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Abstract—Discrete bit loading for multicarrier systems based on the
greedy power allocation (GPA) algorithm is considered in this paper. A
new suboptimal scheme that independently performs GPA on groups of
subcarriers and therefore can significantly reduce complexity compared
to the standard GPA is proposed. These groups are formed in an initial
step of a uniform power allocation (UPA) algorithm. In order to more
efficiently allocate the available transmit power, two power re-distribution
algorithms are further introduced by including a transfer of residual
power between groups. Simulation results show that the two proposed
algorithms can achieve near optimal performance in two separate and
distinctive SNR regions. We demonstrate by analysis how these methods
can greatly simplify the computational complexity of the GPA algorithm.

I. INTRODUCTION

In multicarrier systems, e.g. OFDM, a number of independent
subcarriers arise for transmission, which differ in SNR. Data through-
put maximisation over such systems under the constraint of limited
transmit power leads to the well-known water-filling solution [1].
However, water-filling is generally followed by a rounding-off step
to allocate an integer number of bits to the transmitted QAM
symbols across all subcarriers, thus lowering the overall throughput.
In addition, unbounded modulation orders in the case of infinite
SNR are required to efficiently utilise the transmit power but are
unfeasible. Moreover, the dependence of water-filling on SNR-gap
approximation which is poor in the operating regions of wireless
systems [2] motivates for other efficient loading solutions.

Pure water-filling-based solutions have been reported in [3], [4],
[2], leading to some of the above stated problems. Alternatively,
allocation of the transmit power when realising the target bit error
ratio (BER) across all subcarriers i given that bi ∈ Z, where
bi is number of bits allocated to the ith subcarrier, has lead to
a rate-optimal algorithm known as the greedy power allocation
(GPA) algorithm [5], [6], of which a number of different variations
have emerged constraining either the average BER [7] or the total
power [8]. For a good review of greedy algorithms, please refer to [9].

While achieving rate optimality, the family of greedy algorithms
is also known to be greedy in terms of computing requirements.
Therefore, reduced complexity schemes are either water-filling based
only [3] or aim at simplifications [10]. In this paper we propose a
novel suboptimal greedy algorithm, whereby the power re-allocation
is performed in groups of subcarriers. Different from our previous
work in [11], the interest of this paper is focusing on the simplification
achievements of our proposed power allocation scheme compared to
the standard greedy approach by further elaborating on the complexity
analysis of both algorithms. We show that with simple overall power
re-distribution between groups, two different methods in terms of
approximate overall optimisation can be proposed. These suboptimal
schemes, while greatly simplifying complexity, hardly sacrifice any
performance compared to the full GPA algorithm, provided that the
proper algorithmic version is selected for specific SNR regions.

The rest of the paper is organised as follows. In Sec. II, the standard
greedy approach is first reviewed including the initialisation step of
uniform power allocation (UPA). Our proposed reduced-complexity
schemes are presented in Sec. III, where computational complexity is
analysed and evaluated in Sec. IV. Simulation results are discussed
in Sec. V and conclusions are drawn in Sec. VI.

II. THE GREEDY APPROACH

In this Section greedy approach for the power allocation problem
to maximise the transmission rate over a multicarrier system is
introduced.

A. Constrained Optimisation Problem

A MIMO-OFDM system is considered, whereby the ISI MIMO
channel H can be converted into an N -subcarrier system with
different gains |Hi| , i = 1 · · ·N . The ith subcarrier experiencing
the gain |Hi| will be used to transmit bi bits per symbol. The
maximisation of the sum-rate

max

N∑
i=1

bi, (1)

constrained by: the total power budget, the target bit error ratio
(BER), and the maximum permissible QAM modulation order. These
constraints can be formulated as

N∑
i=1

Pi ≤ Pbudget, Pb,i = Ptarget
b , and bi ≤ bmax, ∀i (2)

where Pi is the amount of power allocated to the ith subcarrier to
achieve a BER Pb,i, and bmax is the maximum number of permissible
bits allocated to a subcarrier. Note that the target BERs are assumed
to be equal, i.e. Pb,i = Ptarget

b in (2) for all subcarriers i = 1 · · ·N
and therefore the subscript i will be dropped from the BER notation.

The carrier-to-noise ratio of the ith subcarrier can be defined as

CNRi =
|Hi|2
N0

, (3)

where N0 is the total noise power at the receiver, whereas the SNR
of this subcarrier is

γi = Pi × CNRi . (4)

We consider rectangular M -QAM modulation of order Mk, 1 ≤ k ≤
K, where MK is the maximum QAM constellation that is permissible
by the transmission system, i.e., MK = 2bmax

. The BER of this
modulation scheme is given by [12]

Pb =

1 −
[
1 − 2

(
1 − 1√

Mk

)
Q

(√
3γi

Mk−1

)]2

log2Mk
. (5)



Assuming availability of channel state information (CSI) at the
transmitter, symbols of bk-bits, bk = log2Mk can be loaded to a
subcarrier with minimum required SNR to achieve Ptarget

b obtained
from (5) as

γQAM
k =

Mk − 1

3

⎡
⎣Q−1

⎛
⎝ 1 −

√
1 − Ptarget

b · log2Mk

2
(
1 − 1/

√
Mk

)
⎞
⎠

⎤
⎦

2

, (6)

where Q−1 is the inverse of the well-known Q function.
Based on (6), the bit loading problem is solved in two steps, (i) a

uniform power allocation (UPA) initialisation step and (ii) the greedy
algorithm step, both described below.

B. UPA Algorithm

The uniform power allocation is performed by the following steps:
1) Calculate γQAM

k for all Mk, 1 ≤ k ≤ K using (6).
2) Equally allocate Pbudget among all subcarriers 1 ≤ i ≤ N ,

γi = Pi × CNRi =
Pbudget

N
× CNRi . (7)

3) Reside subcarriers according to their SNR γi into QAM groups
Gk, 0 ≤ k ≤ K bounded by QAM levels γQAM

k and γQAM
k+1

with γQAM
0 = 0 and γQAM

K+1 = +∞ such that

γi ≥ γQAM
k and γi < γQAM

k+1 . (8)

4) For each group Gk, load subcarriers within this group with
QAM constellation Mk and compute the group’s total allocated
bits

Bu
k =

∑
i∈Gk

bu
i,k =

∑
i∈Gk

log2Mk (9)

with Bu
0 = 0. Notice that from step (3), subcarriers reside in

QAM groups with SNR levels that are below their actual SNRs,
γQAM

k ≤ γi, therefore leaving some unused (excess) power

P ex
k =

∑
i∈Gk

γi−γ
QAM
k

CNRi
=

∑
i∈Gk

Pi − γ
QAM
k

CNRi

= Nk
Pbudget

N
− ∑

i∈Gk

γ
QAM
k

CNRi

, (10)

where Nk, 1 ≤ k ≤ K is the number of subcarriers that
occupies the QAM group Gk.

5) Overall, the allocated bits and the used power for the uniform
power allocation scheme are therefore,

Bu =

K∑
k=1

Bu
k (11a)

P used
u = Pbudget −

K∑
k=0

P ex
k = Pbudget − P ex, (11b)

where P ex is the total excess power that remains unallocated
under the UPA scheme.

C. Full Greedy Power Allocation (GPA) Algorithm

The second step towards the GPA is described next. Based on the
initialisation step described in the UPA, the full GPA algorithm [8]
performs an iterative re-distribution of the unallocated power of the
UPA algorithm P ex by applying the algorithmic steps detailed in
Table I. At each iteration, this algorithm tries to increase bit loading
by upgrading (to the next higher QAM level) the subcarrier of the
least power requirements through an exhaustive search, by performing
step (4) in Table I for all subcarriers N . When either i) the remaining
power cannot support any further upgrades or ii) all subcarriers appear
in the highest QAM level K, the algorithm stops resulting in the
system allocating Bgpa bits.

Table I
FULL GPA ALGORITHM

Initialisation:
1. Set power available for GPA to P gpa

a = P ex in (11b)
For each subcarrier i do the following:

2. Set bgpa
i = bui in (9) and index ki = k in (8)

3. Cal. the min required upgrade power: Pup
i =

γ
QAM
ki+1 −γ

QAM
ki

CNRi

Recursion:
while P gpa

a ≥ min(Pup
i ) and min(ki) < K, 1 ≤ i ≤ N

4. j = argmin
1≤i≤N

(Pup
i )

5. kj = kj + 1, P gpa
a = P gpa

a − Pup
j

if kj = 1

6. bgpa
j = log2M1, Pup

j =
γ
QAM
2 −γ

QAM
1

CNRj

elseif kj < K

7. bgpa
j = bgpa

j + log2

(
Mkj

Mkj−1

)
, Pup

j =
γ
QAM
kj+1−γ

QAM
kj

CNRj

else

8. bgpa
j = bgpa

j + log2

(
Mkj

Mkj−1

)
, Pup

j = +∞
end

end
9. Bgpa =

∑ N
j=1 bgpa

j

III. PROPOSED REDUCED-COMPLEXITY GPA

Given Bu
k as defined in (9) and P ex

k in (10), three low-cost greedy
algorithms are proposed to efficiently utilise the total excess power
of the uniform power allocation in (11b) using the QAM grouping
concept. More precisely, GPA is separately accomplished for each
QAM group Gk aiming to increase the total bit allocation of this
group and therefore the overall system allocated bits. Based on the
way of utilising P ex

k , we propose three different algorithms, which
below are referred to as (i) grouped GPA (g-GPA), (ii) power Moving-
up GPA (Mu-GPA) and (iii) power Moving-down GPA (Md-GPA).

A. g-GPA Algorithm

As discussed in Sec. II, the optimum discrete bit loading constrai-
ned by total power and maximum permissible QAM order can be
performed by the GPA approach. However, the direct application of
the GPA algorithm is computationally very costly due to the fact that
at each iteration an exhaustive sorting of all subcarriers is required
as evident from Table I.

A simplification of the GPA algorithm can be achieved if subcar-
riers are firstly divided into QAM groups Gk, 0 ≤ k ≤ K according
to their SNRs (step (3) of the UPA). GPA algorithm is therefore
independently applied to each group Gk, trying to allocate as much
of the excess power P ex

k within this QAM group as possible. This
excess power is iteratively allocated to subcarriers within this group
according to the greedy concept with the aim of upgrading as many
subcarriers as possible to the next QAM level. The pseudo code for
the kth QAM group Gk of the g-GPA algorithm is given in Table II.

Notice that different from the standard GPA, this algorithm permits
upgrades to the next QAM level only (P up

j is set to +∞ in steps (5)
and (6) of Table II). Accordingly, g-GPA may leave some left-over
(LO) power PLO

k for each QAM group Gk, resulting in a total LO
power of

PLO
g =

K−1∑
k=0

PLO
k + P ex

K . (12)

Intuitively, for the overall performance of the g-GPA algorithm, the
algorithm in Table II has to be executed K times, once for each QAM



Table II
G-GPA ALGORITHM FOR SUBCARRIERS IN THE kTH QAM GROUP Gk

1. ∀i ∈ Gk, calculate Pup
i =

(
γ
QAM
k+1 −γ

QAM
k

)
/CNRi

2. Initiate bgi,k = bui,k and PLO
k = P ex

k

while PLO
k ≥ min(Pup

i )

3. j = argmin
i∈Gk

(Pup
i )

4. PLO
k = PLO

k − Pup
j

if k = 0

5. bgj,k = log2M1, Pup
j = +∞

else
6. bgj,k = bgj,k + log2

Mk+1
Mk

, Pup
j = +∞

end
end

7. Bg
k =

∑
i∈Gk

bgi,k

group, from G0 to GK−1, resulting in the system allocating bits

Bg =

K−1∑
k=0

Bg
k + Bu

K . (13)

B. Mu-GPA Algorithm

The g-GPA algorithm results in unused LO power PLO
k for each

QAM group. This residual power can be exploited by a second stage,
whereby it is proposed to move power upwards starting from the
lowest QAM group, as outlined in Fig. 1(a). This modifies the g-GPA
algorithm by considering the LO power PLO

0 of the QAM group G0

after running the g-GPA algorithm on that group, and assign this
power for re-distribution to group G1. Any LO power after running
g-GPA on G1 is then passed further upwards to G2, and so forth. At
the kth algorithmic iteration, the Mu-GPA algorithm is working on
Gk and tries to allocate the sum of the excess power missed by the
UPA algorithm of that group along with the LO power of the previous
group Gk−1, i.e., P ex

k +PLO
k−1. Finally, the LO power resulting from

the QAM group GK−1 is added to the excess power of the Kth

QAM group P ex
K representing the final LO power of the Mu-GPA

PLO
Mu−g = PLO

K−1 + P ex
K , (14)

while the number of the overall allocated bits is

BMu−g =

K−1∑
k=0

BMu−g
k + Bu

K . (15)

nsfer direction
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Figure 1. Algorithmic arrangements for (a) Mu-GPA and (b) Md-GPA with
final LO powers given in (14) and (16), respectively.

C. Md-GPA Algorithm

A second algorithm is proposed to exploit the residual power
PLO

k of each QAM group of the g-GPA algorithm but in a reverse
direction compared to the Mu-GPA algorithm. Starting from QAM
group GK−1 downwards to QAM group G0, these procedures
are illustrated in Fig. 1(b) which show the direction of the LO

power flow. Proceeding downwards, at the kth stage the Md-GPA
algorithm applies the g-GPA algorithm for the available power that
comprises both the excess power missed by the UPA algorithm and
the LO power of the previous QAM group (Gk+1 in this case), i.e.,
P ex

k+1 + PLO
k+1 (cf. Fig. 1(b)). This will finally result in a LO power

of

PLO
Md−g = PLO

0 + P ex
0 , (16)

and an overall number of allocated bits of

BMd−g =

K−1∑
k=0

BMd−g
k + Bu

K . (17)

IV. COMPLEXITY EVALUATION

The key idea behind this work is to reduce the complexity
associated with the implementation of the GPA algorithm. Instead
of jointly applying GPA across all subcarriers which consequently
requires high computational complexity specifically for large numbers
of subcarriers, the g-GPA algorithm only addresses a subset of
subcarriers within a specific QAM group at a time. With the aid
of Fig. 2 it is obvious that the search step (4) of Table I, which
represents the complexity bottleneck of the GPA algorithm, has
to include all subcarriers N in every iteration regardless of initial
subcarriers ordering. This is because it is possible to find subcarriers
in lower QAM levels that require less power to upgrade than others
in higher QAM levels (cf. Fig. 2). Beyond the division of the QAM
grouping concept, a further reduction in complexity can be achieved
if subcarriers are initially ordered in their gains CNRi.

CNRi

γQAM
u

ΔγQAM
u Group: Gu

...

γQAM
v+1

Group: GvΔγQAM
v

...

ji

γQAM
v

subcarriers: · · ·
...

...
γQAM

u+1

0

. . .
CNRj

Figure 2. Illustration of the necessity to address all subcarriers N in
every iteration in the case of the GPA algorithm as it is possible to find
Pup

j = ΔγQAM
u /CNRj ≤ Pup

i = ΔγQAM
v /CNRi. Contrarily, for the g-

GPA algorithm since ΔγQAM
k will be fixed for all subcarriers in group Gk ,

ordering CNRi, i ∈ Gk will simplify the search step (3) of Table II with
only an incremental indexing instead.

Referring to Table I and Table II, the computational complexities
of both GPA and g-GPA algorithms are summarised in Table III,
whereby the number of operations is computed for each algorithm.
We consider the cases where subcarrier SNRs are either ordered prior
to involving g-GPA, or where the ordering is left to any of the g-
GPAs. Note that for the full GPA algorithm ordering subcarriers does
not lead to any improvement in complexity as discussed above.

The quantities L1 and L2 =
∑K−1

k=0 Lk
2 in Table III denote the

average number of iterations of the while loop for the GPA (Table I)
and the g-GPA (Table II) algorithms, respectively. Obviously, Nk

cannot be easily quantified as it depends on both CNRi, which is a
χ2 random variable, and the operating SNR. Therefore the complexity
of g-GPA is evaluated in a heuristic fashion. In the worst case and by
assuming that subcarriers are uniformly distributed across all QAM
groups, i.e. Nk = N

K
, the complexity of the g-GPA algorithm can

be approximated as given in Table III which is lower than its GPA
counterpart.



Table III
COMPUTATIONAL ANALYSIS FOR BOTH GPA AND G-GPA ALGORITHMS

algorithm no. of operations
GPA (order and no order) L1(2N + 7) + 4N + 1

g-GPA (no order)
∑K−1

k=0 Lk
2(2Nk + 4) + 2Nk + 2

≈ L2(2 N
K

+ 4) + 2 N
K

+ 2

g-GPA (order)
∑K−1

k=0 Lk
2(Nk + 5) + 2Nk + 2

≈ L2( N
K

+ 5) + 2 N
K

+ 2

V. SIMULATION RESULTS AND DISCUSSION

Computer simulations are conducted to investigate the performance
of our proposed algorithms compared with both UPA and GPA
algorithms. A 4x4 MIMO-OFDM system characterised by an ISI
MIMO channel H of 6-tabs FIR is considered, where the entries
of H are complex Gaussian random variables with zero-mean and
unit-variance, i.e., hij ∈ CN (0, 1). Results are averaged over 5,000
different channel realisations for target BER Ptarget

b = 10−4 and
various levels of SNRs using square QAM modulation schemes:
QPSK, 16-QAM, and 64-QAM, i.e., Mk = 2k, k = 2, 4, 6.

System throughput is examined and shown in Fig. 3 for a 24-
subcarrier system. It is evident that UPA represents an inefficient
way of power allocation since the performance is approximately 2
to 8 dB below other algorithms, and provides approximately only
half the throughput at 12.5 dB SNR. By considering power transfer
between groups, both Mu-GPA and Md-GPA algorithms outperform
the g-GPA. Interestingly, Mu-GPA performs better at low SNR, while
Md-GPA performs better at higher SNR. This can be explained with
the aid of (14) and (16), that is, for low-to-medium SNRs it is most
likely that P ex

K < P ex
0 as transmit power cannot afford occupation

of subcarriers in the highest QAM group, as a consequence Mu-GPA
performs better in this SNR region. In contrary, for medium-to-high
SNRs P ex

K > P ex
0 is expected to be high and then Md-GPA is likely

to be advantageous as it exploits P ex
K in its power re-distribution.

In order to highlight the simplification gained by our proposed
scheme, Fig. 4 demonstrates the cumulative distribution function
(CDF) of the computation time of the g-GPA algorithm compared
to the standard GPA algorithm for a 1024-subcarrier system. Two
different SNRs values of 15 and 35 dB are considered, and it is clear
that the g-GPA algorithm has a higher computational efficiency in
particular for large SNR values. The effect of subcarrier ordering is
also evident as discussed in Sec. IV.
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Figure 3. Overall throughput for a 24-subcarrier MIMO-OFDM system with
Ptarget

b = 10−4.
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Figure 4. Cumulative distribution function of the computation time for
a 1024-subcarrier system with Ptarget

b = 10−4 at SNR values of 15 dB
(without circles) and 35 dB (with circles).

VI. CONCLUSIONS

Suboptimal discrete bit loading schemes have been proposed in
this paper. Compared to optimum greedy power allocation (GPA)
algorithm, these schemes perform GPA on groups of subcarriers.
Two of these schemes have been suggested with a refined power
allocation stage. Simulations show that performance very close to
the GPA algorithm can be attained by the two algorithms — for the
Mu-GPA at low SNR, for the Md-GPA at high SNR — at a much
reduced computational complexity.
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