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A note on loop-soliton solutions of the

short-pulse equation
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Abstract

It is shown that the N -loop soliton solution to the short-pulse equation may be
decomposed exactly into N separate soliton elements by using a Moloney–Hodnett
type decomposition. For the case N = 2, the decomposition is used to calculate the
phase shift of each soliton caused by its interaction with the other one. Corrections
are made to some previous results in the literature.
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1 Introduction

The short-pulse equation (SPE), namely

uxt = u+ 1

6
(u3)xx , (1.1)

models the propagation of ultra-short light pulses in silica optical fibres [1]. (The
SPE is also known as the cubic Rabelo equation [2].) In recent years, various aspects
of the SPE have received attention in the literature. A useful summary of some of
this work is given in [3]. Here we focus on the N -loop soliton solution to the SPE.
Such solutions may be found by making use of N -soliton solutions of equations
related to the SPE. Our aim is to complement results on this aspect of the SPE as
given in [4–7].

In [4,5] it was shown that the SPE is related to a system of coupled nonlinear
dispersionless equations (CNDE) that are a special case of the system studied in [8].
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Also, as mentioned in [2,6,7,9–11], the SPE is related to the sine-Gordon equation
(SGE)

zy� = sin z (1.2)

by the transformation

u(x, t) = z� (y, �), x = w(y, �), t = �, (1.3)

where

wy = cos z, w� = −1

2
z2� . (1.4)

In [12], we found some periodic and solitary travelling-waves solutions of the SPE
(1.1) by direct integration. In [4], the two-loop soliton solution to the SPE was
found via the two-loop soliton solution to the CNDE given in [8]. In the following
papers, solutions to the SPE were found via solutions to the SGE: [6] (one- and
two-loop solitons, single breather), [5] (N -loop solitons), [9] (travelling waves), [7]
(N -loop solitons, multi-breathers) and [11] (one- and two-phase periodic). Hirota’s
D-operator method was used in [4,5,7,8].

We complement the work in [4–7] as follows. In Section 2 we show that the N -loop
soliton solution to the SPE can be decomposed exactly into N separate soliton
elements by using a Moloney–Hodnett type decomposition; this is in contrast to
the approximate decomposition in [4]. In Section 3 we use our decomposition to
calculate the phase shifts in the case N = 2. We also point out errors in the
corresponding phase-shift calculation given in [4].

2 The decomposition of the N-soliton solution

As noted in [13,14], the original route to the N -soliton solution of the SGE by use
of Hirota’s method was via the bilinear transformation

z = 4 tan−1(G/F ), (2.1)

where F and G are real functions of �j (j = 1, 2, . . . , N),

�j = �̂j + �0j, where �̂j = pj y +
�

pj
, (2.2)

the pj are arbitrary non-zero constants, and the �0j are arbitrary constants. For
our purposes it is more convenient to use the equivalent bi-logarithmic bilinear
transformation as given in [15,16,7], namely

z = 2i ln(f ∗/f), (2.3)
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where f := F + iG and * denotes the complex conjugate. In view of (1.3) and (2.3),
Matsuno [7] deduced that the N -soliton solution of the SPE may be found via the
bi-logarithmic bilinear transformation

u(x, t) := U(y, �) = 2i[ln(f ∗/f)]� . (2.4)

He also made the perceptive and important observation that the relation wy = cos z
in (1.4) can be integrated to obtain

x := w(y, �) = y − 2[ln(f ∗f)]� + x0, (2.5)

where x0 is an arbitrary constant.

Hirota [14] showed that the logarithmic bilinear transformation appropriate for the
Korteweg–de Vries (KdV) equation

ut + 6uux + uxxx = 0 (2.6)

is

u = 2(lnF )xx. (2.7)

In [17], Moloney and Hodnett showed how (2.7) may be used to decompose the
N -soliton solution of the KdV equation into N separate soliton elements. This
procedure has also been used to decompose the N -loop soliton solution to the
Vakhnenko equation [18,19]. Here we show how Moloney and Hodnett’s procedure
may be adapted and applied to (2.4) in order to decompose the N -soliton solution
of the SPE into N separate soliton elements.

Firstly, we note that from (2.2) – (2.4)

U =
N
∑

j=1

∂z

∂�j

∂�j
∂�

=
N
∑

j=1

Uj , (2.8)

where

Uj =
2i

pj

∂

∂�j
[(ln f)∗ − (ln f)] . (2.9)

Secondly, we note that when Hirota’s method is used [7], it turns out that f depends
on the �j (j = 1, 2, . . . , N) via exp(�j), and for each value of j it is possible to write
f in the form

f = fj [1 + qj exp(�j)], (2.10)

where fj and qj do not involve exp(�j), i.e. they are independent of �j . On combining
(2.9) and (2.10), and using the identity

2e2�

1 + e2�
= 1 + tanh(�), (2.11)
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we obtain

Uj =
2

pj
ℑm

[

tanh
(

gj
2

)]

, (2.12)

where
exp(gj) = qj exp(�j). (2.13)

Similarly, from (2.5), we obtain

x = y −
N
∑

j=1

2

pj

{

1 +ℜe

[

tanh
(

gj
2

)]}

+ x0. (2.14)

The uj(x, t) = Uj(y, �) given by (2.12), (2.14) and t = � are the required separate
soliton elements.

For reference purposes, we give the one-soliton solution. When N = 1, q1 = i and
then from (2.12) and (2.14) we obtain

u := U1 =
2

p1
sech(�1) (2.15)

and

x = y − 2

p1
{1 + tanh(�1)}+ x0, (2.16)

respectively. Equation (2.16) may be written in the form

� := x+
1

p21
t =

�1
p1

− 2

p1
tanh(�1) + �0, (2.17)

where �0 is an arbitrary constant. (2.15) and (2.17) are a solution in parametric form
for u as a function of � via the parameter �1. This solution represents a loop soliton
moving in the negative x-direction with speed 1/p21. The solution corresponds to
(13) in [6], (3.5) in [12], and (3.2a) and (3.3) in [7]. (There are misprints in (3.2a)
and in the text after (3.3) in [7].)

Now we illustrate the decomposition that we have presented by considering the
two-loop soliton solution. When N = 2,

f = 1 + i(e�1 + e�2)− e�1+�2−2�, (2.18)

where

e−2� =

(

p1 − p2
p1 + p2

)2

, (2.19)

so that the qj in (2.13) are given by

q1 =
i− e�2−2�

1 + ie�2
, q2 =

i− e�1−2�

1 + ie�1
. (2.20)

Now U = U1 + U2, where U1 and U2 are given by (2.12) and (2.13).
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Equivalent solutions, but in undecomposed form, were derived in [6] and [7]. Hirota’s
method was used in [7] but not in [6]; in the latter, solutions for the SPE were derived
from the kink–kink and kink–antikink solutions of the SGE as given in [20].

In [4], the SPE was transformed into the CNDE by using a transformation similar to
the one used in [18,19] to transform the Vakhnenko equation into a more convenient
form. Then the CNDE was put into Hirota form and the cases N = 1 and N = 2
considered in detail. For N = 2, the solution was expressed as an approximate
Moloney–Hodnett decomposition. This is in contrast to our decomposition which is
exact.

3 The phase-shift calculation for the case N = 2

We now consider the phase-shift calculation for the case N = 2. First we give a cal-
culation that makes use of our decomposition. Then we indicate why the calculation
in [4] is incorrect.

In order to discuss the phase shift of each soliton due to its interaction with the
other one, it is convenient to introduce the variables �j (j = 1, 2) defined by

�j := x+
1

p2j
t =

�̂j
pj

−
2
∑

j=1

2

pj

{

1 +ℜe

[

tanh
(

gj
2

)]}

+ x0 (3.1)

and to note the relationship

p2�̂1 − p1�̂2 =

(

p22 − p21
p1p2

)

�. (3.2)

Also, without loss of generality, we choose �j0 = � (j = 1, 2) in (2.2).

First we consider the case p2 > p1 > 0 which corresponds to a loop–loop interaction.
For this case our derivation is similar to the procedure given in Sections 3.2 and
3.3 in [7]; the main difference is that our starting point is the decomposed solution.
From (3.2) and (2.20) we deduce that, with �̂1 fixed, �̂2 → ∞ and q1 → ie−2� as
� → −∞, and that �̂2 → −∞ and q1 → i as � → ∞. It follows from (2.12) and
(3.1) that, as t → ∓∞,

u1 →
2

p1
sech(�̂1 ∓ �), (3.3)

�1 →
�̂1
p1

− 2

p1
[1 + tanh(�̂1 ∓ �)]− 2

p2
(1± 1) + x0. (3.4)

Hence, for t → ∓∞, u1 is a function of �1 via the parameter �̂1. From (2.15), as
t → ∓∞, the crest of the soliton is located where �̂1 = ±� in the y-t plane; from
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(3.4), this corresponds to

�1 = ± �

p1
− 2

p1
− 2

p2
(1± 1) + x0 (3.5)

in the x-t plane. As the soliton is propagating in the negative x-direction (with
speed 1/p21), it makes sense to define the phase shift as

Δ1 := �1(t → −∞)− �1(t → ∞) =
2�

∣p1∣
− 4

∣p2∣
. (3.6)

A similar calculation in which �̂2 is held fixed gives the following results correspond-
ing to equations (3.3) – (3.6), respectively:

u2 →
2

p2
sech(�̂2 ± �), (3.7)

�2 →
�̂2
p2

− 2

p1
(1∓ 1)− 2

p2
[1 + tanh(�̂2 ± �)] + x0, (3.8)

�2 = ∓ �

p2
− 2

p1
(1∓ 1)− 2

p2
+ x0, (3.9)

Δ2 := �2(t → −∞)− �2(t → ∞) = − 2�

∣p2∣
+

4

∣p1∣
. (3.10)

(3.6) and (3.10) agree with (3.13a,b) in [7]. (The above calculation may be general-
ized to the case N > 2; the result agrees with (3.10) in [7].) It is straightforward to
show that (3.6) and (3.10) also hold for the antiloop–antiloop interaction for which
−p2 > −p1 > 0. A similar calculation yields the phase shifts for the antiloop–loop
interaction for which p2 > −p1 > 0, and for the loop–antiloop interaction for which
−p2 > p1 > 0, namely

Δ1 = − 2�

∣p1∣
− 4

∣p2∣
, Δ2 =

2�

∣p2∣
+

4

∣p1∣
. (3.11)

Before commenting on the phase-shift calculation for N = 2 in [4], it is useful to
look at the one-soliton solution in [4]. In the notation of [4], this solution is

U(�) = 2

√

1 + c

1− c
sech(�), (3.12)

x =
1

2
(� + �)− 2

√

1 + c

1− c
tanh(�), (3.13)

t =
1

2
(� − �), (3.14)

where � = k(�− c�)+�, k = 1/
√
1− c2 , � is an arbitrary constant, c is a constant

such that ∣c∣ < 1, and � and � are new independent variables. To express this
solution in a convenient form for interpretation in the x-t plane, the solution pair U
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and x+vt should be parameterized in terms of the single variable � only, where the
constant v is chosen suitably. We find that v has to be given by v = (1+ c)/(1− c)
and then

x+ vt =

√

1 + c

1− c
� − 2

√

1 + c

1− c
tanh(�) (3.15)

with v > 0. Equations (3.12) and (3.15) are equivalent to (2.15) and (2.17), respec-
tively.

In [4], the two-loop solution is given as an approximate Moloney–Hodnett decompo-
sition; this decomposition becomes exact only in the asymptotic limits t → ∓∞. In
order to investigate the phase shifts, the authors in [4] considered x+ vjt (j = 1, 2)
with vj = 1/cj . (No doubt this choice of vj was influenced by the corresponding step
in [18,19] for the two-loop solution to the Vakhnenko equation in which vj = 1/cj is
indeed the correct expression for vj .) However, as indicated by our comments on the
one-loop soliton solution, vj should be taken to be vj = (1+ cj)/(1− cj). This error
in [4] led to an incorrect calculation for the phase shifts, and the erroneous claim
that the asymptotic speeds of the two solitons in the negative x-direction are 1/c1
and 1/c2, respectively; the respective correct speeds are (1 + cj)/(1− cj) (j = 1, 2).

4 Concluding comments

We have made observations and corrections regarding various aspects of the calcu-
lation of loop soliton solutions to the SPE, the aim being to complement the work
in [4–7]. As far as we are aware, the Moloney–Hodnett decomposition associated
with the bi-logarithmic bilinear transformation (2.4), and presented in Section 2,
is new, as are the expressions for the phase-shifts for the interaction between two
antiloops and between a loop and an antiloop as given in Section 3.
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