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Observations on the tanh-coth expansion

method for finding solutions to nonlinear

evolution equations

E.J. Parkes a

aDepartment of Mathematics & Statistics, University of Strathclyde, Livingstone

Tower, Richmond Street, Glasgow G1 1XH, UK

Abstract

The ‘tanh-coth expansion method’ for finding solitary travelling-wave solutions to
nonlinear evolution equations has been used extensively in the literature. It is a nat-
ural extension to the basic tanh-function expansion method which was developed
in the 1990s. It usually delivers three types of solution, namely a tanh-function ex-
pansion, a coth-function expansion, and a tanh-coth expansion. It is known that,
for every tanh-function expansion solution, there is a corresponding coth-function
expansion solution. It is shown that there is a tanh-coth expansion solution that
is merely a disguised version of the coth solution. In many papers, such tanh-coth
solutions are erroneously claimed to be ‘new’. However, other tanh-coth solutions
may be delivered that are genuinely new in the sense that they would not be de-
livered via the basic tanh-function method. Similar remarks apply to tan, cot and
tan-cot expansion solutions.

Key words: Nonlinear evolution equations; the tanh-function expansion method;
the tanh-coth function expansion method; solitary travelling-waves.
PACS: 02.30.Jr.

1 Introduction

‘Expansion’ methods for finding solitary travelling-wave solutions to nonlinear evo-
lution equations have received considerable attention over the past dozen years or
so. The basic tanh-function method was introduced in the early 1990s (see [1] and
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references therein, for example). Since then the method has been extended, general-
ized and adapted, the motivation being to obtain more solutions than are delivered
by the basic tanh-function method.

The aim of this paper is to discuss one such extension of the basic tanh-function
method. In this paper we refer to this extension as the ‘tanh-coth method’. It was
proposed in its simplest form in [2], for example. The reader should be warned that
there is no uniform terminology in the literature: the method, and slight variants
upon it, have been referred to as the ‘tanh-coth method’ (see [3], for example), the
‘extended tanh-function method’ (see [2], for example) or the ‘modified extended
tanh-function method’ (see [4], for example).

We will show that if the tanh-coth method is applied to a nonlinear evolution
equation that has a tanh-function expansion solution, then the method will also
deliver a coth-function expansion solution and a tanh-coth expansion solution that
is merely a disguised version of the coth solution. One unfortunate consequence of
this observation is that many papers have been published in which it is claimed that
such tanh-coth solutions are ‘new’, whereas the truth is that these ‘new’ solutions
are merely disguised versions of previously known solutions. We shall give some
examples of tanh-coth solutions that are not simply disguised versions of a coth
solution and so may indeed be regarded as new in the sense that they would not be
delivered by the basic tanh-function method.

In a series of enlightening papers [5–7], Kudryashov has pointed out the danger of
not recognizing that apparently different solutions may simply be different forms
of the same solution. He has provided numerous examples to illustrate this phe-
nomenon. Recently, we have given two more examples [8,9].

In Section 2 we summarize the basic tanh-function method and explain how the
tanh-coth method is an obvious extension. In Section 3 we make various observations
on the consequences of the application of the method. An illustrative example is
given in Section 4 and concluding comments are made in Section 5. Some useful
identities are given in the Appendix.

2 The tanh-coth method

Suppose we are given a nonlinear evolution equation in the form of a PDE for
a function u(x, t). Briefly, the tanh-function method [1] for solving this equation
proceeds as follows. First, we seek travelling wave solutions by taking u(x, t) =
U(�), where � := x − ct − x0 with c a real constant and x0 an arbitrary real
constant. Substitution into the PDE yields an ODE for U(�). If possible, the ODE
is integrated term by term one or more times and this introduces one or more
constants of integration. (This step is optional.) The key step is to introduce the
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ansatz

U(�) =
M
∑

j=0

AjY
j, where Y := tanh(k�). (2.1)

Y satisfies the differential equation

dY

d�
= k(1− Y 2) (2.2)

so that
d

d�
≡ k(1− Y 2)

d

dY
. (2.3)

In (2.1), M is a positive integer (to be determined). The Aj (j = 0, . . . ,M) are
real constants with AM ∕= 0, and k is a real non-zero constant. Substitution of
(2.1) and (2.3) into the ODE, integrated if possible, yields an algebraic equation in
powers of Y . If possible, M is determined; usually this involves balancing the linear
term(s) of highest order in the algebraic equation with the highest-order nonlinear
term(s). With M determined, the coefficients of each power of Y are equated to
zero in the algebraic equation. This yields a system of algebraic equations involving
the Aj (j = 0, . . . ,M), k, c and, if applicable, the integration constants. If the
original evolution equation contains some arbitrary constant coefficients, these will,
of course, also appear in the system of algebraic equations. If it is possible to find a
real non-trivial solution to these equations, then the method has worked successfully.

Notice that (2.2) is also satisfied by coth(k�). It follows that a coth-function ex-
pansion solution may be obtained from a tanh-function expansion solution simply
by replacing ‘tanh’ by ‘coth’. In other words, if (2.1) is a solution of the evolution
equation then

U(�) =
M
∑

j=0

AjY
−j (2.4)

is also a solution, and vice versa. This result is well known; it was pointed out in
[10], for example. Note that (2.4) may be obtained from (2.1) by replacing kx0 in
(2.1) by kx0 + i�/2 and then using (A.9).

Based on the above observations, it is tempting to propose an extension to the basic
tanh method by replacing the ansatz (2.1) by a more general ansatz, namely

U(�) =
M
∑

j=−M

BjY
j , where Y := tanh(k�). (2.5)

This is the ‘tanh-coth’ expansion method. It was proposed in this form in [2], for
example. The motivation is to try to find more solutions than can be found by using
the basic tanh-function method.
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3 Observations on the tanh-coth method

Use of (A.4) in (2.4) gives a tanh-coth solution of the form

U(�) = a0 +
M
∑

j=1

aj
(

yj + y−j
)

, where y := tanh(k�/2) (3.1)

and the aj (j = 0, . . . ,M) are linear combinations of the Aj (j = 0, . . . ,M). Our
crucial observation is that (3.1) is just a special case of (2.5) with B−j = Bj (= aj)
and k → k/2. Refs. [2–4,11–21] are examples of papers in which all the derived
tanh-coth solutions are just examples of (3.1) and so are disguised versions of the
corresponding coth expansion solutions.

Soliman [11] used the tanh-coth method to solve the KdV–Burgers equation. In [11],
(19) is a tanh solution and (18) is the corresponding coth solution. Two tanh-coth
solutions are also given. The one given by (20) is a disguised version of the coth
solution (18); this was noted by Kudryashov [7]. The second one, given by (21),
is actually a disguised version of a coth solution which, in turn, corresponds to a
second tanh solution that is not given in [11]. The two tanh solutions agree with
the two solutions stated in (5) in [22], for example.

Note that in Section 7 of [19], the basic tanh-function method is used to derive a
tanh solution and a coth solution. The author claims that the tanh-coth method
“does not work”. However, we have verified that it does work and, not surprisingly,
that it delivers the tanh and coth solutions and also a tanh-coth solution that is
the coth solution in disguise.

Our observations involving hyperbolic functions can be extended to trigonometric
functions as follows. By writing k = iK, we have

tanh(k�) = i tan(K�), coth(k�) = −i cot(K�). (3.2)

Consequently, we can generate a tan-function expansion solution from a tanh-
function expansion solution, and a cot-function expansion solution from a coth-
function expansion solution. (These results are also delivered by the extended tanh-
function method as proposed in [23].) These generated solutions are real provided
the resulting coefficients are real. Here we make the further observation that, in
view of (3.2), the tanh-coth expansion solution (3.1) generates a tan-cot expansion
solution of the form

U(�) = b0 +
M
∑

j=1

bj
[

(−1)jwj + w−j
]

, where w := tan(K�/2) (3.3)

and bj = aji
−j . This solution is, in fact, a disguised version of the cot-function

expansion solution. Indeed, (3.3) can be obtained directly from the cot-function
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expansion solution by use of (A.6). Refs. [2–4,15–21] are examples of papers in
which all the derived tan-cot solutions are just examples of (3.3) and so are disguised
versions of the corresponding cot expansion solutions.

Application of the tanh-coth method may also lead to tanh-coth (or tan-cot) solu-
tions that are not disguised versions of coth (or cot) solutions. For example, with
M = 1, suppose there is a tanh-coth solution of the form

U(�) = a0 + a1(−y + y−1). (3.4)

Then, by use of (A.7), (3.4) becomes the cosech solution

U(�) = a0 + 2a1 cosech(k�). (3.5)

Furthermore, by use of (A.10), it may be possible to obtain a real sech solution
from (3.5). (This procedure is illustrated in Section 4.)

Examples are to be found in [24–27]. In [24], (29) and (32) are tanh-coth solutions
equivalent to the coth solutions (28) and (31) respectively. However, (33) is a tanh-
coth solution that can be written as the cosech solution (38) by use of (A.7). In
(41) and (42) in [25], the tanh-coth and tan-cot solutions are disguised versions of
the coth and cot solutions respectively. However, the tanh-coth solution (50) may
be written as the cosech solution (57) by use of (A.7) and then the sech solution
(56) may be deduced by use of (A.10). In [26] the tanh-coth solution (5.15) and the
tan-cot solution (5.25) are equivalent to the coth solution (5.12) and cot solution
(5.22), respectively. However, the tanh-coth solution (5.14) can be written as a
cosech solution by use of (A.7) and then the sech solution (5.37b) may be derived
by use of (A.10). The tan-cot solution (5.24) may be written as a cosec solution
by using (A.8). In [27] the tan-cot solutions (34) and (35) are equivalent to the
cot solutions (30) and (31), respectively. However, the tan-cot solution (38) can be
written as a cosec solution. Then, with � → i�/2, a cosech solution is obtained from
which the sech solution (12) (with � = −�/

√
2) may be derived by use of (A.10).

4 Illustrative example

As a simple example to illustrate our observations, consider the mKdV equation in
the form

ut + �u2ux + uxxx = 0, (4.1)

where � is a non-zero constant. After one integration, the ODE for U(�) is

−cU + �U3/3 + U ′′ = A, (4.2)

where A is a constant of integration and the prime denotes differentiation with
respect to �. On balancing the second and third terms in (4.2), we obtain 3M =
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M + 2 so that M = 1 in (2.5). U given by (2.5) is substituted into (4.2) and the
coefficients of Y i (i = −3, . . . , 3) are then set to zero. The resulting seven algebraic
equations involving B−1, B0, B1, k, c, A and � have the following four solution-sets
in each of which A = 0, B0 = 0 and k is arbitrary:

B−1 = 0, B1 = ±k
√

−6/� , c = −2k2, (4.3)

B1 = 0, B−1 = ±k
√

−6/� , c = −2k2, (4.4)

B−1 = B1, B1 = ±k
√

−6/� , c = −8k2, (4.5)

B−1 = −B1, B1 = ±k
√

−6/� , c = 4k2. (4.6)

The set (4.3) gives the solution

u(x, t) = ±k
√

−6/� tanh(k�), � = x+ 2k2t− x0, � < 0. (4.7)

The set (4.4) gives the solution

u(x, t) = ±k
√

−6/� coth(k�), � = x+ 2k2t− x0, � < 0. (4.8)

From our observation in Section 2, we know that once (4.7) is obtained, the corre-
sponding coth solution given by (4.8) follows directly. Furthermore, by using (A.1)
in (4.8), and then taking k/2 → k, we obtain

u(x, t) = ±k
√

−6/� [tanh(k�) + coth(k�)] , � = x+ 8k2t− x0, � < 0, (4.9)

which is precisely the tanh-coth solution obtained from the set (4.5). Hence, as
predicted in Section 3, (4.9) is just a disguised version of (4.8). The set (4.6) also
gives a tanh-coth solution, namely

u(x, t) = ±k
√

−6/� [coth(k�)− tanh(k�)] , � = x− 4k2t− x0, � < 0. (4.10)

In view of the identity (A.7), (4.10) with k → k/2 may be written

u(x, t) = ±k
√

−6/� cosech(k�), � = x− k2t− x0, � < 0. (4.11)

In view of the identity (A.10), (4.11) with kx0 → kx0 + i�/2 gives the imaginary
solution

u(x, t) = ±ki
√

−6/� sech(k�), � = x− k2t− x0, � < 0, (4.12)

which, in turn, gives the real solution

u(x, t) = ±k
√

6/� sech(k�), � = x− k2t− x0, � > 0. (4.13)

Note that the solutions given by (4.7)–(4.9) are derivable via the basic tanh-function
method whereas, as also noted in [1], for example, this is not true for the solution
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given by (4.13). The solutions given by (4.7) and (4.13) are the well-known bounded
solitary-wave solutions corresponding to (2.24) and (2.23) respectively in [1], for
example. The solutions given by (4.8) and (4.11) are unbounded; as they are less
useful, they are mentioned less frequently in the literature.

For completeness, we give the corresponding trigonometric solutions in each of which
� < 0 :

u(x, t) = ±K
√

−6/� tan(K�), � = x− 2K2t− x0, (4.14)

u(x, t) = ±K
√

−6/� cot(K�), � = x− 2K2t− x0, (4.15)

u(x, t) = ±K
√

−6/� [− tan(K�) + cot(K�)] , � = x− 8K2t− x0, (4.16)

u(x, t) = ±K
√

−6/� [tan(K�) + cot(K�)] , � = x+ 4K2t− x0, (4.17)

u(x, t) = ±K
√

−6/� cosec(K�), � = x+K2t− x0, (4.18)

u(x, t) = ±K
√

−6/� sec(K�), � = x+K2t− x0. (4.19)

Solution (4.16) is a disguised version of (4.15), and solution (4.17) is a disguised
version of (4.18). With Kx0 → Kx0 + �/2, (4.15) and (4.18) may be obtained from
(4.14) and (4.19) respectively.

5 Concluding comments

The tanh-coth expansion method is a natural extension to the basic tanh-function
expansion method which was developed in the 1990s. It usually delivers three types
of solution, namely a tanh-function expansion, a coth-function expansion, and a
tanh-coth expansion. It is known that, for every tanh-function expansion solution
(2.1), there is a corresponding coth-function expansion solution (2.4); we have shown
that in addition there is a tanh-coth expansion solution (3.1) that is merely a dis-
guised version of the coth solution. One consequence of this observation is that, in
many papers, such tanh-coth solutions are erroneously claimed to be new. Never-
theless, the tanh-coth method is worthwhile because it may deliver other types of
tanh-coth solutions which are genuinely new. Such solutions would not be delivered
by using the basic tanh-function method. We have given examples where these so-
lutions may be more conveniently expressed in terms of the cosech function, and
sech-function solutions can be derived from them. Similar remarks apply to tan, cot
and tan-cot expansion solutions.
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Appendix: Useful identities

It is straightforward to show that

coth 2� = 2−1
(

y + y−1
)

, where y := tanh �. (A.1)

It follows that

coth2 2� = 2−2
[

(y2 + y−2) + 2
]

, (A.2)

coth3 2� = 2−3
[

(y3 + y−3) + 3(y + y−1)
]

, (A.3)

and, more generally,

cothn 2� = 2−n
N
∑

r=0

(

n

r

)

[

y(n−2r) + y−(n−2r)
]

, (A.4)

where

N =

⎧

⎨

⎩

n/2 if n is even,

(n− 1)/2 if n is odd.

Similarly,
cot 2� = 2−1

(

−w + w−1
)

, where w := tan �, (A.5)

leads to

cotn 2� = 2−n
N
∑

r=0

(

n

r

)

(−1)r
[

(−1)nw(n−2r) + w−(n−2r)
]

. (A.6)

Note also the identities

cosech 2� = 2−1
(

−y + y−1
)

, (A.7)

cosec 2� = 2−1
(

w + w−1
)

, (A.8)

tanh(� − i�/2) = coth �, (A.9)

cosech(� − i�/2) = i sech �. (A.10)
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