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ANALYSIS OF RETROFIT AIR SOURCE HEAT PUMP PERFORMANCE: RESULTS 

FROM DETAILED SIMULATIONS AND COMPARISON TO FIELD TRIAL DATA  

 

N J Kelly, J Cockroft 

 

Energy Systems Research Unit, University of Strathclyde, Glasgow, UK. 

ABSTRACT 

In the UK, gas boilers are the predominant energy source for heating in housing, due primarily to the ready 

availability of natural gas. The take-up of heat pumps has lagged far behind Europe and North America. However, 

with the development of standards for low and zero-carbon housing, gas price rises and the depletion of the UK’s 

natural gas reserves, interest in heat pump technology is growing. Heat pumps, particularly air source heat pumps 

(ASHP), have the potential to be a direct, low-carbon replacement for gas boiler systems in housing.  

In this paper, monitored data and simulations were used to assess the performance of ASHP when retro-fitted into a 

dwelling. This required the development and calibration of a model of an ASHP device and its integration into a 

whole-building, dynamic simulation environment. The predictions of the whole-building model were compared to 

field trial data, indicating that it provided a suitable test bed for energy performance assessment. Annual simulations 

indicated that the ASHP produced 12% less carbon that an equivalent condensing gas boiler system, but was around 

10% more expensive to run. However, the proposed UK renewable heat incentive transforms this situation, with 

income from ASHP heat generation exceeding the fuel costs. 

INTRODUCTION 

In the UK, the legally-binding requirement for an 80% reduction in greenhouse gas emissions as set out in the UK’s 

climate change act [1] and commitments made under the Kyoto protocol are driving increasingly rigorous 

requirements for building energy efficiency such as the net-zero-carbon target in England and Wales set out in the 

Code for Sustainable Homes [2] and a whole-life zero-carbon homes target in Scotland by 2030 [3]. In parallel, 

increasing fuel prices [4], particularly in the price of natural gas is forcing a re-think in the provision of domestic 

sector space and water heating.  Approximately 80% of the UK’s domestic water and space heating demands are met 

using gas boilers [5] and it is highly unlikely that the UK’s ambitious emissions reduction targets could be achieved 

if this state-of-affairs persists. Hence, there is increasing interest in meeting the energy of buildings using low or 

zero-carbon (LZC) alternatives such as micro-renewables, biomass-based heating, and heat pumps. Heat pumps are 

belatedly attracting increasing interest in the UK in that they (particularly ASHP) offer a direct alternative to existing 

boiler installations. They can also operate in areas of high-density housing such as flats and terraced dwellings, 

where the installation of ground source heat pumps would be infeasible. High-density housing comprises 

approximately 40% of the UK housing stock [5], so the potential for retro-fitting of the technology is significant. 

Additionally, in an attempt to boost the installation of low-carbon technologies in the domestic sector, the UK 

government has recently launched a renewable heat incentive (RHI), which offers householders payments for heat 
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produced from low or zero-carbon sources. Heat pumps are one of the qualifying technologies [6]. The effect of the 

RHI on the economics of a heat pump installation is illustrated later. 

Heat pumps also complement the major changes occurring in large-scale electricity production: the UK is currently 

embarking on the development of huge quantities of onshore and offshore wind generation. For example, offshore 

sites with a potential generating capacity of 25 GW have recently been leased by the UK Government [7].  Heat 

pumps offer the potential for low or zero carbon heating as the carbon content of grid electricity reduces into the 

future with increasing quantities of renewable electrical generation.  

Whilst there is an extensive literature on the performance of ground source heat pumps in the domestic sector (e.g. 

Healy and Ugursal [8], Kummert and Bernier [9] in Canada; and Underwood and Spitler [10], Jenkins et. al. [11] in 

the UK) the literature on ASHP performance is more sparse. Most modelling work focuses on specific aspects of 

device performance (e.g. Lui et al [12], Yao [13]) rather than integrated performance. In those performance studies 

that exist, Cockroft and Kelly [14] used a low-resolution model to determine that in a UK context ASHP could 

achieve carbon savings in comparison to other domestic heating technologies, including condensing gas boilers. 

Jenkins et al. [15] looked at the carbon savings potential of ASHP in office buildings and concluded that the 

technology did not guarantee emissions savings under all circumstances; this study used a performance map model of 

the ASHP and hourly predictions of heating and cooling from a simulation tool.   

This paper builds on previous performance studies, specifically attempting to quantify the magnitude of the carbon 

savings when ASHPs are retro-fitted into existing housing. To this end, the following tasks were undertaken.  

· ASHP performance data was collected from an existing field trial;  

· an ASHP device model was developed and calibrated using laboratory test data;  

· a whole-building simulation model of one of the field trial houses was developed and integrated with the ASHP 

model;  

· the predictions of the whole building model were compared to the field trial data; and  

· following some refinement, the model was used to predict the annual energy and economic performance of the 

ASHP and alternative heating systems. 

The following sections describe these activities in more detail.   

FIELD TRIAL DATA COLLECTION  

Energy supplier SSE Ltd. and West Lothian District Council commissioned a field trial of ASHP heating systems in 

the village of  Westfield in central Scotland with the objective of determining their effectiveness in meeting the space 

heating needs of the Council’s existing housing stock. The climate and location of Westfield contribute to a 

significant requirement for heating: with the heating season typically running from early September until the end of 

May. So, in addition to being carbon intensive, the dwelling’s existing heating systems (solid-fuel stoves) were 



extremely expensive to run often leaving tenants in fuel poverty
1
. Hence, one of the key objectives of the subsequent 

simulation exercise was to investigate the likely energy expenditure through a switch to ASHP for space heating and 

how this compared to the alternative retrofit options. 

A total of 10 houses in the village were retrofitted with an ASHP system; the houses were all of a similar size (Table 

1).  Note that data was collected from only 8 of the houses as 2 withdrew from the study. 

A typical terraced house encountered in the study is shown in Figure 1. The dwelling used in the simulation study 

had external walls comprising two-leaf, 100mm brick, with a 120mm insulated cavity (the building fabric was 

upgraded prior to installation of the heat pumps); the walls were rendered externally and wet-plastered internally. 

The pitched roof comprised concrete tiles lying on top of a bituminous felt and plywood skin supported by wooden 

trusses. The ceiling below the loft space was had 200mm of insulation installed. The floors in the dwelling were 

suspended timber, with a ventilated crawl space under the ground floor.  

The retrofitted ASHP heating system comprised the ASHP unit directly feeding hot water radiators via insulated 

pipes running under the flooring. The ASHP used had a nominal coefficient of performance of 3.0 with a rated 

thermal capacity of 8 kW. Note that in these trials the ASHP served the space heating load only, with the hot water 

for each house being supplied using an existing 3kW direct electric heating coil, which heated a hot water storage 

tank; for cost reasons this was not integrated with the ASHP system. The radiators were sized for the nominal flow 

temperature of the ASHP device of 55
o
C. The flow into each radiator (except a by-pass radiator, typically located in 

the hall of each dwelling) was controlled by a thermostatic radiator valve (TRV).  

Figure 1: terraced dwellings at Westfield. 

The ASHP was controlled based on the temperature reading from a wall-mounted thermostat located in the living 

room of each dwelling. The set point temperature could be selected by the occupant.  During the trial, the occupants 

were also free to select the set point temperature of the heating system, its operation time, select TRV settings, open 

doors and windows, and to occupy the property as they normally would. 

A radio frequency telemetry system, with wireless sensors/transmitters, was installed in each house, with one central 

receiver/logger.  Data was recovered and transmitted wirelessly via the mobile phone network. The performance 

parameters recorded were as follows:   

· the electrical consumption of each heat pump was measured using a current transformer clamp on the supply to 

the heat pump (the instantaneous apparent power consumption was derived by multiplying the recorded current 

draw in amps by the recorded site mains voltage);  

· the total electrical consumption in each house was measured along with voltage (as voltage variations affect the 

performance of the heat pump system); 

                                                           

1 In the UK the definition of fuel poverty is a household spending more than 10% of its income on fuel bills. 



· the heat output of the heat pump was measured using a heat meter with integrating electronics and a pulse output 

per kWh; and    

· outside air temperature and relative humidity were recorded.   

Temperatures were measured at three locations (typically the living room, hall and a bedroom) in each house. The 

transmission interval for all sensors except electrical current clamps was set at 2.5 minutes. The current clamp 

transmitters were set at a 30 second transmission interval.  

Monitoring started in February 2008, and stopped in July 2008.  There were some interruptions due to equipment 

malfunctions so that a total of 91 days of data was collected for all houses over this time period covering winter, 

spring and early summer weather. 

DEVELOPMENT AND CALIBRATION OF THE ASHP DEVICE MODEL 

In order to simulate the performance of the ASHP heating system, an explicit device model was developed that could 

be fully integrated into a larger building and plant model (described later). From a performance analysis perspective, 

the main requirement for this model was to accurately predict the time-varying electrical demand and thermal output 

of the device and its explicit interaction the building’s envelope, thermal plant, and control systems. The model had 

to be capable of predicting the key variables that coupled the ASHP device to the other constituents of a building 

simulation model, specifically the hot water output temperature and flow rate. Other outputs of interest included the 

device’s operational status (e.g. on/off cycling, defrost status, temperature compensation, etc.) performance 

efficiencies, fuel consumption and resulting carbon emissions.  

Ferguson et al. [16] developed a model that fulfilled similar criteria, but that was employed in the modelling of 

micro-cogeneration devices; this model was adapted for the purposes of this study. The model is best described as 

‘grey-box’, where the structure reflects the underlying physical features of the device; however, its key performance 

characteristics are approximated using empirically-derived expressions.  

Figure 2: diagrammatic representation of the ASHP model 

The model structure comprises three control volumes as shown in Figure 2.  The first (functional) volume is 

employed to calculate the performance of the refrigerant circuit and auxiliary components. The algorithm 

underpinning the volume calculates the time-varying COP and the nominal heat output ( thQ¢& ) from the refrigeration 

cycle using 2
nd

-order polynomial functions of the heating system return water temperature and the external ambient 

temperature difference (DT) (Equations 1 and 2). 
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Where thQ& is the heat supplied (W) to the water in the heating circuit; Treturn is the temperature of the water flowing 

into volume B; TA is the temperature (
o
C) of volume A; UA is the heat loss coefficient (W/K) to the environmental 

temperature (T¥).  

The total instantaneous electrical demand of the device compressor, eQ& (W)  is calculated as follows:  
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The performance map equations were augmented (1)-(5) with algorithms to calculate the defrost status of the device 

and to modulate the return water temperature set point based on outside temperature.  

The heat output from equation (2) is passed to a lumped-capacitance volume (volume A) that essentially represents 

the thermal capacitance of the device on the refrigerant-side of the condenser. Heat is transferred between this 

volume and volume B representing the water-side of the condenser. Volume B is also the connecting point to the 

heating system. Together, these lumped mass volumes enable the transient thermal response of the device to be 

encapsulated in the model output. The general form of the energy balance for these volumes A and B is as follows 

For  volume A: 
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For volume B:  
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Where Mi is the mass (kg) of volume A or B; TB is the temperature (
o
C) of volume B; KAB is the heat exchange 

coefficient (W/K) between the volumes A and B; and m& is the flow rate of coolant (kg/s) to volume B; c is the 

specific heat of water (J/kgK); 



The parameters for the polynomials used in equations 1 and 2 were calibrated using data from laboratory 

performance tests conducted on the ASHP; these calibrated equations enable the performance characteristics of the 

device to be simulated over the range of ambient and flow temperatures experienced during normal operation. The 

parameters of the capacitance volumes A and B were calibrated using an iterative parametric identification technique 

described by Ferguson et al [16] using high resolution start-up data from the field trial data.  

A comparison of the predictions of COP from the calibrated model are shown against measured data (independent of 

the calibration data set) in Figure 3.  

 

Figure 3: calibrated COP characteristics of the ASHP device.  

INTEGRATED MODEL AND SIMULATION 

The ASHP device model was integrated into a larger building and systems model of one of the test houses developed 

on the ESP-r building simulation tool [17]. The model comprised a detailed representation of the dwelling, the heat 

pump and heating distribution system. Each individual room was explicitly represented in the model and the 

constructions used were identical to those in the actual building. The building model was also augmented with a 

zonal airflow model; this calculated air-exchange between the different spaces within the building and between the 

building and the exterior according to prevailing wind-driven pressure differences and temperature differences. The 

model was calibrated to give the same external air leakage rate as that was determined from a blower door test of the 

actual building (approximately 0.5 air changes per hour). 

The heating system was modelled in detail, where all of the heating system’s components (radiators, piping, valves, 

etc.) and their inter-connections are modelled explicitly. A comprehensive description of the basic heating system 

component models used in this work is given by Hensen [18] and Clarke [19].   

As no monitored occupancy data was available, characteristic internal gains profiles were developed for weekdays 

and weekend periods. Profiles for the lounge and bedroom are shown in figures 5a and 5b. The profiles are 

intermittent during the week and more continuous at weekends. Compatible heating system control regimes were 

developed, with the heating system operating 07:00-09:00 and 17:00-22:00 during weekdays and 08:00-23:00 at 

weekends. The assumption was made that the system was switched off at night rather than reverting to a set back-

temperature (this is common practice in the UK). For the purposes of the heating system comparison, the heat gain 

profiles were normalized to be consistent with the sensible internal heat gains employed in the UK’s standard 

assessment procedure (SAP [20]) of some 55.7kWh/week. 

 

Figure 4a: weekday and weekend heat gain profiles for the lounge. 

 



Figure 4b: weekday and weekend heat gain profiles for the bedroom. 

SIMULATIONS 

The integrated ASHP/dwelling model was simulated at a time resolution of 1-minute intervals; this fine temporal 

resolution was employed to adequately capture the action of control on the operation of the ASHP (e.g. on/off 

cycling) and other pertinent operations such as defrost and any overheat shutdowns. This temporal resolution has 

been employed by other researchers, notably Hawkes and Leach [21] who indicated that high resolution modelling 

was required in order to adequately characterise performance.  Finally, as no long-term climate data existed for the 

Westfield site, the simulations were run with an equivalent Scottish climate data set that was representative of the 

field trial location.    

The simulation of the model was done in two stages. First, the model’s predictions for heat pump performance were 

compared to the data collected from the field trials, with the model’s parameters being adjusted where necessary. 

Second, the adjusted model was simulated over a full-year period and aggregate annual performance data was 

extracted from the high-resolution time series output. 

COMPARISON WITH FIELD TRIAL DATA  

Figure 5a shows the model’s predictions of the coefficient of performance (COP) vs. ambient air temperature against 

averaged COP data from the field trials; this average relationship was derived from the measured COP values from 

the 8 monitored houses and represents typical ASHP performance under varying conditions of occupancy, climate 

and internal conditions. As the climate and assumed occupancy for the simulation differed from the exact conditions 

experienced during the field trials (this data was not captured in the monitoring data) a temporal comparison of 

simulation and monitored results would not be appropriate. Instead, the comparison looks at whether the range and 

trend of the COP emerging from the simulations is similar to the averaged trend from the actual houses: this would 

indicate that the simulation is providing as a suitable test bed for the device in that the operating conditions and 

resulting performance are similar to those encountered in reality.  

The initial simulation results clearly diverged from the monitored data at higher ambient air temperatures (Figure 5a). 

Closer investigation revealed that the temperature compensation facility on the heat pumps used in the Westfield  

houses had not been enabled due to an installer error. Consequently, a further simulation was conducted with the 

temperature compensation disabled in the model. Figure 5b shows the results from this simulation. It is evident that 

the low-density scatter in the ASHP model output is predominantly above the average COP line: these points are 

indicative of the dynamic nature of the model and represent periods when the heating system and building are 

warming up and where the resulting low heating system flow and return temperatures produce a temporarily high 

COP. However, the highest density of points is close to the average performance line; corresponding with periods in 

which the heat pump was operating with the return water temperature close to the set point (45
o
C); this demonstrates 

that the ASHP device in the ESP-r model is operating in under similar conditions to those experienced in the actual 

houses.  



Figure 5a: predicted COP vs Westfield average COP. 

Figure 5b: predicted COP (no temperature compensation) vs Westfield average COP. 

ANNUAL SIMULATIONS  

Following the comparison against the field trial data, a full annual simulation data (with temperature compensation 

enabled) was initiated and to give an indication of likely annual ASHP performance when retro-fitted into the 

Westfield dwelling model.  

Two further simulations were undertaken, again at a time-resolution of 1-minute. First, the ASHP heating system 

model was replaced with a model of a gas-condensing boiler heating system. The boiler had a rated thermal output of 

10.5 kW at full load. Other than the re-sizing of the radiator components to account for a higher supply temperature 

of 75
o
C, the system details are the same as those for the ASHP-based system shown in Figure 2. The nominal 

efficiency of the boiler device model used was 91%, which is typical of a modern boiler being installed in the UK at 

present. Note that the resulting simulated system efficiency was lower due to parasitic losses from piping, control 

inefficiencies and on/off cycling.  

In the final simulation, space heating was provided by means of a simple, direct-electric system that consisted of an 

electric heater in each room of the house. Each heater was assumed to be individually thermostatically controlled and 

with an assumed electric-to-heat conversion efficiency of 100%.  

RESULTS ANALYSIS  

The simulations of the dwelling with the three different heating options produced large volumes of performance data 

in the form of time series temperatures, flows, heat fluxes and derived quantities such as efficiency and fuel 

consumption. Figure 6 is a typical example of the high resolution data extracted from the simulations and shows  the 

ambient air temperature, ASHP heat output, ASHP power consumption and return water temperature during part of a 

typical winter weekday when the heating system cools down overnight, restarts in the morning and then cycles to 

maintain internal temperatures.  

Figure 6: typical winter day results from the ASHP simulation. 

Annual performance metrics were extracted from the high-resolution data and are shown in Tables 2a-2c. Note that 

the entries for June, July and August are greyed-out on each table as the heating system was not active during these 

months. 

Looking first at the ASHP system, the average annual COP for the device was approximately 2.7 (in comparison to 

its nominal COP of 3.0), while the annual electricity consumption to meet the space heating load was some 5.87 GJ 

(1631 kWh). The distribution system efficiency was approximately 92% 

Turning to the condensing gas boiler, the total fuel consumption was 18.99 GJ or 485 m
3
 of gas. The average device 

efficiency was 88%. However, the overall system efficiency (including parasitic losses) was approximately 81%. The 

distribution system losses are slightly higher than with the ASHP as the supply water temperature to the heating 



system is higher (70-80
o
C). On/off cycling of the boiler is also greater than the ASHP, particularly during the winter 

months, due primarily to the higher heating output of the gas boiler and lower thermal capacitance of the device in 

comparison to the ASHP. 

The overall energy consumption/heat output of the direct-electric heating system is 3640 kWh. The heat output of 

this system is approximately 12 and 17% lower than the ASHP and gas condensing boiler systems respectively. This 

energy saving was predominantly due to the fact that each electric space heater in the dwelling was separately 

controlled in comparison to the other two systems which were controlled from a central thermostat; this resulted in 

more accurate temperature control in each room. For the other two systems, the central thermostat resulted in 

accurate temperature control in the living room and some over-heating on other spaces. 

Based on these energy consumption figures the CO2 emissions were calculated as 881, 1002 and 1966 kg for the 

ASHP, gas boiler and all-electric systems, respectively; these CO2 emissions are based on CO2 intensities of 0.19 

kg/KWh for natural gas and 0.54 kg/KWh for grid electricity [22]. The ASHP system produces approximately 12% 

less CO2 than the gas condensing boiler and 55% less CO2 than the all-electric heating system. The reduction in 

emissions in comparison to the gas unit is particularly sensitive to electricity CO2 emission factors, deteriorating as 

these increase and vice-versa. It should be noted that that the trend for UK grid electricity CO2 intensity has been 

upwards in recent years rising from 0.52 kg/kWh in 2001 to the current value of 0.54 [22]. 

Again, based on the calculated energy consumption figures and using typical UK gas and electricity prices seen in 

late 2009 of £0.121 and £0.034 for electricity and gas respectively [23] it is evident that there is a running cost 

penalty associated with the ASHP system, which is around 10% more expensive to run than the condensing gas unit 

per annum However, the ASHP system is 55% less expensive to operate than the all-electric system. There will be an 

additional capital cost penalty in that (at least initially) ASHP devices will have a higher capital cost than the more 

conventional gas condensing boiler and the electric systems. As with CO2 savings, these figures will be sensitive to 

future variations in gas, electricity and technology prices.  

ASHPs will benefit from the introduction of the UK Renewable Heat Incentive (RHI), which will begin to operate 

over the whole of the UK in early 2011. The projected incentive for ASHP heat is £0.075 per kWh of thermal output 

(for units under 45kW thermal output) [6]. Accounting for the RHI (last entry in Table 3) results in a turnaround in 

the running costs of the system. The expenditure on fuel remains the same, however the income from heat generation 

amounts to some £330, with the result that there is a net income from operating the ASHP of £132.71. The 

application of the RHI therefore transforms the economic viability of ASHP heating systems in comparison to the 

conventional alternatives.  

CONCLUSIONS 

A combination of simulation and field trial data has been used to assess the annual performance of a domestic ASHP 

heating system when retro-fitted into social housing in Westfield, Scotland. 



A detailed ASHP device model has been developed on the ESP-r platform, based on the work of Ferguson et al. [15]. 

The model was calibrated using laboratory data and then integrated into a larger whole-building model of one of the 

Westfield dwellings.  

The predictions of COP from the model were compared to data emerging from the Westfield field trial; these initially 

indicated a divergence between monitored and simulated values. Investigation revealed some shortcomings in the 

ASHP installation at Westfield, where outside air temperature compensation was not enabled on the installed units. 

Adjusting the simulation model to account for this flaw and re-simulating indicated that the model suitably replicated 

the ASHP operating conditions observed in the field trial.  

Simulations were undertaken to estimate the annual energy performance of the ASHP device and an equivalent gas 

condensing boiler system when retro-fitted into a typical Westfield dwelling. These indicated that: the provision of 

space heating using the ASHP resulted in approximately 12% CO2 savings in comparison to a gas condensing boiler 

system and 55% CO2 savings compared to the all-electric system (using 2009 UK CO2 emissions coefficients for 

electricity and gas).  

ASHP running costs were 10% higher than the gas-condensing boiler system, but 55% lower than direct-electric 

heating (using 2009 UK average electricity and fuel prices). However, the introduction of a renewable heat incentive 

(RHI) in the UK in 2011 will completely alter this situation, with the income from payments for heat from the ASHP 

exceeding the fuel (electricity) costs. 
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Table 1: westfield house types. 

Storeys Type Date of 

construction 

Bedrooms Roof Windows Number of 

houses 

1 Semi-detached 1969 1 Concrete tile double glazed 1 

1 4-in-a-block flat 1938 3 Natural slate double glazed 2 

2 End terrace 1938 3 Natural slate double glazed 1 

2 End-terrace 1967 3 Concrete tile double glazed 2 

2 Mid terrace 1967-1969 3 Concrete tile double glazed 4 
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Table 3: comparison of ASHP and gas condensing boiler system (space heating only). 

 

 Fuel Price 

p/kWh 

Annual Energy use kWh 

 

Annual Cost £ 

 

Annual CO2 emissions kg 

ASHP heating  12.11 1,631 197.51 881 

Gas condensing boiler 

heating 

3.41 5,275 179.88 1,002 

All-electric heating 12.11 3,640 440.80 1966 

ASHP heating (with 

RHI) 

12.11 1,631 -132.71** 881 

** A renewable heat incentive payment of £0.075 per  kWh of heat produced (4403kWh) amounts to a payment to the householder of £330.22; the 

net income is therefore £132.71. 
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