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ABSTRACT  

 

Conventional monopulse radar processors are used to track a target that appears in the look direction                  

beam width. The distortion produced when additional targets appear in the look direction beam width can 

cause severe erroneous outcomes from the monopulse processor. This leads to errors in the target tracking 

angles that may cause target mistracking. A new signal processing algorithm is presented in this paper 

which offers a solution to this problem.  The technique is based on the use of optimal Fractional Fourier 

Transform (FrFT) filtering. The relative performance of the new filtering method over traditional based 

methods is assessed using standard deviation angle estimation error (STDAE) for a range of simulated 

environments. The proposed system configuration succeeds in significantly cancelling additional target 

signals appearing in the look direction beam width even if these targets have the same Doppler frequency. 

 

Index Term- Interference cancellation, Monopulse radar, Optimum fractional filter 

 

1. INTRODUCTION  

Monopulse radars are commonly used in target tracking because of their angular accuracy [1]. They 

provide  superior angular accuracy and less sensitivity to fluctuation in the radar cross section (RCS) of 
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the target compared to other types of tracking radars [2]. However, these radars are affected by different 

types of interference  which affects the target tracking process and may lead to inaccurate tracking [3-5]. 

A scenario where more than one target exists in the monopulse radar half power beam width is shown in 

Fig 1. The resultant distortion due to this interference will affect the induced target error voltage and 

consequently the radar tracking ability. Seliktar [6] suggested adding more constraints to the monopulse 

processor to cancel the distortion effect due to more targets appearing in the look direction. However 

this would require knowledge of the position of the additive targets. In our work we propose the use of 

an optimal fractional Fourier transform filter to cancel the additional targets’ signals that appear in the 

look direction main beam without adding any more constraints to the monopulse processor. 

The paper is organized as follows: Section 2 discusses the structure of a monopulse radar. The 

mathematical model for the conventional and the spatial adaptive monopulse processors are also 

described. Section 3 introduces the fractional Fourier transform (FrFT) and explains how the optimum 

choice of FrFT order is made and also discusses FrFT filtering. Section 4 describes how the standard 

deviation of angle estimation (STDAE) error is used to evaluate the system performance for monopulse 

radar processors. Our proposed new structure of the FrFT based monopulse radar processor is discussed 

in detail in section 5. In section 6 the new algorithm for optimum fractional Fourier transform filtering to 

reduce the interference due to more than one target in the look direction main beam is derived. A set of 

simulation results is presented in section 7 for single and multiple targets using the new monopulse 

processor. Section 8 concludes the paper. 

2. MONOPULSE RADAR PROCESSORS  

A block diagram of a typical monopulse radar is shown in Fig 2. A pulsed chirp signal )(tc  is produced 

from the waveform generator. This is up-converted to the radar carrier frequency, amplified and passed 

through the duplexer to be transmitted. 
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where t  is the time, T is the chirp time duration (pulse duration), startF  is the chirp start frequency, and 

stopF  is the chirp stop frequency. 

The down-converted received signal passes through a band limited Gaussian filter before passing through 

the chirp matched filter to maximize the target return signal. The target information parameters (azimuth 

angle, elevation angle, and target range) are then calculated by the monopulse processor from the filtered 

signal.   A typical monopulse processor for phased array radars is obtained by appropriately phasing the 

individual array channels to obtain sum and difference outputs [4, 7]. The ratio of the difference-to-sum 

outputs provides the measure by which the angle offset from the beam axis (i.e. look direction) is 

determined. The updated angle measurement is used to realign the beam axis with the target.  The 

structure of monopulse radar shown in Fig 2 is repeated N  times ( N  equal to the of array antenna 

elements). Thus each antenna will have its own complete receiving system and all the output data will be 

processed in only one monopulse processor. 

 

2.1. Conventional Monopulse Processor 

The conventional monopulse radar processor is a non adaptive configuration. This processor consists of 

two sets of weights set to the sum and difference steering vectors, respectively [8, 9]: 
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ν is the centre phase normalized steering vector in the 

look direction, N  is the number of antenna, ν is the spatial steering frequency. The sum and difference 

outputs are given in terms of the respective processors, 
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where )(lx  is the N ×1 spatial snapshot at time instant l. The real part of the ratio of difference to sum 

outputs is known as the error voltage defined as [6, 8] 
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This error voltage conveys purely directional information that must be converted to an angular form via a 

mapping function. The mapping function, called the monopulse response curve (MRC) [8, 9], is given in 

terms of the ratio of the two receive beam pattern functions. It represents the ideal response of the 

antenna to targets across various angles, so MRC, )(φM  is defined as 
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where )(φ∆W and )(φ∑W are the monopulse beam pattern for the sum processor and the difference 

processor respectively at look direction angle φ . So MRC is the ratio of difference to sum beam patterns 

and represented the ideal error voltage response to targets arriving from a particular angular region about 

boresight. 

 

2.2. Spatial Adaptive Monopulse Processor 

The spatial processor is an adaptive configuration. Adaptive sum and difference beams are formed by 

applying sum and difference unity gain constraints in the look direction 

1=∑∑νw ,        1=∆∆νw    (6) 

where )( lav ν=∑ and 
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sum and difference weights may be written in the following form [6, 10-12]: 
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where xR  is the covariance matrix of the input data [13]to the processor with diagonal loading [14, 15]  . 

In the construction of xR tries to exclude as much as possible the target data from the input data to the 

processor (target range bin interval are deleted from the processed data). 

3. FRACTIONAL FOURIER TRANSFORM (FrFT) 

The FrFT is the generalized formula for the Fourier transform that transforms a function into an 

intermediate domain between time and frequency [16, 17]. The signals with significant overlap in both 

the time and frequency domain may have little or no overlap in the fractional Fourier domain.  As 

illustrated in Fig 3, signals 1S and 2S can be separated in the FrFT domain using an order a .  

The fractional Fourier transform of an arbitrary function )(tx , with an angleα , is defined as: 

∫
∞

∞−

= dtttKtxtX aa ),()()( αα  
 (8) 

where ),( attKα  is the transformation Kernel, at is the transformation of t  to the 
th

a  order, and 

2/πα a=  with ℜ∈a . ),( attKα  is calculated from: 
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3.1. Optimum FrFT domain 

The optimum value for a  for a chirp signal may be written as [18]:  
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where fδ  is the frequency resolution (
N

F
f s=δ ), tδ is the time resolution (

sF
t 1=δ ), sF  is the 

sampling frequency, and γ is the chirp rate parameter. Eq 10 can be used to either calculate the optimum 

FrFT order or to estimate the chirp rate of a signal for a given FrFT order. 

3.2. Optimum FrFT Filter 

A signal observation model z  may be described by:  

yxHz +=  (11) 

where x  is the system useful signal, y  is the sum of all distortion signals, and H is the matrix 

characterizing the degradation process. The cross correlation matrix 
aa zxR is the cross correlation between 

x  and z  in the FrFT domain of order a . The auto correlation matrix 
aa zzR is the auto correlation for 

signal z in the FrFT domain of order a . These matrices may be  calculated from the following equations 

[19] 
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where aF  and  aF −  are discrete FrFT matrices of order a and a− , respectively, xxR and yyR are the 

covariance matrix for the signals x  and y  respectively, and H  is the Hermitian transpose. 

The optimum filter joptg ,  to filter the y  signal in the FrFT domain is given by: 
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where m is the signal length. 

The filtered signal x′  in the time domain is calculated from [16, 20] 

zx a

g

a
FF Λ=′ −  (15) 

where gΛ is a diagonal matrix whose diagonal consists of the elements of the vector joptg , .  
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4. PERFORMANCE MEASURE FOR MONOPULSE RADAR 

One commonly used measure for the performance of monopulse radar processors is the standard 

deviation of the angle error (STDAE). The STDAE is determined with a target injected randomly 

across range and angle within the main beam and the corresponding angle error averaged over range [6] 

}{
2

φε εσ
φ

E=  
 (16) 

where φφεφ −=
∧

, φ  is the target angle, and 
∧

φ  is measured angle. When there is only one target signal 

without any distortion signal (other targets in the look direction, jamming signal, clutter, thermal noise, 

and terrain scattering interference), both φ  and 
∧

φ are nearly equal, hence the STDAE is near zero and 

its value will increase due to the existence of the distortion signal.  

5. A NEW STRUCTURE OF MONOPULSE RADAR 

The proposed new structure of the monopulse radar is shown in Fig 4. In the reception mode as 

previously described, the received signal )(ts in the baseband passes through a band pass Gaussian filter 

and can be written in the following form: 
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where A  is the received signal amplitude, oφ is a random phase shift, and startT is the start time of the 

returned pulse.  The start time startT depends on the target range tR and is determined from: 

c

R
T t

start

×
=

2
 

 (18) 

where c  is the speed of light with approximate value 8103× . The Doppler shift and delay effect on the 

target chirp signal is determined by the dot product of the chirp signal by the Doppler and delay vector 

dF   
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))(2exp( startdd TtfjF −= π   (19) 

where df is the target Doppler frequency.  

For the uniform line phased array receiving antenna, the antenna phase factor φF  is introduced by  

))(2exp( tTfjF startc ∆×−−= Nπφ   (20) 

where N is a vector represented as 1:0 −N ,and t∆ is calculated from 

c

D
t tφsin×

=∆  
(21) 

where D  is the separation between the antenna elements, tφ  is the target angle from the antenna 

boresight. 

As seen in Fig 4  the optimum fractional filter obtains information about the shape of the chirp signal 

from the waveform generator and the updated target range from the range calculation. This information is 

used to determine the optimal FrFT domain. This will be described in detail in section  6.  

The new monopulse radar processor illustrated in Fig 5 consists of N receiving channel in which the 

received signal from each of the N antenna elements will fill L  range gates. The total radar data size is 

therefore equal to LN ×  for each pulse return. The optimum FrFT domain is calculated for each 

receiving channel data with size L×1  to filter the signal in the fractional domain.  The resultant filtered 

data (useful signal) is converted back from the optimum FrFT domain using inverse FrFT processor to the 

time domain. The  L×1  data output from N  FrFT processors are applied to azimuth, elevation, and 

range calculator to determine the target information parameters.  

6. OPTIMAL FrFT FOR MONOPULSE RADAR 

The following steps describe the proposed algorithm that may be employed to cancel more than one 

target signal arriving in the look direction of the main beam while extracting the 1
st
 target signal:  

1. Determine the optimal fractional domain for the 1
st
 target signal. 

2. Calculate the correlation matrix for the 1
st
 target and the other targets.  
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3. Calculate the cross correlation matrix for the 1
st
 and the other targets in the optimum FrFT domain 

and the auto correlation matrix of the additive targets in the optimum FrFT domain. 

4. Design the optimum filter in the fractional domain. 

5. Extract the useful signal (the 1
st
 target signal) by using the optimum fractional transform matrix. 

6. Transform the useful signal to time domain by using the inverse optimum fractional transform 

matrix 

The mathematical description for the previous steps is now described in detail: 

Applying the signal model of Eq 11 to our radar system in which H is considered to be unity matrix (no 

system degradation) 

yxz +=  (22) 

where the useful signal x  is the 1
st
 target signal and the distortion signal y  is the sum of the additional 

targets’ signals (in the simulation, the 2nd target signal and the 3rd target signal). 

The target received signal is a chirp signal given by Eq 17.  The optimum FrFT order opta  for this chirp 

can be computed by applying Eq 10 to the radar system as  
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The required information to calculate correlation matrices is obtained from the fact that we have previous 

knowledge of the target position (already tracked before the other targets enter the radar look direction) 

and from the sample signal of the waveform generator (parameters of the transmitted chirp signal). So 

xxR  apart from a scale factor A is computed as:  

)( H

xx ER x.x=  (24) 

where x is the chirp signal of  the 1
st
 target at range tR : 
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where xφ  is a random phase shift similar to that used in Eq 17 and startT is calculated from Eq 18 for 

target at range tR . 

In the same fashion yyR  is calculated from: 

)( H

yy ER y.y=    (26) 

where y  is the chirp signal at the other targets range: 
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where yφ  is a random phase shift similar to that used in Eq 17 and tstarT ′ is calculated from Eq 18 for 

target at range tt RR ∆+  and tR∆ is the maximum range difference between the 1
st
 target and any of the 

additive  targets that cannot be resolved by a range gate canceller. tR∆  can also be considered as the 

number of range bin occupied by the 1
st
 target. tR∆  in Eq 27 ensures that no need to acquire any 

information about the range of the additive targets. 

The next step is to calculate the cross correlation matrix 
aa zxR for the 1

st
 and the other targets  and the auto 

correlation matrix 
aa zzR of the other targets in the calculated optimum FrFT domain by applying Eq 12 

and Eq 13 respectively as 

optopt
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Then the optimum filter in the optimum FrFT domain joptg ,  is given by 
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The filtered signal x′  in the time domain is calculated from Eq 15. All the outputs signals from the N  

FrFT filters are supplied to the monopulse processor (the processors mathematical models were presented 

in section 2) to calculate the target information. 
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7. SIMULATION RESULTS 

Initially we will simulate one target for the conventional and spatial adaptive monopulse processors. Then 

we will consider the case with multiple targets in the radar look direction main beam and examine the 

subsequent degradation on the system performance as measured by STDAE curves. The simulation of 

two targets for the two monopulse processors using optimum FrFT filter will be presented and the 

enhancement in the target tracking will be presented. 

In the simulations the radar comprises an array of 14 elements spaced 1/3 meters apart. The radar pulse 

width is 100 microseconds and the pulse repetition interval of 1.6 milliseconds for a 435 MHz carrier. A 

200 kHz Gaussian band pass filters exists at the front end of each N  receiver to filter the incoming data 

returns prior to sampling. The incoming baseband signals are sampled at 1 MHz. Also it is assumed that 

the radar operating range is 100:200 range bins with a starting window at 865 microseconds and a 

window duration of 403 microseconds.  The target is considered at range bin=150 at angle 
o

32  from the 

look direction with target signal to noise ratio (SNR) set to 50 dB with Doppler frequency 150 Hz.   

 

7.1.  Single Target 

Using Eq 2 it can be seen in Fig 6(a) that the sum pattern has maximum at the look direction angle o32  

and null at the same angle for the difference pattern in Fig 6(b). A well sloped curved for monopulse error 

voltage (the ratio of the derivative of the difference pattern over the sum) is calculated from Eq 4 and is 

shown in Fig 6(c). It determines the target position by mapping this voltage onto the monopulse response 

curve (MRC) to get
∧

φ . Any distortion to this curve will affect the target position calculation. The 

processor output is determined from Eq 3. From Fig 6(d), it is seen that there is only one target at the 

range bin 150 in the operating radar range bins.  

 The spatial processor pattern is calculated from Eq 7, the processor output from Eq 3, and the monopulse 

error voltage from Eq 4. It is shown in Fig 7(a) that the sum pattern has maximum at the look direction 
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angle o32  and null at the same angle for the difference pattern in Fig 7(b). It looks like the same pattern 

shape of the conventional processor because there is no signal interference due which the sum and 

difference patterns change their shape to try to cancel the effect of this interference. Again a well sloped 

curved for monopulse error voltage is obtained. From Fig 7(d), it is seen that there is only one target at 

the range bin 150 in the operating radar range bins.  

  

7.2.  Multiple Targets 

In the simulation for two targets, we consider that the second target’s SNR equals 53 dB (double the 

power of the 1
st
 target), at an angle that varies randomly near to the 1

st
 target (the radar is locked on the 1

st
 

target before the additive targets enter the radar half power beam width) but still in the look direction 

beam width), and at range bin 153.  Note that this second target cannot be resolved because the 1
st
 target 

occupied bins include 7 bins with the same Doppler frequency of the 1
st
 target as seen in Fig 6 and Fig 7. 

For the three targets scenario, we consider that the third target SNR equal 50 dB (equal power of 1
st
 

target), also at an angle that varies randomly near to the 1
st
 target but still in the look direction beam 

width), and at range bin 147 (nearer than the 1st target to the tracking radar) with the same Doppler 

frequency as the 1
st
 target. 

7.2.1 Two Targets Scenario  

The conventional and the spatial processor outputs using Eq 3 are seen in Fig 8(b) and Fig 9(b) 

respectively. It is clear that in these figures that the second target cannot be cancelled using range gate 

canceller (overlapped with the 1
st
 target). The two target problem causes deviation in the monopulse error 

voltages from their original values to distorted curves as seen in Fig 8(a), and Fig 9(a). This distortion in 

the error voltage will affect the tracking angle of the 1
st
 target resulting in a probable mistracking 

outcome. 
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From Fig 8(d), the STDAE for the conventional processor is much higher at 2.9 for different target SNR 

(from 20-100 dB), so the system is completely distorted and the radar cannot track the 1
st
 target. In the 

case of the spatial adaptive processor in Fig 9(d), it starts to achieve good tracking results from 

approximately 60 dB because of the adaptive characterization of the beam pattern that attempts to cancel 

the 2
nd

 target signal.  Despite the low STDAE values (average value 0.3) the processor still introduces 

considerable error in the 1
st
 target angle calculation.  

7.2.2 Three Targets Scenario  

The conventional and the spatial processor outputs using Eq 3 are seen in Fig 8(b) and Fig 9(b) 

respectively. It can be seen in these figures that both the additive targets cannot be cancelled using range 

gate canceller (overlapped with the 1
st
 target). There is now significant deviation in the monopulse error 

voltages from their original values to distorted curves as seen in Fig 8(a), and Fig 9(a) due to the third 

target. From Fig 8(d), the STDAE for the conventional processor is much higher at 2.9 for different target 

SNR, so the system is completely distorted and the radar cannot track the 1
st
 target. In case of the spatial 

adaptive processor in Fig 9 (d), it starts to achieve good tracking result from approximately 70 dB.  

7.3. Monopulse Processors using Optimum FrFT Filter 

Substituting the specific monopulse radar parameters in Eq 23, the order of the optimal FrFT domain opta  

is computed as 1.7074. Following the steps described in section 6, we calculate the correlation matrix for 

the 1
st
 target xxR and the additive targets yyR by considering tR∆ = 7 range bin (more than 7 range bin 

there is no problem because the radar can cancel the additive targets using rage gate canceller) by using 

Eq  24 and Eq 26 respectively. All the steps in section 6 are continued until the filtered data is produced. 

7.3.1 Two Targets Scenario with FrFT 

Applying the filtered data to the radar processors to calculate the processors outputs using Eq 3, it is seen 

from Fig 8(c) and Fig 9(c) that only one strong target appears in the output and the 2
nd

 target is 

significantly suppressed (more than 20 dB reduction).  As seen in Fig 8(a) and Fig 9(a), the resulting 
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monopulse curve for the two targets scenario with FrFT are nearly identical to their original values (only 

one target). As a result the significance of the distortion due to the 2
nd

 target in the monopulse look 

direction has been minimised. The resultant STDAE using Eq 16 for different SNR (20:100 dB) for the 

conventional processor is particularly low (average value less than 0.1) as shown in Fig 8(d). In Fig 9(d) 

the STDAE for the spatial processor in case of two targets using FrFT are particularly low (average value 

less than 0.1). The new system configuration will enhance the system performance for the two target 

scenario at all SNR for the considered radar processors. If the scenario has only targets in the tracked 

target background then the calculated STDAE will decrease to average 0.1 due to the highly signal 

suppression in this case. This implies that both processors are able to track the first target correctly and 

the introduced error due to the existence of the additive target is significantly reduced. 

7.3.2 Three Targets Scenario with FrFT 

Applying the filtered data to the radar processors to calculate the processors outputs using Eq 3, it is seen 

from Fig 8(c) and Fig 9(c) that only one strong target appears in the output and the 2
nd

 target is 

significantly suppressed (more than 20 dB reduction) and the 3
rd

 target is suppressed (more than 5 dB 

reduction). The same results are obtained when only one additive targets is exists, in other words when 

only one additive target  exists, its signal is suppressed by  5 dB reduction and 20 dB reduction for the 

near target and far target respectively.  As seen in Fig 8(a) and Fig 9(a), the resulting monopulse curve for 

the three targets scenario with FrFT are slightly different to their original values (only one target). As a 

result the problem of the distortion due to the 3rd target in the monopulse look direction has been 

resolved. The resultant STDAE using Eq 16 for different SNR (20:100 dB) for the conventional processor 

is low (average value less than 0.3) as shown in Fig 8(d). In Fig 9(d) the STDAE for the spatial processor 

in case of three targets using FrFT are particularly low (average value less than 0.3). The higher values 

for STDAE in this case because the 3rd target is nearer to the radar than the 1st one. In other words if the 

3rd target is in the background of the 1st target, the STDAE will reduce to 0.1 (similar to the two target 

scenario). 
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The previous suppression of the additive targets signals power and also the enhancements in the 

STDAE values were tested for up to six targets (3 near target and 3 far targets) and generally a similar 

SNR reduction of approximately 20dB will be observed for all far targets while a SNR reduction of 

approximately 5dB was observed for all near targets.  

8. CONCLUSION 

In this paper we have presented a new solution for the distortion problem due to the unwanted targets 

appearing in the monopulse look direction main beam. The proposed system configuration with the 

optimum N  FrFT filters succeeds to effectively reduce the additive targets’ signal and minimize the 

STDAE for the both considered monopulse processors. A very high improvement in the radar tracking 

ability for different SNR (because of very low STDAE) is gained by using the suggested cancelling 

technique (more than 20 dB reduction for the far targets and more than 5 dB reduction for the near 

targets). One of the key advantages of the proposed system is that it works in an excellent manner when 

only one target in the look direction (normal case) as well as when more than one target exists in the look 

direction.  In our future work, we will consider that in addition to the additive targets appear in the radar 

look direction, a jamming signal will also interfere through the radar main lobe and side lobes. 
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Fig 1-  Two targets scenario for Monopulse radar 
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Fig 2- Basic structure of a monopulse radar 
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Fig 4-  New structure of the proposed monopulse radar  
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Fig 5-  filtering radar data in FrFT domain 

 

 

 

 

 

 

 

 



 

21 

 
(a) 
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(b) 

 
(b) 

 
(c) 

 
(c) 

 
(d) 

 
(d) 

Fig 6- Conventional processor 

(a) sum processor. 

(b) difference processor. 

(c) error voltage curve. 

(d) processor output. 

Fig 7- Spatial adaptive processor 

(a) sum processor. 

(b) difference processor. 

(c) error voltage curve. 

(d) processor output. 
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(b) 

 
(c) 

 
(c) 
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(d) 

Fig 8- Conventional  

(a) error voltage curve. 

(b) processor output (No Filtering). 

(c) processor output (FrFT Filtering). 

(d) STDAE. 

Fig 9- Spatial adaptive  

(a) error voltage curve. 

(b) processor output (No Filtering). 

(c) processor output (FrFT Filtering). 

(d) STDAE. 
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