

ρ3g3 sinN+4 α |t|3N
)

1
2(N+1)

J, (23)

where the constants I and J are defined by

I = 2

∫ η0

0

H
2N+1

N dη, J = 2

∫ η0

0

H dη. (24)

Conditions for the rivulet to be thin and slender are that the length scales in the x, y and

z directions (namely |x|, a and hm, respectively) satisfy hm ≪ a ≪ |x|, which in turn requires

that
|x||t|Nρg| cosα|N+1

µ0 sin
N α

≫ 1,
|x||t|Nρg sinN+2 α

µ0| cosα|N+1
≫ 1, (25)

showing that |x||t|N must be sufficiently large (and that α cannot be close to 0, π/2 or π).

In addition, conditions for the neglect of the down-slope pressure gradient px in (2) and of

surface-tension effects in (6)1 are

|hx| ≪ 1,
ρgx2

σ
≫ 1, (26)



respectively. In principle, all these restrictions are achieved at sufficiently large length scales in

the x direction.

For simplicity in plotting results, we now re-scale according to

x = Xx∗, y = y0

(

X2N+1

TN

)
1

2(N+1)

y∗, z = h0

(

X

T

)
N

N+1

z∗, t = T t∗,

h = h0

(

X

T

)
N

N+1

h∗, hm = h0

(

X

T

)
N

N+1

h∗
m, a = y0

(

X2N+1

TN

)
1

2(N+1)

a∗,

Q =
N(N + 1)

1
2

(2N + 1)
3
2

(

µ3
0| cosα|N+1X3(2N+1)

ρ3g3 sinN+4 αT 5N+2

)

1
2(N+1)

Q∗,

A =

(

N + 1

2N + 1

)
1
2
(

µ3
0| cosα|N+1X4N+1

ρ3g3 sinN+4 αT 3N

)
1

2(N+1)

A∗,

(27)

where X (> 0) and T (> 0) are length and time scales, respectively, which we may choose

arbitrarily. Then, with superscript stars dropped immediately for clarity, the solution (16)

takes the slightly simpler form

h =
∣

∣

∣

x

t

∣

∣

∣

N

N+1

H(η), y =

( |x|2N+1

|t|N
)

1
2(N+1)

η, (28)

with H satisfying (18)–(20); from (21) the middle height hm and semi-width a are given by

hm =
∣

∣

∣

x

t

∣

∣

∣

N

N+1
H0, a =

( |x|2N+1

|t|N
)

1
2(N+1)

η0, (29)

and from (22) and (23) the flux Q and cross-sectional area A become

Q =

( |x|3(2N+1)

|t|5N+2

)

1
2(N+1)

I, A =

( |x|4N+1

|t|3N
)

1
2(N+1)

J. (30)

3. Results

A closed-form solution of the ordinary differential equation (18) is not available, and so it

must, in general, be solved numerically for H subject to the boundary conditions (19) and (20),

where H0 and η0 are parameters to be determined.

As far as the differential equation (18) is concerned, any choice of a set of values of St, Sg

and Sx leads to the same mathematical problem as the set −St, −Sg and −Sx (though the

two sets of values lead to different physical interpretations of the solutions, as we shall show).

Therefore there are four distinct cases to consider; however, we shall show below that only the

case St = −Sg = Sx can lead to physically realisable solutions.



Near η = 0 we find straightforwardly that H satisfies

H = H0 +
SxH

N+1
N

0 − St

2SgH
N+1
N

0

η2 +O
(

η4
)

(31)

as η → 0, and near the contact line η = η0 we find that H satisfies either

H ∼
[

−(2N + 1)Stη0
2NSg

(η0 − η)

]
N

2N+1

, (32)

valid only when St = −Sg, or

H ∼ C(η0 − η)
N

3N+1 − (3N + 1)Stη0

2 (4N + 1)C
N+1
N Sg

(η0 − η)
2N

3N+1 (33)

as η → η0, where C is a positive constant.1 However, the zero-mass-flux condition in (20)

requires that C = 0, and so cases where St = Sg, in which (33) is the only possible behaviour

near the contact line, are immediately eliminated. Determining the physical solutions from the

condition C = 0 will be discussed shortly.

In cases where St = −Sg, at any stationary points of the free surface (where H ′ = 0)

equation (18) gives

H ′′ = H−N+1
N − SxSt, (34)

provided that H 6= 0. Since the rivulet has two contact lines, at η = ±η0, the function H (≥ 0)

must have at least one maximum in |η| ≤ η0. In the case where St = −Sg = −Sx, equation (34)

shows that any stationary point of H is a minimum, so there can be no solution for H with a

maximum, and therefore this case is eliminated. In the case where St = −Sg = Sx, equation

(34) shows that any stationary point for which H < 1 (H > 1) is a minimum (maximum);

later, we will show from the numerically determined profiles H that there are in fact only two

types of solution in this case, one with a minimum at η = 0 and two symmetrically placed

maxima when H0 < 1 (‘double-humped’ profiles), and one with a single maximum at η = 0

when H0 > 1 (‘single-humped’ profiles).

With all other cases eliminated, the only case that could lead to physically realisable solu-

tions is the one where St = −Sg = Sx, corresponding to a converging sessile rivulet in x < 0

for t < 0, or a diverging pendent rivulet in x > 0 for t > 0. In this case, equation (18) becomes

N

3N + 1

(

H
3N+1

N

)′′
=

1

2
η
(

H
2N+1

N −H
)′

−
(

H
2N+1

N −H
)

, (35)

1Note that both (32) and (33) have H ′ → ∞ as η → η0, showing that the lubrication approximation always

fails near the contact lines.



which was solved numerically by means of a shooting method subject to (19) to find η0 for

a given value of H0 (> 0). As a check, some of the computations were also performed by

means of a finite-difference method, with Newton iteration to solve the resulting nonlinear

algebraic equations; the solutions obtained in this way were found to be in good agreement

with those obtained by the shooting method. Figure .2 shows η0 as a function of H0 for

several values of N . For each value of N there is a solution for every H0 except in a narrow

‘window’ H01 < H0 < H02, where H01 = H01(N) < 1 and H02 = H02(N) > 1, in which

there is no solution. This window is larger for larger values of N , with H01 and H02 taking

correspondingly smaller and larger values, respectively. For example, for N = 1/20, we found

that H01 ≃ 0.9999 and H02 ≃ 1.0178, whereas for N = 20, we found that H01 ≃ 0.9993 and

H02 ≃ 1.1409; furthermore, in the Newtonian case (N = 1), H01 ≃ 0.9995 and H02 ≃ 1.1059,

in agreement with the values given by Yatim et al. [28]. (Here and subsequently, quantities

obtained numerically are given to four decimal places.)

In order to choose the physically realisable solutions from this family of solutions, we impose

the condition (20), or equivalently the condition C = 0. A simple way to determine C accurately

is by integrating equation (18) from η = 0 to η = η0 and using (19) and (20) to obtain

3 (3N + 1)

2N

∫ η0

0

(

H
2N+1

N −H
)

dη =







0 for (32),

C
3N+1

N for (33),
(36)

so that the coefficient C in (33) is given by

C =

[

3 (3N + 1)

2N

∫ η0

0

(

H
2N+1

N −H
)

dη

]
N

3N+1

=

[

3(3N + 1)

4N
(I − J)

]
N

3N+1

, (37)

which we use to find C from the numerical solution for H obtained with a given value of H0.

Also these values of C were checked against those obtained from the behaviour of the numerical

solution near η = η0, according to (33). Figure .3 shows a plot of C calculated from (37) as a

function of H0 for the values of N used in Fig. .2. From this plot, we see that for each value

of N there are precisely two values of H0 for which C = 0, namely H0 = H01 and H0 = H02.

Thus we arrive at our main result: there are precisely two physically realisable solutions of the

type sought for an unsteady rivulet, these solutions corresponding to the two values H0 = H01

(with associated η0 = η01) and H0 = H02 (with associated η0 = η02).

Equation (37) shows that I and J satisfy I = J for both H0 = H01 and H0 = H02, and

Figure .4 shows plots of I (= J) as a function of N .



Figures .5 and .6 show numerically calculated profiles H = H(η) of the two physically

realisable solutions with H0 = H01 and H0 = H02, respectively, for a range of values of N .

These two sets of solutions have different types of profiles, namely a (barely discernible) double-

humped profile for H0 = H01 and a single-humped profile for H0 = H02, consistent with the

earlier discussion of stationary points.

Figure .7 shows a plot of H01 and H02 as functions of N ; the inset shows an enlargement of

the H01 curve, as the details are hard to distinguish at this scale. Figure .8 shows a plot of η01

and η02 as functions of N ; we see that η01 > η02 for all N .

The behaviour of the solution for H in the case H0 = H02 in the limit of a strongly shear-

thinning fluid, N → 0+, is discussed in the Appendix, in which it is shown that

H ∼ 1 +N log

[

3

2

(

1− η2

η202

)]

, H02 ∼ 1 +N log
3

2
, η02 ∼

√
6N, I = J ∼ 2

√
6N. (38)

The asymptotic forms of H02 and η02 in the limit N → 0+ given in (38) are included in Figs .7

and .8 as dashed curves, and similarly the asymptotic forms for I (= J) are included in Fig. .4

as dashed curves. Numerical calculations indicate that the behaviour of the solution for H in

the case H0 = H01 in the limit N → 0+ is somewhat similar to (38) but with multiplicative

factors and terms in logN which the authors have not been able to determine with certainty.

In the limit of a strongly shear-thickening fluid, N → ∞, the solutions for both H0 = H01

and H0 = H02 may be expressed as regular expansions in powers of 1/N about the solutions

for 1/N = 0, and so we write

H(η) = H̄0+
1

N
H̄1+O

(

1

N2

)

, H0k = H̄00+
1

N
H̄01+O

(

1

N2

)

, η0k = η̄00+
1

N
η̄01+O

(

1

N2

)

(39)

for k = 1 and 2. Then equation (35) gives

1

2
ηH̄ ′

0 − H̄0 = −
(

H̄2
0H̄

′
0

)′
+

1

2
η(H̄2

0)
′ − H̄2

0 (40)

at leading order in 1/N , and

(

H̄2
0H̄1

)′′
+

1

2
η
[(

1− 2H̄0

)

H̄1

]′ −
(

1− 2H̄0

)

H̄1 =

(

1

2
ηH̄ ′

0 − H̄0

)

log H̄0 − H̄0H̄
′
0

(

H̄ ′
0 −

1

2
η

)

(41)

at first order. Equations (40) and (41) were solved numerically subject to the boundary condi-

tions

H̄0(0) = H̄00, H̄ ′
0(0) = 0, H̄1(0) = H̄01, H̄ ′

1(0) = 0, (42)



where the constants H̄00 and H̄01 are chosen so that conditions obtained from (37) with C = 0,

namely
∫ η̄00

0

(H̄2
0 − H̄0) dη = 0 (43)

and
∫ η̄00

0

[

H̄1

(

1− 2H̄0

)

− H̄2
0 log H̄0

]

dη = 0, (44)

are satisfied. For H0 = H01, we find that H̄00 ≃ 0.9993, η̄00 ≃ 9.2811 and H̄01 ≃ 0.0002592;

for H0 = H02, we find that H̄00 ≃ 1.1434, η̄00 ≃ 2.5190 and H̄01 ≃ −0.05084. Figure .9 shows

comparisons between H̄1 and N(H − H̄0) for N = 5 and N = 20, respectively, for H0 = H01,

and Fig. .10 shows the corresponding results for H0 = H02; the asymptotic solutions are in

good agreement with the exact numerical solutions for both H0 = H01 and H0 = H02. The

corresponding asymptotic forms of H01, H02, η01 and η02 in the limit N → ∞ are included in

Figs .7 and .8 as dashed curves. Also using these asymptotic solutions we find that

I ∼ 2

∫ η̄00

0

[

H̄2
0 +

1

N

(

H̄2
0 log H̄0 + 2H̄0H̄1

)

]

dη, J ∼ 2

∫ η̄00

0

(

H̄0 +
1

N
H̄1

)

dη (45)

in the limit N → ∞, so that

I = J ∼ a+
1

N
b, (46)

where a ≃ 18.4903 and b ≃ −9.1214 for H0 = H01, and a ≃ 4.7084 and b ≃ −2.3697 for

H0 = H02; these asymptotic solutions for I (= J) in the limit N → ∞ are included in Fig. .4

as dashed curves.

4. Discussion

We have obtained unsteady similarity solutions for gravity-driven flow of a thin slender

rivulet of a power-law fluid down an inclined plane. We found that there are physically realisable

solutions only in the case St = −Sg = Sx, and then there are two distinct solutions for each

value of the power-law index N , namely one for which H0 = H01, with a double-humped cross-

sectional profile, and one for which H0 = H02, with a single-humped cross-sectional profile.

Physically, the case St = −Sg = Sx = 1 corresponds to pendent rivulets in x > 0, with

t > 0, whereas the case St = −Sg = Sx = −1 corresponds to sessile rivulets in x < 0,

with t < 0. However, results of a numerical study of the stability of corresponding similarity

solutions for a Newtonian fluid (Yatim et al. [28]) suggest that the sessile case is stable but

that the pendent case is unstable. Presumably the same is true in the non-Newtonian case,



that is, only the sessile case St = −Sg = Sx = −1 is likely to be stable. Figure .11 shows

three-dimensional plots of the free surface z = h in the cases H0 = H01 and H0 = H02 for

N = 5, at times t = −100, −10 and −1, for the sessile case St = −Sg = Sx = −1; the insets

show the cross-sectional profiles. Each solution predicts that at time t the rivulet (in x < 0)

narrows according to (−x)(2N+1)/2(N+1) and thins according to (−x)N/(N+1) as it flows down

the plane, the ‘nose’ of the rivulet remaining stationary at O at all time. At any station x,

the rivulet widens according to (−t)N/2(N+1) and thickens according to (−t)N/(N+1), for t < 0;

at t = 0, both solutions exhibit a finite-time singularity, becoming infinite everywhere at that

instant.

So far we have interpreted each of our solutions as representing an infinitely long rivulet, in-

volving an infinite volume of fluid. In the spirit of Huppert’s [21] analysis, we may alternatively

interpret each solution as representing a rivulet of (prescribed) finite volume, by truncating it

at some finite length L = L(t), so that it occupies −L ≤ x ≤ 0. The volume of fluid in such a

rivulet, denoted by V , is given by

V =

∫ 0

−L

∫ a

−a

h dy dx =
2

3

(

N + 1

2N + 1

)
3
2
(

µ3
0| cosα|N+1L3(2N+1)

ρ3g3 sinN+4 α|t|3N
)

1
2(N+1)

J ; (47)

thus the length L of the rivulet at time t is given by

L =

[

(

2N + 1

N + 1

)N+1(
9V 2 sinα

4J2| cosα|

)
N+1

3 ρg sinα

µ0

]

1
2N+1

|t| N

2N+1 , (48)

decreasing like |t|N/(2N+1).

Lastly, we also used the approach described above to investigate whether there are corre-

sponding similarity solutions for the rather different physical context of unsteady gravity-driven

flow of an infinitely wide thin film of a power-law fluid around a symmetric slender dry patch

|y| < a(x, t) on an inclined plane (so that the fluid occupies |y| ≥ a(x, t), and its free surface

z = h again satisfies (15)). In that case the governing equation (14) again holds, and if we

seek a similarity solution of the form (16) then H(η) again satisfies the ordinary differential

equation (18). We now look for a solution H satisfying H → H∞ as η → ∞, where H∞ is a

positive constant; then equation (18) immediately gives StH∞ = SxH
2N+1

N

∞ , which requires both

that St = Sx and that H∞ = 1, so that the appropriate far-field conditions for (18) are H → 1

and H ′ → 0 as η → ∞. Moreover, H must again satisfy the contact-line conditions (20), where

η0 again denotes the position of the contact line.



Consideration of the far-field behaviour of H shows that only the case St = Sg = Sx could

possibly lead to physical solutions. From equation (18) with St = Sg = Sx, at any stationary

point of the free surface we have H ′′ = 1 − H−N+1
N , showing that any stationary point with

H < 1 (H > 1) would be a maximum (minimum); we conclude that H must therefore increase

monotonically from H = 0 at η = η0 to H → 1 as η → ∞, with 0 ≤ H < 1.

Near the contact line η = η0, behaviour (32) still holds for a dry patch but now with St = Sg,

whereas behaviour (33) is replaced by

H ∼ C(η − η0)
N

3N+1 − (3N + 1)η0

2 (4N + 1)C
N+1
N

(η − η0)
2N

3N+1 , (49)

where C is a positive constant; however, as in the earlier analysis of rivulet flow, the contact-line

conditions then require that C = 0, so that (49) is eliminated, and only (32) need be considered.

Then integrating equation (18) from η = η0 to η = ∞ gives

∫ ∞

η0

(

H −H
2N+1

N

)

dη = 0, (50)

which is impossible for monotonic H satisfying 0 ≤ H < 1. We therefore conclude there are no

dry-patch solutions of the type sought.
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Appendix

In this Appendix we derive equation (38) giving the behaviour of the solution for H in the

case H0 = H02 in the limit of a strongly shear-thinning fluid, N → 0+.



For the case in which H0 = H02 and N is small, our numerical solutions suggest that

η0 ∼
√
N and that H = 1 + O(N) and H

2N+1
N = O(1) except very close to the contact line

η = η0. Therefore in the limit N → 0+ we re-scale H and η according to

H = 1 +Nĥ(η̂), η =
√
Nη̂, η02 =

√
Nη̂02. (.1)

With the result limN→0(1 +Nĥ)1/N = eĥ = O(1), equation (35) then yields

(

eĥ
)′′ − 1

2
η̂
(

eĥ
)′
+ eĥ = 1 (.2)

at leading order in N , whose solution subject to the boundary condition ĥ′(0) = 0 is

ĥ = log

(

eĥ0 +
1− eĥ0

2
η̂2

)

, (.3)

where ĥ0 = ĥ(0) = (H02 − 1)/N (> 0) is the (unknown) value of ĥ at η̂ = 0. The solution (.3)

is valid provided that eĥ0 + 1
2
(1− eĥ0)η̂2 > 0, which requires η̂ < η̂02, where

η̂02 =

(

2eĥ0

eĥ0 − 1

)
1
2

, (.4)

and we note that ĥ = 0 at η̂ =
√
2, and that η̂02 >

√
2.

To determine ĥ0 we use equation (37) with C = 0 (that is, I = J), leading to ĥ0 = log(3/2).

Then equations (.3) and (.4) become

ĥ = log

(

6− η̂2

4

)

, η̂02 =
√
6, (.5)

and hence to first order we have

H ∼ 1 +N log

[

3

2

(

1− η2

η202

)]

, η02 ∼
√
6N, H02 ∼ 1 +N log

3

2
(.6)

in the limit N → 0+. Lastly the integrals I and J in (24) satisfy

I ∼ 2

∫

√
Nη̂02

0

6N − η2

4N
dη = 2

√
6N, J ∼ 2

√
Nη̂02 = 2

√
6N (.7)

in the limit N → 0+; there is a boundary layer in the solution for H near η = η0, but it does

not contribute to these integrals to this order.

A sketch of the asymptotic solution for H given in (.6) is shown in Fig. .12, and Fig. .13

shows a comparison between profiles H computed numerically (represented by full curves) and

the asymptotic solution (.6) in the limit N → 0+ (represented by dashed curves) in the cases

N = 1/2 and N = 1/20; the asymptotic solution is in good agreement with the exact numerical

solution away from the contact line.



Figure captions

Fig. .1. Sketch of the geometry of the problem.

Fig. .2. Plot of η0 as a function of H0 for N = 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10 and 20.

Fig. .3. Plot of C in (37) as a function of H0 for N = 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10 and 20.

Fig. .4. Plot of I (= J) given by (24) as a function of N for H0 = H01 and H0 = H02,

together with the asymptotic solutions (38) in the limit N → 0+ and (46) in the limit N → ∞,

represented by dashed curves.

Fig. .5. Numerically calculated profiles H = H(η) for the case H0 = H01, for N = 1/20, 1/10,

1/5, 1/2, 1, 2, 5, 10 and 20.

Fig. .6. As in Fig. .5, but for the case H0 = H02.

Fig. .7. Plots of H01 and H02 as functions of N , together with the asymptotic solutions (38)2

in the limit N → 0+ and (39)2 in the limit N → ∞, represented by dashed curves. The results

for H01 are difficult to distinguish at this scale, and so the inset shows an enlargement of the

H01 curve.

Fig. .8. Plots of η01 and η02 as functions of N , together with the asymptotic solutions (38)3

in the limit N → 0+ and (39)3 in the limit N → ∞, represented by dashed curves.

Fig. .9. Asymptotic solution in the limit N → ∞ for the case H0 = H01: comparison between

H̄1 (represented by a dashed curve) and N(H− H̄0) (represented by a full curve) for (a) N = 5

and (b) N = 20.

Fig. .10. As in Fig. .9, but for the case H0 = H02.

Fig. .11. Three-dimensional plots of the free surfaces h of the sessile rivulets for the cases (a)

H0 = H01 and (b) H0 = H02 with N = 5, at times t = −1, −10 and −100. The insets show the

cross-sectional profiles.

Fig. .12. Sketch of the asymptotic solution (38) for H to O(N) in the limit N → 0+ for

H0 = H02.

Fig. .13. Profiles H for the case H0 = H02 obtained numerically (represented by a full curve)

and from the asymptotic solution to O(N) in the limit N → 0+ given by (38) (represented by

a dashed curve) for (a) N = 1/2 and (b) N = 1/20.
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Figure .1: Sketch of the geometry of the problem.
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Figure .6: As in Fig. .5, but for the case H0 = H02.
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Figure .9: Asymptotic solution in the limit N → ∞ for the caseH0 = H01: comparison between H̄1 (represented

by a dashed curve) and N(H − H̄0) (represented by a full curve) for (a) N = 5 and (b) N = 20.
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Figure .10: As in Fig. .9, but for the case H0 = H02.
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Figure .11: Three-dimensional plots of the free surfaces h of the sessile rivulets for the cases (a) H0 = H01 and

(b) H0 = H02 with N = 5, at times t = −100, −10 and −1. The insets show the cross-sectional profiles.
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