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Abstract	(English)	
	
Congenital	hypogonadotropic	hypogonadism	(CHH)	is	a	rare	disorder	characterized	by	

absent	puberty	and	 infertility	due	 to	GnRH	deficiency.	More	 than	30	genes	have	been	

implicated	with	the	disorders,	yet	for	65%	of	CHH	patients	there	is	no	genetic	cause	to	

explain	their	disease	phenotype.	To	better	characterize	the	genetic	architecture	of	CHH	

and	 discover	 new	 genes	 associated	 with	 the	 disease,	 I	 performed	 whole-exome	

sequencing	 in	 a	 large	 cohort	 of	 CHH	 patients.	 I	 implemented	 a	 semi-automated	

bioinformatics	 pipeline	 to	 accurately	 process	 raw	 sequence	 reads	 and	 output	 high-

quality	 variants	 for	 a	 series	 of	 genetic	 studies.	 Next,	 I	 investigated	 the	 genetic	

architecture	 of	 CHH	 by	 screening	 for	 the	 first	 time	 the	 largest	 set	 of	 known	 genes	

implicated	 in	 the	 disease.	 I	 observed	 that	 51%	 of	 CHH	 patients	 have	 at	 least	 one	

putatively	pathogenic	mutation	in	a	known	gene,	while	15%	of	patients	have	more	than	

one	known	gene	mutated	(i.e.,	oligogenicity).	Patients	with	congenital	delay	of	growth	

and	puberty,	a	common	 form	of	GnRH	deficiency,	do	not	show	a	genetic	overlap	with	

CHH.	 I	 then	applied	a	biology-driven	bioinformatics	analysis	 targeting	genes	encoding	

fibronectin	type-III	domains	proteins,	which	are	critical	for	GnRH	neuron	migration.	We	

identified	 loss-of-function	 mutations	 in	 two	 genes,	 DCC	 and	 its	 ligand	 NTN1,	 and	

demonstrated	their	role	in	GnRH	neuron	migration	during	early	development	in	mouse	

and	human.	Last,	 I	applied	unbiased	family-	and	population-based	analyses	to	identify	

candidate	genes	associated	with	CHH.	 Interestingly,	 a	de	novo	missense	variant	 in	 the	

SMC3	gene	was	detected	in	a	patient	with	Kallmann	syndrome	(CHH	and	anosmia)	and	

Cornelia	 de	 Lange	 syndrome	 (CdLS),	 a	 rare	 neurodevelopmental	 disorder.	 SMC3	 is	 a	

gene	known	to	underlie	CdLS	and	 is	part	of	 the	cohesin	complex	which	 is	 involved	 in	
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many	cell	processes,	 including	transcriptional	regulation.	I	then	found	additional	CdLS	

patients	 diagnosed	 with	 KS	 or	 GnRH-related	 defects,	 suggestive	 of	 a	 phenotype-

genotype	overlap	between	CHH	and	CdLS.	
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Abstract	(French)	

L’Hypogonadisme	Hypogonadotrope	Congénital	(HHC)	est	une	maladie	rare	définie	par	

une	absence	de	puberté	et	une	infertilité	dues	à	un	déficit	en	gonadolibérine	(GnRH).	A	

ce	jour,	plus	de	30	gènes	sont	liés	à	la	physiopathologie	de	l’HHC	mais	environ	65%	des	

patients	 atteints	 ne	 présentent	 aucune	 mutation	 génétique	 connue.	 Afin	 de	 mieux	

comprendre	la	stucture	génétique	de	l’HHC	et	découvrir	de	nouveaux	gènes	impliqués	

dans	 cette	 pathologie,	 nous	 avons	 réalisé	 une	 analyse	 de	 séquençage	 complet	 de	

l’exome	 au	 sein	 d’une	 large	 cohorte	 de	 patients	 HHC.	 Dans	 un	 premier	 temps,	 nous	

avons	développé	un	outil	bio-informatique	semi-automatisé	permettant	de	discriminer	

les	 variants	 d’intérêt	majeur	 à	 partir	 des	 résultats	 bruts	 de	 séquençage.	 Par	 la	 suite,	

nous	nous	sommes	 intéressé	à	 l’architecture	génétique	de	 l’HHC	en	analysant	tous	 les	

gènes	 connus	 de	 la	 maladie.	 51%	 des	 patients	 présentent	 au	 moins	 une	 mutation	

pathogène	 dans	 un	 gène	 préalablement	 identifié	 du	 CHH,	 et	 dans	 15%	 des	 cas,	 on	

observe	la	présence	d’au	moins	deux	gènes	distincts	mutés	(i.e.	oligogénisme).	L’analyse	

génétique	 des	 patients	 présentant	 uniquement	 un	 retard	 pubertaire,	 forme	 la	 plus	

commune	de	déficience	en	gonadolibérine,	n’a	pas	permis	d’observer	une	architecture	

génétique	 similaire	 au	 HHC.	 Une	 approche	 expérimentale	 a	 complété	 notre	 stratégie	

bio-informatique	 en	 se	 focalisant	 sur	 les	 gènes	 codant	 pour	 des	 protéines	 à	 domaine	

Fibronectine-III,	ces	derniers	étant	particulièrement	 importants	pour	 la	migration	des	

neurones	 à	 gonadolibérine.	 Dans	 ce	 sens,	 nous	 avons	 identifié	 et	 caractérisé	 des	

mutations	 ‘’perte-de-fonction’’	 au	 sein	 des	 gène	 du	 récepteur	 DCC	 et	 de	 son	 ligand,	

Netrin-1.	La	dernière	partie	de	notre	étude	porte	sur	l’identification	de	nouveaux	gènes	

candidats	 potentiellement	 impliqués	 dans	 l’HHC	 à	 partir	 d’analyses	 familiale	 et	 de	
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population.	Nous	avons	identifié	une	mutation	spontanée	(de	novo)	dans	le	gène	SMC3	

chez	un	patient	atteint	conjointement	d’un	syndrome	de	Kallmann	(HHC	et	anosmie)	et	

d’un	syndrome	de	Cornelia	de	Lange	(CdLS,	une	maladie	rare	entrainant	des	altérations	

du	 développement	 cérébral).	 Le	 gène	 SMC3	 est	 connu	 pour	 être	 impliqué	 dans	 la	

physiopathologie	 du	 syndrome	 CdLS,	 et	 code	 pour	 une	 protéine	 du	 complexe	 de	 la	

cohésine	 qui	 contrôle	 différents	 processus	 cellulaires	 dont	 la	 régulation	

transcriptionnelle.	 Nous	 avons	 également	 identifié	 un	 hypogonadisme	

hypogonadotrope	 chez	 plusieurs	 patients	 CdLS,	 suggérant,	 pour	 la	 première	 fois,	 une	

association	entre	ces	deux	syndromes.	
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Introduction	

	

Understanding	 genetic	 causes	 of	 rare	 diseases:	 strategies	 and	

methods		

	

Human	genetics:	from	genomic	to	post-genomic	era	

Human	 genetics	 addresses	 a	 complicated	 and	 exciting	 challenge	 in	 modern	

science	–	discovering	the	molecular	bases	underlying	phenotypes.	Focusing	on	disease,	

many	successful	findings	were	achieved	in	the	last	decades	linking	rare	DNA	sequence	

changes	 (i.e.,	 variants)	 to	 severe	 phenotypes.	 Genomic	 variants	 can	 range	 from	 large	

segments	of	the	genome	(e.g.	duplications,	deletions,	translocations,	inversions),	down	

to	insertions/deletions	smaller	than	50	base	pairs	(InDels).	The	smallest	types	of	DNA	

sequence	 change	 are	 single	 nucleotide	 variants	 (SNVs)	 occurring	 in	 one	 of	 the	 3.2	

billion	 bases	 present	 in	 the	 human	 genome.	 Evaluating	 large-scale	 genomic	 changes,	

cytogenetics	helped	 identifying	disease-causing	variations	using	karyotyping	 to	detect	

chromosomal	 imbalances	(e.g.,	 trisomy	of	chromosome	21	in	Down’s	syndrome1),	and	

fluorescence	 in	 situ	 hybridization	 (FISH)	 to	 identify	 inversions,	 translocations,	 copy	

number	 variants	 (CNVs),	 and	 complex	 chromosomal	 aberrations	 such	 as	 ring	

chromosomes	or	mobile	elements	insertions2.		

The	 methods	 used	 to	 identify	 a	 causative	 locus	 in	 a	 disease	 phenotype	 were	

mostly	 linkage	 studies	 and,	 thanks	 to	 Sanger	 sequencing3,	 positional	 cloning.	 This	

helped	 identifying	 the	 genetic	 causes	 of	 severe	 diseases	 such	 as	 Cystic	 Fibrosis4,	
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Duchenne	 Muscular	 Dystrophy5	 or	 Type	 I	 Neurofibromatosis6.	 Sanger	 sequencing	

permitted	to	sequence	an	entire	gene	or	some	targeted	areas	of	the	genome	of	interest,	

often	 prior	 to	 supporting	 evidence	 linking	 the	 candidate	 gene	 to	 the	 disease	 (e.g.,	

sequence	homology	with	known	genes,	animal	models7,	role	in	key	biological	pathways,	

linkage	 studies8).	 However,	 the	 traditional	 paradigm	 of	 “one	 gene,	 one	 phenotype”	

demonstrated	 to	 be	 unfit	 in	many	 circumstances.	 For	 example,	 each	 variant	 does	 not	

influence	 a	 phenotype	 in	 the	 same	way.	 Kallmann	 syndrome	 (KS),	 Pfeiffer	 syndrome	

(PS),	 and	 Osteoglophonic	 dysplasia	 (OD)	 are	 three	 distinct	 diseases	 caused	 by	

heterozygous	mutations	 in	 the	FGFR1	gene.	The	 functional	effects	of	FGFR1	mutations	

on	phenotypes,	however,	are	different:	 loss-of-function	FGFR1	mutations	underlie	KS9,	

while	 gain-of-function	 mutations	 are	 implicated	 with	 PS10,11	 and	 OD12.	 Additionally,	

gain-of-function	 mutations	 in	 OD	 cluster	 within	 a	 highly-conserved	 region	 of	 FGFR1,	

encoding	 for	 extracellular	 juxtamembrane	 and	 transmembrane	 domains	 of	 the	

receptor12,13.	 This	 is	 an	 example	 of	 the	 additional	 layer	 of	 complexity	 in	 genotype-

phenotype	 correlations.	 The	 disadvantages	 of	 Sanger	 sequencing	 were	 primarily	

technical	 as	 well	 as	 on	 the	 study	 design.	 In	 fact,	 sequencing	 large	 genes	 or	 several	

regions	in	extended	cohorts	was	a	challenging	task	in	terms	of	time	and	costs.	

The	 Human	 Genome	 Project	 consortium	 and	 Celera	 Genomics,	 using	 two	

different	 technologies	 derived	 from	 Sanger	 sequencing	 (shotgun	 sequencing	 and	

paired-end	 sequencing),	 achieved	 in	 parallel	 the	 first	 major	 milestone	 of	 human	

genetics	in	21th	century:	the	full	haploid	reference	human	genome14,15.	

However,	 sequencing	 an	 entire	 genome	 required	 enormous	 efforts	 in	 terms	 of	

time	 and	 budget,	 and	 sequencing	 large	 cohorts	 to	 study	 common	 disease	 or	 non-
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Mendelian	disorders	was	impractical.	Few	years	later,	the	release	of	the	first	haplotype	

map	 of	 the	 human	 genome,	 HapMap,	 provided	 for	 the	 first	 time	 information	 on	 one	

million	 single	 nucleotide	 polymorphisms	 (SNPs)	 in	 different	 populations16.	 Array	

technologies	such	as	SNP	arrays	were	critical	to	reach	this	goal,	and	were	widely	used	in	

genome-wide	association	studies	 (GWAS).	GWAS	aim	to	 identify	correlations	between	

common	 SNPs	 (MAF>5%)	with	 traits	 or	 disease	 phenotypes,	 and	 have	 been	 the	 first	

large-scale	genetic	studies	involving	thousands	of	individuals.	Since	the	very	first	GWAS	

study	on	14,000	individuals	with	different	common	disease17,	nearly	2,000	reports	have	

described	~13,000	associations	for	many	traits	or	diseases.	GWAS	led	to	the	successful	

identification	of	SNPs	that	–	although	frequent	in	the	population	–	exert	strong	effects	

for	the	manifestation	of	disease	phenotypes.	One	of	the	most	famous	example	is	PCSK9,	

found	 to	 harbor	 common	 and	 low-frequency	 (MAF<5%	 and	 >1%)	 loss-of-function	

variants	 in	 individuals	 with	 low	 LDL-cholesterol18,19.	 Despite	 the	 initial	 promising	

results,	GWAS	did	not	 result	 as	a	major	 component	 for	 the	discovery	of	new	disease-

causing	loci.	In	fact,	trait-associated	SNPs	in	GWAS	studies	usually	result	–	cumulatively	

–	 in	 small	 effects	 on	 the	 genetic	 heritability,	 with	 modest	 odds	 ratios	 (OR<1.5)20,	

allowing	 to	 explain	 less	 than	 10%	 of	 the	 genetic	 variation	 in	 disease	 and	 complex	

traits21.	

	

Whole-exome	sequencing	as	a	powerful	method	to	identify	disease-causing	loci	

The	 advancements	 in	 sequencing	 technology	 have	 brought	 us	 to	 a	 new	 era	 of	

genetic	 research,	 allowing	 to	 generate	 sequencing	 data	 at	 high	 throughput,	 at	 high	

speed	and	low	costs.	High-throughput	sequencing	(HTS)	allowed	to	directly	sequence	a	
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genome	(or	parts	of	it)	in	larger	cohorts,	shedding	light	on	the	genetic	causes	of	many	

disease	phenotypes.	

HTS	is	the	general	definition	of	several	massively	sequencing	approaches	using	

non-Sanger	 technology.	 Sequences	 can	 derive	 from	 single	 DNA	molecules	 of	 ~10	 kb	

(e.g..,	 PacBio	 SMRT)	 or	 from	 short	 reads	 of	 75-300	 bp	 (e.g.,	 Illumina).	 In	 the	 case	 of	

short	reads,	a	PCR	amplification	step	 is	required	to	achieve	an	high-throughput	set	of	

sequences22.	Sequencing-by-synthesis	(SBS)	technology	was	developed	by	Solexa	(now	

Illumina)	in	2008,	and	uses	fluorescent	dNTPs	as	reversible	terminators,	meaning	that	

each	dNTP	needs	 to	be	 removed	after	each	 round	of	 sequencing.	Before	 fluorophores	

are	removed	with	an	enzymatic	reaction,	a	laser	excites	the	molecules,	producing	four	

different	 signals	 depending	 on	 the	 bound	 nucleotide.	 This	 step	 is	 repeated	 at	 each	

incorporation	 of	 new	 fluorescent-terminated	 nucleotides	 by	 the	 DNA	 polymerase23.	

Compared	 to	 Sanger,	 HTS	 is	 cheaper,	 faster	 and	 requires	 less	 DNA	 input	 to	 provide	

high-quality	results.		

One	 particular	 brand	 of	 SBS	 is	 whole-exome	 sequencing	 (WES).	 Briefly,	 WES	

targets	 the	 protein-coding	 regions	 of	 the	 genome	 (i.e.,	 the	 exons	 of	 protein-coding	

genes),	 which	 account	 for	 only	 1-2%	 of	 the	 genome	 (~30	 Mb)24.	 Prior	 to	 the	 steps	

described	 above,	WES	uses	 a	 hybridization	 step	 in	which	 probes	 representing	 exonic	

sequences	across	the	entire	genome	capture	the	target	exons.	Since	its	first	successful	

use	 in	Miller	 syndrome25,	WES	has	become	a	 cost-effective	methodology	 to	 study	 the	

genetic	causes	underlying	Mendelian	diseases.	In	fact,	the	exponential	progress	of	HTS	

technologies	 is	causing	a	substantial	decrease	 in	 the	costs	of	WES	analysis26,	allowing	

researchers	 to	 screen	 larger	cohorts	of	patients	with	high	quality	data	 (82%	of	genes	
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are	covered	for	at	least	the	90%	of	bases	called)27.	Although	whole-genome	sequencing	

(WGS)	provides	for	a	full	mutational	spectrum,	WES	is	still	considered	as	the	first	choice	

because	 of	 its	 more	 affordable	 costs	 and	 higher	 mean	 coverage28.	 In	 relationship	 to	

Mendelian	genetic	disorders,	WES	is	the	most	used	technology	as	it	has	been	estimated	

that	85%	of	 the	 causative	 loci	 for	Mendelian	diseases	 reside	 in	 coding	and	 functional	

regions	of	the	genome29,30.	However,	this	estimate	is	likely	biased,	as	exons	of	protein-

coding	 genes	 have	 been	 the	 most	 prioritized	 regions	 in	 genetic	 studies.	 One	 major	

limitation	 of	 WES	 is	 the	 lack	 of	 a	 full	 mutational	 landscape	 that	 includes	 larger	

insertions/deletions	 (CNVs),	 chromosomal	 translocations/inversions,	 as	 well	 as	 the	

non-coding	regions	of	the	genome,	critical	for	transcriptional	regulation31.	WGS	has	also	

been	 demonstrated	 to	 perform	 better	 than	WES	 in	 uniform	 coverage	 and	 to	 provide	

higher	quality	variants	in	the	exonic	regions	of	the	genome32.	Thus,	in	order	to	describe	

the	 full	 picture	 of	 genomic	 variation,	 WGS	 is	 considered	 the	 most	 appropriate	

technology	to	be	performed.	

The	 technological	 advancements	 in	 DNA	 sequencing	 resulting	 from	 HTS	 now	

allow	 researchers	 to	 delve	 deeper	 into	 the	 complex	 genetic	 architecture	 underlying	

disease,	 involving	 cis-	 and	 trans-acting	 modifiers,	 epigenetic	 factors,	 and	 oligogenic	

inheritance	 (i.e.	 more	 than	 one	 mutated	 gene	 in	 the	 same	 individual).	 Specifically,	

oligogenicity	 has	 been	 observed	 in	 several	 heterogeneous	 genetic	 disorders	 such	 as	

Bardet-Biedl	 syndrome	 (BBS)33,	 retinitis	 pigmentosa34,	 amyotrophic	 lateral	 sclerosis	

(ALS)35,	 syndromic	 Hirschprung’s	 disease36,	 and	 atrioventricular	 septal	 heart	 defect	

(AVSD)37.	The	Digenic	Diseases	Database	(DIDA)38	currently	collects	information	on	44	

different	 diseases	 showing	 digenic	 inheritance,	 the	 simplest	 form	 of	 oligogenic	
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inheritance.	In	these	instances,	it	is	clear	that	oligogenicity	helps	to	explain	the	variable	

phenotypes	observed	across	and	within	families,	previously	explained	with	the	deus	ex	

machina	concepts	of	incomplete	penetrance	and	variable	expressivity39.	

	
	

Congenital	 hypogonadotropic	 hypogonadism	 –	 clinical	 and	 genetic	

heterogeneity	

	

CHH	is	a	rare	and	complex	form	of	GnRH	deficiency	

Fertility	in	mammals	is	controlled	by	the	hypothalamic-pituitary-gonadal	(HPG)	

axis	 and	driven	within	 the	hypothalamus	by	a	 complex	network	of	neurons	 secreting	

gonadotropin-releasing	hormone	 (GnRH).	Once	 secreted	 into	 the	median	eminence	of	

the	hypothalamus,	GnRH	reaches	the	anterior	pituitary	gland	and	triggers	the	release	of	

luteinizing	 and	 follicle-stimulating	 hormones	 (LH	 and	 FSH)	 which	 in	 turn	 act	 in	 the	

gonads	in	order	to	control	sex	steroids	synthesis	and	homeostasis	(Figure	1)40,41.		

GnRH	 neurons	 display	 a	 very	 distinctive	 feature	 as,	 during	 embryonic	

development,	 they	 originate	 outside	 the	 brain,	 in	 the	 olfactory	 placode.	 Once	 fate-

specified,	 GnRH	 neurons	 start	 their	 journey	 from	 the	 olfactory	 placode	 and	 then	

migrate	 along	 the	 olfactory	 axons	 crossing	 the	 cribriform	 plate,	 the	 olfactory	 bulb	 to	

reach	the	hypothalamus	and	start	their	maturation42	(Figure	1).		
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Figure	1.	GnRH	neuron	ontogeny,	migration	and	maturation	processes.	 (From	 Sykiotis	 et	al.,	
2010)	
	
	

Congenital	 hypogonadotropic	 hypogonadism	 (CHH)	 is	 a	 rare	 (1	 in	 4,000)	

congenital	 form	of	 GnRH	deficiency.	 A	male	 predominance	 characterizes	 CHH,	with	 a	

male	to	 female	ratio	of	3-5:143,44,	partially	explained	by	X-linked	recessive	 inheritance	

occurring	only	 in	men45.	Clinically,	CHH	patients	 typically	present	during	adolescence	

with	 absent	 or	 incomplete	 puberty,	 leading	 to	 the	 lack	 of	 secondary	 sexual	

characteristics	(e.g.,	absence	of	body	hair,	small	genitalia,	a	lack	of	breast	development	

and	menstrual	cycle	in	females),	and	infertility.	Serum	levels	of	sex	hormones	are	low	in	

CHH	patients	(testosterone	<3	nmol/L,	LH	<2	UI/L,	FSH	<2	UI/L).		

In	approximately	50%	of	cases,	CHH	is	associated	with	an	absent	or	partial	sense	

of	smell	 (anosmia/hyposmia)	and	 is	 termed	Kallmann	syndrome	(KS).	Patients	with	a	

normal	 sense	 of	 smell	 are	 considered	 to	 be	 normosmic	 CHH	 (nCHH).	 Other	 less	

frequently	 associated	 phenotypes	 are	 craniofacial	 (cleft	 lip/palate44),	 skeletal	



	 20	

(craniosynostosis9,	 osteoporosis46,	 split	 hand/foot	 malformations47),	 neurological	

(synkinesia48,	 hearing	 loss49),	 or	 urogenital	 (bilateral/unilateral	 renal	 agenesis50,	

cryptorchidism51)	 defects.	 Phenotypically,	 CHH	 exhibits	 variable	 expressivity	 and	

reduced	 penetrance	 both	within	 and	 between	 families	 even	when	 carrying	 the	 same	

mutation,52	however	oligogenicity	can	partially	explain	this	spectrum.		

	

The	genetic	etiology	of	CHH:	a	complex	and	yet	unsolved	case	

The	first	gene	implicated	in	CHH	was	ANOS1	(formerly	KAL1),	a	gene	coding	for	

the	 protein	 Anosmin-1,	 an	 important	 factor	 for	 GnRH	 neuron	 migration	 during	

development.	 All	 male	 patients	 with	 mutations	 in	 ANOS1	 are	 diagnosed	 with	 KS,	

indicating	an	almost	full	penetrance	of	ANOS1	mutations	in	hemizygous	state53.	Various	

strategies	have	been	used	to	discover	new	genes	 for	CHH,	such	as	 linkage	analyses	 in	

consanguineous	 families54-56,	 cytogenetic	 tests	 to	 identify	 chromosomal	

abnormalities9,57-59,	 network	 analysis60,	 candidate	 gene	 approach	 via	 Sanger	

sequencing61-70	or,	more	recently,	using	WES54,71.	Mutations	in	many	genes	(n=33)56,72,73	

have	been	directly	linked	to	CHH	(Figure	2).	

	

	
Figure	2.	Timeline	of	discovery	of	genes	implicated	with	CHH.	
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Notably,	despite	the	successful	genetic	discoveries	for	CHH	in	last	20	years,	only	

30-35%	 of	 CHH	 patients	 have	 a	 clear	 genetic	 cause	 underlying	 their	 disease39,60.	

Mutations	 in	 individual	 CHH	 genes	 have	 been	 demonstrated	 to	 be	 inherited	 in	

autosomal	 dominant	 (e.g.	 FGFR19,	 CHD766,	 SEMA3A74),	 autosomal	 recessive	 (e.g.,	

GNRHR63,	KISS154,	TAC375),	and	X-linked	recessive	(ANOS157,	NR0B176)	patterns.	De	novo	

mutations	consistent	with	autosomal	dominant	inheritance	have	also	been	observed	for	

the	FGFR177,78,	CHD779,	SOX1080,	and	FGF881	genes.	However,	 these	monogenic	models	

of	Mendelian	inheritance	do	not	completely	explain	the	variable	phenotypic	expression	

both	 within	 and	 across	 families	 of	 the	 disorder.	 Recently,	 digenic	 and	 oligogenic	

inheritance	has	been	demonstrated	to	at	least	partially	explain	such	differences.	Indeed,	

2.5-7%39,60	 of	 CHH	 patients	 harbor	 mutations	 in	 more	 than	 one	 gene,	 implicating	 a	

cumulative	 effect	 of	 known	 loci	 reportedly	 inherited	 with	 dominant,	 recessive	 or	 X-

linked	modes39,60.		

The	genes	underlying	CHH	participate	in	different	stages	and	networks	in	GnRH	

biology.	 Genes	 involved	 in	 GnRH	 neuron	 fate	 specification65,	 development	 and	

migration57,82	 are	 more	 often	 associated	 with	 KS,	 while	 genes	 implicated	 in	 GnRH	

neuron	homeostasis	and	maturation55,83	and	GnRH	secretion	are	primarily	mutated	 in	

nCHH	 patients63,67.	 However,	 KS	 and	 nCHH	 have	 only	 recently	 been	 considered	 as	

separate	phenotypic	 subgroups	of	CHH.	 In	parallel,	 a	genetic	overlap	between	KS	and	

nCHH	 has	 also	 been	 shown,	 with	 several	 genes	 found	 to	 be	 mutated	 in	 both	

subgroups72.	
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Phenotypic	and	genetic	overlap	of	CHH	with	other	diseases	

As	described	above,	 the	multifaceted	phenotypic	 features	of	CHH	result	 in	high	

genetic	and	clinical	heterogeneity.	The	variable	combinations	of	CHH	with	one	or	more	

associated	 phenotypes	 makes	 the	 genetic	 diagnosis	 of	 patients	 a	 challenging	 task.	

However,	a	 thorough	clustering	of	associated	phenotypes	 in	specific	subgroups	would	

enhance	 the	 diagnostic	 yield	 of	 genetic	 testing	 in	 such	 patients.	 While	 mutations	 in	

ANOS1	are	found	in	5%	of	CHH	patients	overall,	43%	of	patients	with	CHH,	anosmia	and	

synkinesia	have	mutations	 in	ANOS184.	Only	2%	of	CHH	patients	are	reported	to	have	

mutations	in	SOX10,	however	this	increases	to	35%	in	CHH	patients	with	hearing	loss69.	

Similar	frequency	increases	have	been	observed	in	CHH	patients	with	hearing	loss	and	

IL17RD60	or	CHD784	mutations,	or	in	CHH	patients	with	split/hand	foot	malformations	

and	FGFR185	mutations	(Figure	3).	

	

	
Figure	3.	Associated	phenotypes	 clustering	 in	CHH	 increases	 the	diagnostic	yield	 in	genetic	

testing.	
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Additionally,	early	onset	of	obesity	and	hypogonadism	has	been	linked	with	mutations	

in	 LEP,	 LEPR86	 and	 PCSK187.	 Therefore,	 detailed	 phenotyping	 of	 CHH	 individuals	 is	

critical	to	enable	successful	gene	discovery	based	on	phenotypic	clustering.		

The	defining	phenotype	of	CHH,	i.e.	hypogonadotropic	hypogonadism,	has	been	

described	 in	 >80	different	 diseases	 or	 syndromes,	 according	 to	 the	Online	Mendelian	

Inheritance	 in	 Man	 (OMIM)	 database	 (Table	 S1).	 Although	 these	 syndromes	 are	

primarily	characterized	by	phenotypes	not	associated	in	CHH	(e.g.,	mental	retardation,	

cardiac	 defects,	 facial	 dysmorphism),	 the	 common	 feature	 of	 hypogonadotropic	

hypogonadism	might	 represent	 a	 clue	 for	 a	 potential	 genetic	 overlap	 with	 CHH.	 The	

most	common	associated	phenotypes	in	CHH	(e.g.,	hearing	loss,	skeletal	abnormalities,	

cleft	 lip/palate)	 are	 also	 identified	 in	 many	 other	 syndromes,	 thus	 resulting	 in	 a	

complex	mixture	of	phenotypes	that	partially	overlap	with	the	clinical	manifestation	of	

CHH.	 This	 suggests	 that	 another	 type	 of	 phenotypic	 clustering	 of	 higher	magnitude	 –	

targeting	overlapping	syndromes	–	may	also	represent	a	proxy	for	the	identification	of	

overlapping	 genetic	 architecture.	 There	 are	 few	 examples	 of	 how	 overlapping	

syndromes	 led	 to	 the	discovery	of	 important	players	 in	CHH	genetic	 etiology,	namely	

Waardenburg	and	CHARGE	syndromes.	

Waardenburg	syndrome	(WS)	is	characterized	by	hearing	loss	and	pigmentation	

defects	 of	 the	 hair,	 skin	 and	 iris.	 It	 presents	 with	 varying	 severity	 and	 associated	

phenotypes,	defined	as	WS	types	I	to	IV88,89.	WS	type	II	and	IV	are	caused	by	mutations	

in	 SOX10,	 a	 transcription	 factor	 and	 member	 of	 the	 SOX	 family,	 which	 plays	 an	

important	role	in	neural	crest	and	oligodendrocytes	development90.	SOX10	mutations	in	
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WS	are	inherited	in	an	autosomal	dominant	fashion,	with	most	of	them	being	protein-

truncating	 variants	 (PTVs)91,92.	 The	 presence	 of	 olfactory	 bulb	 agenesis	 –	 a	 hallmark	

feature	of	KS	–	is	found	in	88%	of	WS	patients93	led	to	the	screening	of	the	SOX10	gene	

in	 KS	 patients.	 Heterozygous	missense	mutations	were	 found	 in	 8%	 of	 KS	 probands,	

with	the	majority	of	patients	also	presenting	with	hearing	loss69.		

CHARGE	 syndrome	 (coloboma,	 heart	 defect,	 choanal	 atresia,	 retarded	 growth	

and	 development,	 genital	 abnormality,	 and	 ear	 malformation)	 is	 a	 multi-systemic	

disorder	 caused	 by	 mutations	 in	 CHD794,	 a	 large	 protein	 involved	 in	 chromatin	

organization95,	 critical	 for	 neural	 crest	 cell	migration	 during	 development96.	 CHARGE	

patients	 have	 been	 reported	 to	 manifest	 CHH	 key	 phenotypes,	 namely	

hypogonadotropic	 hypogonadism97,	 anosmia98	 and	 olfactory	 bulbs	 agenesis99.	 The	

phenotypic	overlap	between	CHARGE	and	CHH	–	specifically,	KS	–	was	then	shown	to	be	

mirrored	by	a	genetic	overlap,	as	independent	studies	identified	KS	patients	harboring	

disease-causing	mutations	in	CHD766,79,100.	Similar	to	the	differences	in	types	of	SOX10	

mutations	 between	WS	 and	 CHH	 probands,	 CHD7	mutations	 in	 CHARGE	 patients	 are	

primarily	 PTVs,	 while	 heterozygous	 missense	 mutations	 are	 found	 mainly	 in	 KS	

patients101.	 The	 examples	 of	 Waardenburg	 and	 CHARGE	 syndromes	 highlight	 a	

potential	 genotype-phenotype	 correlation	 specifically	 related	 to	 the	 severity	 of	 the	

mutations	 identified.	 Hence,	 the	 identification	 and	 characterization	 of	 overlapping	

phenotypes	 in	 other	 diseases	 represents	 a	 successful	 strategy	 to	 identify	 new	 genes	

implicated	in	CHH.		
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Thesis	aims	

	

CHH	 is	 a	 rare	 disease	 characterized	 by	 a	 complex	 set	 of	 implicated	 biological	

processes	 and	 high	 clinical	 and	 genetic	 heterogeneity.	 This	 poses	 tremendous	

challenges	 to	 investigate	 CHH	 genetic	 architecture	 and	 use	 new	 models	 and	

technologies	to	discover	novel	CHH	genes.	In	2012,	I	joined	Pr.	Pitteloud’s	laboratory	—	

a	team	which	focuses	on	the	clinical	and	genetic	study	of	CHH.	With	my	background	in	

Medical	Biotechnology	and	an	eagerness	to	deepen	my	knowledge	in	human	genetics,	I	

embarked	on	a	 thesis	 in	computational	biology	 to	 investigate	 the	genetic	architecture	

and	 discover	 new	 genes	 involved	 in	 the	 pathogenesis	 of	 CHH	 using	 high-throughput	

sequencing	 techniques.	 Given	 the	multi-disciplinary	 aspects	 of	my	 thesis,	 my	 studies	

were	 co-mentored	 by	 Pr.	 Nelly	 Pitteloud	 (Chief	 of	 Endocrinology,	 Diabetes	 &	

Metabolism,	CHUV)	and	Dr.	Brian	Stevenson	(Senior	Scientist	at	 the	Swiss	 Institute	of	

Bioinformatics	 and	 Vital-IT).	 My	 PhD	 work	 has	 been	 focused	 to	 proposing	 different	

complementary	 approaches	 based	 on	 HTS	 and	 bioinformatics	 to	 study	 the	 genetic	

architecture	of	CHH.	

The	first	objective	was	to	implement	a	bioinformatics	pipeline	to	investigate	the	

genetics	of	congenital	GnRH	deficiency	using	whole-exome	sequencing	(WES)	to	secure	

high-quality	data.	

Next,	 using	 this	 pipeline,	 I	 have	 investigated	 the	 genetic	 architecture	 of	 CHH	

using	 WES	 focusing	 on	 known	 CHH	 loci.	 This	 step	 is	 critical	 in	 order	 to	 define	 the	

proportion	 of	 patients	 with	 known	 genetic	 causes,	 assess	 carefully	 oligogenicity	 –	 a	



	 26	

model	 that	 has	 been	 described	 for	 CHH	 –	 and	 observe	 specific	 genetic	 patterns	 that	

would	guide	 the	 strategies	 for	 the	 identification	of	new	disease-causing	mutations.	 In	

this	project,	I	was	interested	in	assessing	the	genetic	overlap	with	constitutional	delay	

in	puberty,	a	transient	form	of	GnRH	deficiency	that	is	clinically	indistinguishable	from	

CHH	in	adolescence.		

In	order	to	facilitate	the	discovery	of	genes	involved	in	CHH	pathogenesis,	I	have	

then	 developed	 a	 biology-driven	 bioinformatics	 strategy	 using	 relevant	 information	

from	the	known	CHH	loci.	

Finally,	 I	 have	also	explored	unbiased	approaches	 to	 identify	novel	CHH	genes	

applying	“traditional”	and	innovative	genetic	strategies.	I	have	performed	family-based	

analyses	 using	 WES	 coupled	 with	 array-CGH	 in	 CHH	 families	 to	 identify	 mutations	

inherited	 as	de	 novo,	 recessive	 or	 X-linked.	 In	 this	 context,	 I	 have	 also	 tested	 the	

performance	of	rare-variant	association	studies	(RVAS)	to	identify	associated	genes	in	

CHH	patients	vs.	controls.	
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Section	1	

Implementation	of	a	pipeline		

to	investigate	the	genetics	of	CHH		

using	whole-exome	sequencing	

	

Background	and	rationale	

	

The	 high-throughput	 nature	 and	 the	 unprecedented	 possibility	 to	 screen	 all	

protein-coding	 genes	 brought	 by	WES	 showed	 high	 success	 rates	 in	 genetic	 studies.	

Since	the	very	first	use	of	WES	to	find	the	genetic	causes	of	Miller	syndrome25,	hundreds	

of	 genes	 have	 been	 characterized	 in	 various	 rare	 diseases102,	 reaching	 estimated	

“exome	sequencing	solve	rates”	from	25%103,	49%104,	up	to	58%105	of	cases,	depending	

on	 the	 disease	 type	 and	 their	mode	 of	 inheritance	 (dominant,	 recessive	 or	 X-linked).	

However,	publications	highlight	that	targeted	filtering	processes	need	to	be	put	in	place	

in	 order	 to	 deal	 with	 the	 20,000	 to	 50,000	 variants	 identified	 in	 each	 sequenced	

exome105,106.	 Prioritizing	 variants	 by	 means	 of	 quality,	 type	 (protein-truncating,	

nonsynonymous	 and	 splice-site),	 predicted	 deleterious	 effects	 and	 absence	 in	 the	

control	 population	 often	 reduces	 the	 number	 of	 putative	 disease-causing	 variants	 to	

150-500	 per	 proband105.	 Based	 on	 the	 genetic	 architecture	 of	 the	 disease	 of	 interest	

and/or	 the	 cohorts	 studied,	 additional	 targeted	 strategies	 can	 further	 reduce	 the	
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number	of	putative	disease-causing	variants	 to	a	 few,	 facilitating	 the	discovery	of	 loci	

implicated	 with	 the	 disease.	 However,	 before	 embarking	 on	 new	 gene	 discovery	

strategies,	it	is	imperative	to	generate	consistent	and	high-quality	variants	from	the	raw	

reads	produced	by	DNA	sequencing	machines.	

To	do	this,	 I	 implemented	a	semi-automated	bioinformatics	pipeline	to	process	

sequencing	reads,	perform	quality	control,	and	generate	high-quality	variants	in	a	large	

cohort	of	individuals.		
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Methods	

	

Informed	consent	and	phenotyping	

The	subjects	 involved	in	this	study	provided	written	 informed	consent	prior	to	

study	participation.	Prof.	Pitteloud	and	her	clinical	research	team	recorded	phenotypic	

information.	The	diagnosis	of	CHH	was	determined	by	1)	absent	or	incomplete	puberty	

by	 17	 years,	 2)	 low/normal	 serum	 gonadotropin	 levels	 in	 the	 setting	 of	 low	 serum	

testosterone/estradiol	 levels,	 3)	 otherwise	 normal	 anterior	 pituitary	 function,	 and	 4)	

normal	 imaging	 of	 the	hypothalamic-pituitary	 area107.	Olfaction	was	 assessed	by	 self-

report	 and/or	 formal	 testing108.	 When	 possible,	 family	 members	 were	 recruited	 for	

clinical	and	genetic	studies.		

CDGP	patients	were	 referred	 to	 specialist	pediatric	 care	 in	 central	or	 southern	

Finland	for	evaluation	between	1982	and	2004.	All	patients	met	the	diagnostic	criteria	

for	self-limited	CDGP,	defined	as	1)	onset	of	Tanner	genital	stage	II	two	SDs	later	than	

population	average	(i.e.	boys	with	testicular	volume	>3	ml	after	13.5	years	of	age	and	in	

girls	 Tanner	 breast	 stage	 II	 after	 13.0	 years	 of	 age)109.	 Medical	 history,	 clinical	

examination,	and	routine	laboratory	tests	were	performed	to	exclude	chronic	illnesses,	

and	 the	 diagnosis	 of	 CHH	 was	 ruled	 out	 by	 spontaneous	 pubertal	 development	 at	

follow-up.	All	patients	were	followed	until	near-full	pubertal	development	was	attained	

(i.e.	Tanner	stage	4).		

The	primary	control	cohort	used	was	the	“Cohorte	Lausannoise”	(CoLaus)110,	as	

both	 phenotypic	 information	 on	 each	 individual	 and	 raw	 sequencing	 reads	 were	
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available.	 BAM	 alignment	 files	 from	 197	 European	 controls	 from	 the	 1000	 Genomes	

project111,	 downloaded	 from	 the	 ftp	 site	 (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/data)	were	also	utilized.	Finally,	variants	from	the	

60,706	 controls	 of	 the	 Exome	 Aggregation	 Consortium	 (ExAC)112	

(http://exac.broadinstitute.org)	were	also	used	for	allele	frequency	data.	

	

Cohort	description	

The	CHH	cohort	consists	of	183	probands,	with	a	male	to	 female	ratio	of	2.5:1,	

which	 is	 consistent	 with	 previously	 published	 reports72.	 The	 cohort	 includes	 103	

patients	 with	 KS	 (78	 males,	 25	 females),	 77	 with	 normosmic	 CHH	 (50	 males,	 27	

females)	and	3	patients	diagnosed	during	neonatal	period	(all	males).	The	majority	of	

the	 CHH	 probands	 are	 of	 European	 origin	 (86%,	 n=157),	while	 the	 rest	 are	 of	 Asian	

(8%,	n=14),	Middle-Eastern	(4%,	n=7),	mixed	(2%,	n=3)	or	African	(1%,	n=2)	origins.	

Affected	 and	 unaffected	 family	members	 (n=111)	were	 recruited	 for	 the	 study	when	

available.	Familial	inheritance,	defined	as	having	at	least	one	additional	family	members	

with	CHH,	delayed	puberty	or	defects	 in	olfactory	function,	 is	present	 in	37%	of	cases	

(n=67).	 Sporadic	 cases	 comprise	 28%	 (n=52)	 of	 the	 cohort,	 while	 family	 history	 is	

unavailable	 for	 the	 remaining	35%	(n=64)	probands.	 Familial	 cases	 included	22	 trios	

(unaffected	 parents	 and	 affected	 proband),	 10	 quartets	 (a	 trio	 plus	 an	 affected	 or	

unaffected	 sibling),	 and	 2	 larger,	 complex	 families.	 In	 addition,	 there	 are	 17	 pairs	 of	

affected	relatives	(i.e.	affected	siblings	or	affected	parent	and	child)	that	are	used	for	the	

co-segregation	analysis	(see	Chapter	4,	table	6).	The	remaining	cases	in	the	cohort	were	

singletons.		
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The	CDGP	cohort	consists	of	8	singleton	probands	collected	by	Prof.	Pitteloud’s	

clinical	 practice	 (all	males,	 of	European	origin),	 and	64	 singleton	 probands	 (56	males	

and	 8	 females,	 of	 Finnish	 origin)	 obtained	 through	 a	 collaboration	with	 Prof.	 Dunkel	

(Barts	&	the	London	Medical	School,	London).	

Based	 on	 the	 study	 design	 and	 the	 period	 when	 each	 analysis	 has	 been	

performed,	a	different	number	of	subjects	were	studied	(Table	1).	

	

Table	1.	Inclusion	criteria	and	subjects	studied	in	thesis	sections.	

Section	(Analysis)	 Inclusion	criteria	 Subjects	included	

1	 CHH;	cohorts	1-5;	all	ethnicities	 n=183	(probands);	
n=111	(family	members)	

2	
CHH;	cohorts	1-4;	European	 n=116	(probands);	

n=77	(family	members)	

CDGP;	cohorts	1-4;	European,	Finnish	 n=72	(probands)	

3	 CHH;	cohorts	1-4;	all	ethnicities	 n=133	(probands);	
n=85	(family	members)	

4	(Family-based)	 CHH;	cohorts	1-5;	all	ethnicities	 n=183	(probands);		
n=111	(family	members)	

4	(Population-based)	 CHH;	cohorts	1-5;	European	 n=157	

	
	

DNA	preparation	

Subjects’	 DNA	 was	 extracted	 from	 white	 blood	 cells	 using	 PureGene	 kit	

(QIAGEN).	DNA	quantity	and	quality	was	recorded	using	Nanodrop	(ThermoFisher)	and	

samples	 were	 sent	 to	 BGI	 in	 5	 separate	 cohorts	 between	 the	 years	 2011-2016	 to	

undergo	 whole-exome	 sequencing.	 As	 requested	 by	 the	 sequencing	 provider,	 DNA	

quantity	was	≥3	µg	per	sample,	and	quality	was	measured	by	calculation	of	absorption	

via	 spectrophotometry.	 DNA	 was	 sheared	 into	 random	 fragments	 using	 the	 LE220	

instrument	(Covaris),	hybridized	with	exome	capture	probes	(Agilent	SureSelect	V2	for	
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first	cohort,	Agilent	SureSelect	V5	for	all	remaining	cohorts),	and	then	enriched	via	PCR	

reactions.	 Exome	 capture	 libraries	 were	 sequenced	 on	 the	 HiSeq2000	 platform	

(Illumina),	generating	FASTQ	paired-end	files.		

	

Variant	calling	and	filtering	

An	 overall	 schematic	 of	 the	 variant	 calling	 and	 filtering	 process	 is	 depicted	 in	

Figure	 4.	 The	 computations	 were	 performed	 at	 the	 Vital-IT	 (http://www.vital-it.ch)	

Center	for	High-performance	Computing	of	the	SIB	(Swiss	Institute	of	Bioinformatics).	

Raw	sequencing	reads	were	mapped	to	 the	reference	human	genome	(GRCh37)	using	

the	 Burrows-Wheeler	 Alignment	 tool	 (BWA)113	 version	 0.5.7a	 to	 generate	 a	 SAM	

(Sequence	Alignment/Map	 format)	 alignment	 file.	During	 library	preparation	prior	 to	

sequencing,	several	PCR	cycles	are	carried	out	in	order	to	have	a	reasonable	amount	of	

DNA	 to	 sequence.	 However,	 this	 amplification	 step	 can	 introduce	 a	 bias	 due	 to	 the	

presence	of	read	duplicates,	which	may	lead	to	an	overrepresentation	of	certain	alleles	

that	 do	 not	 correspond	 to	 the	 real	 haplotypes.	 To	 avoid	 these	 biases,	 Picard	

(http://broadinstitute.github.io/picard)	MarkDuplicates	 tool	version	1.80	was	used	 to	

mark	 PCR	 duplicates	 in	 the	 SAM	 alignment	 process.	 After	 the	 analysis,	 Picard	

MarkDuplicates	 generates	 a	 duplication	 metrics	 output	 and	 a	 compressed	 binary	

version	 of	 SAM	 alignment	 files	 called	 BAM	 (Binary	 Alignment/Map	 format).	 The	

RealignerTargetCreator	from	the	Genome	Analysis	Toolkit	(GATK)114	version	3.3.0	was	

used	 to	 identify	 noisy	 regions	 around	 InDels.	 A	 set	 of	 known	 reference	 InDels	 from	

dbSNP	release	138	was	integrated	into	the	analysis	to	“train”	the	tool	to	recognize	high	

quality	 InDels.	 IndelRealigner	was	used	to	perform	the	actual	realignment	around	the	
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InDels	 to	 generate	 a	 realigned	BAM	 file.	 GATK’s	BaseRecalibrator	 tool	 applied	 a	 base	

quality	 score	 recalibration	 (BQSR)	 on	 the	 BAM	 alignment	 file,	 taking	 into	 account	

multiple	covariates	such	as	sequencing	chemistry,	base	position	in	the	sequenced	read,	

and	sequence	context.	BaseRecalibrator	used	reference	SNPs	from	dbSNP	version	138	

and	 known	 gold-standard	 InDels	 from	 1000Genomes115	 and	 Mills	 et	 al.116	 datasets.	

Recalibrated	 BAM	 alignments	 were	 then	 used	 for	 variant	 calling	 by	 GATK’s	

HaplotypeCaller	 in	 gVCF	mode,	 an	 intermediate	 step	 that	outputs	 sample-based	gVCF	

files,	 that	 will	 be	 then	 jointly	 used	 for	 multi-sample	 variant	 calling.	 This	 step	 is	

recommended	 in	 large	 cohorts,	 as	 joint	 genotyping	 of	 many	 BAM	 alignment	 files	

requires	unfeasible	amounts	of	memory	and	computing	time.		Every	variant	is	assigned	

with	 a	 Phred-scaled	 quality	 score	 that	 is	 calculated	 as	 -10logE,	 where	 E	 is	 the	 error	

probability117,118.	This	means	that	a	variant	with	Phred-quality	score	of	10	has	a	1	in	10	

or	10%	chance	of	being	a	false	positive,	while	a	Phred-quality	score	of	50	suggests	an	

error	 probability	 of	 1	 in	 100,000	 or	 0.001%,	 inversely	 99.999%	 accuracy.	 SNVs	 and	

InDels	were	called	together,	using	a	Phred-scaled	quality	threshold	for	calling	variants	

of	50.	Any	variant	called	with	a	Phred-scaled	quality	<50	was	flagged	as	“low-quality”.	

Merging	all	 sample-based	gVCF	 files	 resulted	 in	a	multi-sample	raw	VCF	 file.	The	raw	

VCF	 variant	 call	 file	was	 then	 divided	 into	 a	 SNVs-only	 file	 and	 an	 InDels-only	 file	 to	

undergo	a	variant	quality	score	recalibration	step	(VQSR).	VariantRecalibrator	tool	was	

used	 to	 build	 the	 recalibration	 model,	 taking	 into	 account	 HapMap	 phase	 3119	 and	

1000Genomes	OMNI	2.5120	variants	as	true	positives	for	the	SNVs	set,	and	Mills	et	al.116	

variants	 as	 true	 positives	 for	 the	 InDels	 set.	 In	 the	 final	 step,	 recalibrated	 SNVs	 and	

InDels	were	merged	into	a	single	multi-sample	VCF.	
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Quality	check	on	WES	data	

Prior	 to	 downstream	 analysis,	 quality	 control	 (QC)	 on	 the	 set	 of	 exome	

sequences	was	performed	in	order	to	evaluate	for	any	possible	technical	bias.	QC	on	the	

BAM	 alignments	 were	 carried	 out	 using	 Picard’s	 CalculateHsMetrics,	 which	 outputs	

important	metrics	 to	estimate	sample	 reads	and	alignment	quality.	The	percentage	of	

unique	reads	passing	the	vendor	filter	compared	to	the	overall	reads	passing	the	vendor	

filter	should	be	>85%,	and	the	percentage	of	target	bases	reaching	10X	coverage	should	

be	>90%	(Dr.	Keith	Harshmann,	Genomic	Technology	Facility,	University	of	Lausanne,	

personal	 communication).	 PLINK/SEQ	 version	 0.10	 was	 used	 to	 run	 QC	 on	 the	 VCF	

variant	calls,	using	the	i-stats	command	to	generate	sample-based	metrics	including	the	

total	 number	 of	 variants	 (optimal	 range:	 20,000-50,000)	 and	 the	 ratio	 of	

transitions/transversions	(optimal	ratio:	3)121.	

	

Variants	annotation	

Variants	 were	 annotated	 using	 SnpEff	 version	 4.2	 and	 dbNSFP	 version	 3.2	 to	

generate	the	following	information:	1)	allele	frequency	in	1000Genomes,	ESP	and	ExAC	

controls,	2)	predicted	functional	effects	on	missense	variants	using	SIFT	and	PolyPhen-

2,	and	3)	conservation	scores	using	GERP++,	PhyloP	and	PhastCons	algorithms.	Allele	

frequencies	 in	CoLaus	controls	were	directly	calculated	 from	the	VCF	 file	using	an	 in-

house	script.	
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Results	

	

Bioinformatics	pipeline	workflow	

The	 workflow	 of	 the	 semi-automated	 bioinformatics	 pipeline	 to	 process	 WES	

data	is	illustrated	in	Figure	4,	and	detailed	in	the	Methods	section	above.	

	

	
Figure	4.	Workflow	of	 semi-automated	bioinformatics	pipeline	 to	analyze	WES	data	 in	CHH	

patients.	
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A	 low	percentage	of	uniquely	mapped	reads	suggests	an	overrepresentation	of	

PCR	duplicates,	resulting	in	higher	rate	of	false	positives.	There	were	no	samples	with	

low	levels	of	uniquely	mapped	reads,	and	the	majority	of	samples	passed	the	stringent	

quality	 threshold	of	 >85%.	A	nominal	 number	of	 samples	 (8%)	had	 slightly	marginal	

quality	 for	 unique	 reads,	 and	 most	 of	 these	 were	 from	 the	 first	 cohort	 sent	 for	

sequencing	(Figure	5).		

	

 

	
Figure	 5.	 Percentage	 of	 unique	 reads	 passing	 filter	 in	 analyzed	 exomes.	 Percentage	 is	
calculated	on	the	number	of	unique	reads	passing	filter	divided	by	the	number	of	total	reads	passing	
filter.	Samples	are	ordered	in	sequencing	batches,	from	1st	(left)	to	5th	(right).	Red	line	denotes	good	
quality	cutoff.	
	
	

Additionally,	a	striking	difference	of	the	percentage	of	bases	with	coverage	>10	

reads	 (>10X)	 was	 observed	 in	 samples	 from	 first	 cohort	 relative	 to	 the	 remaining	

cohorts.	 However,	 all	 samples	 from	 first	 cohort	 were	 close	 to	 the	 passing	 quality	

threshold	of	90%	(Figure	6).		
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Figure	 6.	 Percentage	 of	 target	 bases	 >10X	 in	 analyzed	 exomes.	 Samples	 are	 ordered	 in	
sequencing	batches,	from	1st	(left)	to	5th	(right).	Red	line	denotes	good	quality	cutoff.	
	
	

Quality	check	on	variant	calls	

All	 samples	 showed	 transitions/transversions	 ratio	 close	 to	 3,	 (median	

2.96±0.04),	a	cutoff	typically	used	in	WES	data121.	Similarly,	all	samples	had	a	number	of	

variants	 in	 the	 accepted	 range	 for	 a	 WES	 study	 (20,000-50,000).	 However,	 a	 lower	

number	 of	 variants	 in	 the	 first	 sequencing	 batch	 of	 34	 samples	 (median	 23,936±555	

variants)	was	observed,	while	samples	from	the	subsequent	four	cohorts	had	~30,000	

variants	(median	30,245±1,059).	

	

Final	list	of	variants	

For	 subsequent	downstream	analyses,	 high	quality	 (GQ>50),	 rare	 (MAF<1%	 in	

ExAC)	coding	and	splicing	variants	(n=92,793)	were	retained	(Table	2).	
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Table	2.	Rare,	high	quality	variants	identified	in	sequencing	cohort.	

Variant	type	 #	of	variants	

Missense	 86,060	
Frameshift	insertion/deletion	 2,666	
Stop	gained	 1,576	
Inframe	insertion/deletion	 1,190	
Splice	acceptor/donor	 1,125	
Start	lost	 125	
Stop	lost	 51	
TOTAL	 92,793	
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Discussion	

	

Bioinformatics	analysis	of	HTS	reads	can	be	described	 in	 four	main	procedural	

tasks:	 1)	 mapping	 reads	 to	 a	 reference	 genome,	 2)	 calling	 variants,	 3)	 annotating	

variants,	 and	 4)	 analyzing	 variants	 according	 to	 the	 strategy	 of	 choice.	 Performing	

genetic	analyses	using	high-throughput	sequencing	data	seems	a	straightforward	task,	

as	many	 bioinformatics	 tools	 can	 process	 the	 large	 amount	 of	 sequences	 to	 correctly	

detect	 variants	 in	 the	 cohort	 of	 interest.	 However,	 many	 sources	 of	 errors	 can	

contribute	to	the	 introduction	of	bias	 in	each	of	these	steps.	Similar	to	other	scientific	

procedures,	 HTS	 can	 suffer	 of	 human	 errors	 during	 samples	 preparation,	 problems	

occurred	during	sequencing,	or	errors	introduced	by	misuse	of	bioinformatics	tools122.		

	 In	 this	project,	bioinformatics	processing	of	raw	sequencing	data	down	to	high	

quality	 variants	 was	 performed	 using	 the	 Best	 Practices	 provided	 by	 the	 Genome	

Analysis	 Toolkit	 framework	 developed	 at	 the	Broad	 Institute,	 USA122.	 The	GATK	Best	

Practices	are	very	popular	 in	studies	 that	make	use	of	HTS,	providing	high	sensitivity	

and	 minimizing	 false	 positives.	 Other	 variant	 callers	 (e.g.,	 SAMtools123	 and	

Freebayes124)	are	also	widely	used	in	human	genetics	studies.	Different	benchmarking	

studies	showed	these	algorithms	to	perform	similarly,	with	minor	differences	in	terms	

of	precision	and	accuracy125,126.	However,	the	BWA-GATK	HaplotypeCaller	pipeline	was	

used	 in	 this	 thesis	 for	 its	 robustness	 in	 calling	both	SNVs	 than	 InDels125.	 It	 is	notable	

that	 the	 same	 pipeline	 implemented	 in	 this	 thesis	 has	 been	 used	 to	 process	 60,706	

individuals	in	the	Exome	Aggregation	Consortium,	the	largest	public	dataset	of	controls	

and	widely	considered	as	the	reference	to	observe	human	variation112.	
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During	 alignment	 and	 variant	 calling	 steps,	 quality	 control	 analyses	 were	

performed	in	order	to	identify	any	discrepancy	at	the	cohort	and	sample	level.	Overall,	

the	WES	 data	 show	 good	 to	 excellent	 quality.	 A	 small	 increase	 of	 PCR	 duplicates	 in	

<10%	 of	 the	 cohort	was	 observed,	 and	 a	 sub-optimal	 number	 of	 bases	 reaching	 10X	

coverage	 in	 all	 samples	 from	 the	 first	 sequencing	 cohort	 was	 noted.	 If	 a	 mutated	

nucleotide	 is	 covered	 by	 less	 than	 10	 reads,	 variant	 callers	 cannot	 estimate	 with	

certainty	 the	 presence	 of	 a	 variant,	 resulting	 in	 variants	 called	 with	 a	 low	 genotype	

quality127.	 This	 might	 explain	 the	 lower	 number	 of	 high-quality	 variants	 in	 samples	

from	first	sequencing	cohort	compared	with	the	other	cohorts.	The	difference	in	terms	

of	quality	observed	in	samples	from	first	cohort	compared	to	others	may	also	be	due	to	

the	 use	 of	 different	 exome	 capture	 probes	 used	 (Agilent	 SureSelect	 V2	 for	 cohort	 1,	

Agilent	 SureSelect	 V5	 for	 all	 remaining	 cohorts).	 Agilent	 exome	 probes	 are	 widely	

considered	 to	 confer	 more	 robust	 and	 consistent	 results	 in	 WES	 studies,	 and	 the	

SureSelect	V5	kit	has	been	shown	to	yield	a	more	complete	coverage	of	genomic	coding	

regions,	higher	read	depth	and	higher	percentage	of	bases	on	target128.	

Prior	 to	 joining	 the	 Pitteloud	 lab,	 no	 bioinformatics	 pipeline	 was	 set	 up	 to	

analyze	HTS	data	in	the	research	group.	In	this	thesis,	a	semi-automated	bioinformatics	

pipeline	 to	 process	 raw	 sequencing	 reads	 from	 whole-exome	 sequencing	 was	

implemented	for	a	large	cohort	of	CHH	patients	and	family	members,	yielding	a	discrete	

number	of	 high-quality	 variants	 that	were	used	 for	 the	 subsequent	 genetic	 studies	of	

this	 thesis	 (Sections	 2-4).	 To	 date,	 ~1,000	 exomes	 have	 been	 processed	 with	 this	

bioinformatics	 pipeline,	 including	 individuals	 from	 other	 studies	 (CoLaus,	 1000	

Genomes)	or	for	parallel	projects	in	the	Pitteloud	lab.	This	has	provided	the	foundation	
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of	 not	 only	 this	 thesis,	 but	 of	multiple	 other	 projects	 completed	 or	 currently	 running	

within	the	department.	 	
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Section	2	

Definition	of	the	genetic	architecture		

of	rare	and	common	GnRH	deficiency	

	

Background	and	rationale	

	

Despite	 extensive	 effort	 by	 the	 scientific	 community,	 a	 full	 description	 of	 CHH	

genetic	 architecture	 is	 still	 missing.	 Little	 is	 known	 about	 a	 possible	 genetic	 overlap	

with	other	diseases	characterized	by	 transient	GnRH	deficiency	as	congenital	delay	of	

growth	and	puberty	(CDGP).	

Pubertal	 timing	 is	 a	 highly	 heritable	 trait	 with	 up	 to	 50-80%	 of	 the	 variance	

explained	 by	 genetic	 factors129.	 Congenital	 delay	 of	 growth	 and	 puberty	 (CDGP)	 and	

CHH	 are	 part	 of	 the	 same	 clinical	 spectrum,	 one	 being	 characterized	 by	 transient	

(CDGP)	and	the	other	by	congenital	GnRH	deficiency	(CHH)130,131.	Interestingly,	a	higher	

than	expected	proportion	(10%)	of	family	members	of	CHH	probands	report	a	history	

of	 delayed	 puberty130,	 compared	 to	 2.5%	 in	 the	 general	 population132.	 Reversal	 of	

hypogonadotropic	hypogonadism	in	CHH	patients	after	discontinuing	hormone	therapy	

also	points	to	a	clinical	overlap	between	the	two	entities133.	In	contrast	to	CHH,	CDGP	is	

a	 common	 disease	 and	 little	 is	 known	 about	 its	 genetic	 etiology.	 Currently,	 the	

differential	 diagnosis	 between	 CHH	 and	 CDGP	 during	 early	 adolescence	 remains	
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challenging,	as	both	diseases	present	with	isolated	delay	in	puberty.	Further,	there	are	

no	specific	biochemical	markers	to	accurately	differentiate	these	two	disorders134.	

	 Genome-wide	association	studies	(GWAS)	evaluating	common	and	rare	variants	

in	 the	 timing	 of	 puberty	 identified	 significant	 associations	 with	 hundreds	 of	 loci,	

including	 regions	 near	 or	 within	 ANOS1,	 TACR3,	 LEPR,	 and	 PCSK1	—	 4	 known	 CHH	

genes.	 Taken	 together,	 these	 loci	 account	 for	 <3%	 of	 the	 variance	 in	 age	 of	 puberty	

onset135-137.	 In	 view	 of	 the	 possible	 overlap	 between	 the	 pathophysiology	 of	 delayed	

puberty	and	conditions	of	GnRH	deficiency,	several	studies	have	searched	for	variants	

in	 CHH	 genes	 in	 self-limited	 CDGP	 cohorts.	 A	 homozygous	 partial	 loss-of-function	

mutation	 in	GNRHR	was	 found	 in	 two	brothers,	 one	with	CDGP	and	one	with	CHH138,	

and	 an	 additional	 heterozygous	 mutation	 was	 found	 in	 one	 male	 with	 self-limited	

CDGP.139	Of	 50	CDGP	patients	 investigated	 for	 sequence	 changes	 in	TAC3	 and	TACR3,	

only	one	variant	 in	a	single	patient	was	found	in	the	 latter	gene140.	However,	a	recent	

study	 screening	 21	 CHH	 genes	 in	 a	 CDGP	 cohort	 (n=56)	 found	 putative	 pathogenic	

mutations	 in	 14%	 of	 patients130.	 A	 recent	 study	 identified	 variants	 of	 intermediate	

frequency	(MAF<2.5%)	in	IGSF10	gene	in	11%	of	CDGP	probands141.	 IGSF10	is	a	 large	

protein	 that	 is	 part	 of	 the	 immunoglobulin	 superfamily,	 and	 appears	 to	 have	 a	

developmental	role	in	GnRH	neuron	migration.	In	the	same	study,	IGSF10	was	found	to	

be	mutated	 in	10%	of	CHH	patients141,	 further	 supporting	 the	hypothesis	 of	 a	 partial	

genetic	overlap	between	CHH	and	CDGP.		

In	this	perspective,	I	have	used	WES	(and	the	bioinformatic	pipeline	established	

in	 Section	 1)	 focusing	 on	 known	 CHH	 loci	 to	 investigate	 the	 genetic	 architecture	 of	

congenital	GnRH	deficiency	(CHH)	and	assess	the	possible	genetic	overlap	with	CDGP.	
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Methods	

	

Cohort	description	

The	 study	 cohort	 included	 116	 CHH	 probands	 of	 European	 descent	 (n=61	 KS,	

n=55	nCHH)	with	a	2.5:1	male-to-female	ratio	consistent	with	previous	reports	of	male	

predominance142.	Within	this	cohort,	38%	(n=44)	of	cases	are	familial	(i.e.	CHH,	delayed	

puberty	and/or	anosmia	in	family	members),	while	the	remaining	72	cases	(62%)	are	

sporadic.	The	CDGP	cohort	 consists	of	72	unrelated	probands	with	 self-limited	CDGP,	

and	has	been	previously	described	in	detail143.	

	

Definition	of	genes	to	be	screened	

	CHH	genes	are	defined	as	those	which	met	the	following	criteria:	1)	identified	as	

CHH	 genes	 in	 “Expert	 consensus	 document:	 European	 Consensus	 Statement	 on	

congenital	 hypogonadotropic	 hypogonadism	 –	 pathogenesis,	 diagnosis	 and	

treatment”72,	2)	had	publications	demonstrating	loss-of-function	variants,	3)	had	been	

demonstrated	 to	 be	 expressed	 in	 organs/tissues	 relevant	 for	 GnRH	 biology,	 and	 4)	

covered	by	the	exome	capture	probes.	Twenty-four	genes	met	these	qualifying	criteria	

—	 ANOS1,	 SEMA3A,	 FGF8,	 FGF17,	 SOX10,	 IL17RD,	 AXL,	 FGFR1,	 CHD7,	 HS6ST1,	 PCSK1,	

LEP,	LEPR,	FEZF1,	NSMF,	PROKR2,	WDR11,	PROK2,	GNRH1,	GNRHR,	KISS1,	KISS1R,	TAC3,	

and	TACR3.	 In	addition,	 the	 IGSF10	gene	was	screened	as	 it	was	recently	shown	to	be	

implicated	in	CDGP	and	CHH141.	

	

Variants	filtering	
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Intronic	 variants	within	 +/-	 6	 bp	 of	 exonic	 boundaries	 and	 predicted	 to	 affect	

splicing	 by	 MaxEnt144	 with	 a	 wild-type	 vs.	 mutated	 site	 change	 of	 +/-	 20%	 were	

retained,	 as	 well	 as	 inframe/frameshift	 indels,	 stop-gain,	 and	 missense	 variants	

predicted	 to	 be	 damaging	 by	 SIFT145	 and/or	 PolyPhen-2146	 algorithms.	 Protein-

truncating	 variants	 (PTVs)	 were	 defined	 as	 frameshift,	 stop-gain	 and	 splice	 variants,	

based	on	current	consensus112.	For	the	purpose	of	this	study,	mutations	are	defined	as	

1)	 rare	 (MAF	<1%	 in	ExAC	 controls)	PTVs,	 2)	 rare	missense	 variants	predicted	 to	be	

damaging	 to	protein	 function	by	at	 least	one	 in	silico	algorithm	(SIFT	or	PolyPhen-2),	

and	 3)	 loss-of-function	 variants	 based	 on	 in	 vitro	 studies,	 regardless	 of	 in	 silico	

predictions.		

	

Statistical	analyses	

Statistics	 for	 individual	 and	 oligogenic	 variants	 in	 cases	 vs.	 controls	 were	

performed	using	a	two-tailed	Fisher’s	exact	test.		

Gene-collapsed	 rare	 variant	 association	 study	 (RVAS)	 was	 performed	 using	 a	

burden	test	which	calculates	the	excess	of	rare	alleles	in	cases	compared	to	controls	in	a	

contingency	 table	 similar	 to	 a	 c2	test147.	 Gene-based	 associations	 were	 calculated	 for	

CHH	European	probands	vs.	CoLaus	controls,	as	well	as	for	the	KS	and	nCHH	subgroups	

separately	vs.	CoLaus	controls.	Significant	associations	were	then	validated	in	a	second,	

larger	set	of	controls,	using	33,370	non-Finnish	European	individuals	from	ExAC	using	a	

Fisher’s	exact	test.	Gene-based	allele	frequencies	 in	ExAC	were	calculated	dividing	the	

sum	of	alternate	allele	counts	in	ethnically-matched	samples	by	the	average	of	the	total	

alleles	 observed.	 Statistical	 significance	 in	 gene-collapsed	 RVAS	 was	 defined	 using	
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Bonferroni	 correction,	 dividing	 nominal	 significance	 (0.05)	 with	 the	 number	 of	 tests	

performed	(i.e.,	genes	analyzed,	n=25);	hence,	the	cutoff	to	determine	significance	was	

set	at	p=0.002.	
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Results	

	

CHH	genes	are	mutated	in	51%	of	CHH	probands	

Exome	 sequences	 were	 analyzed	 on	 116	 CHH	 probands	 of	 European	 descent,	

and	59	 (51%)	harbored	rare	variants	 in	19	of	 the	24	CHH	genes	evaluated	 (Figure	7,	

Tables	S2-3).	No	variants	were	identified	in	NSMF,	FEZF1,	PCSK1,	LEP	and	LEPR.	Nearly	

two	thirds	of	familial	CHH	probands	carried	rare	variants	in	CHH	genes	(27/44,	61%),	

while	the	frequency	in	sporadic	probands	was	lower	(32/72,	44%)	(Figure	S2).		

	

	
Figure	7.	Mutation	prevalence	in	CHH	and	control	cohorts.	Histograms	showing	CHH	genes	and	
IGSF10	mutational	prevalence	in	(A)	CHH	probands,	(B)	CoLaus,	and	(C)	ExAC	NFE	controls.	
	
	



	 49	

FGFR1	 and	 CHD7	 were	 the	 most	 frequently	 mutated	 genes	 in	 CHH	 probands	

(Figure	 7),	 and	 both	 were	 statistically	 enriched	 compared	 to	 ExAC	 non-Finnish	

European	 (NFE)	 controls	 (Table	 2,	 Figure	 S1).	 All	 of	 the	 identified	 FGFR1	 and	 CHD7	

variants	 were	 present	 in	 a	 heterozygous	 state	 (Table	 S2).	 In	 addition,	 a	 significant	

enrichment	of	rare	variants	was	observed	for	SOX10,	with	a	prevalence	of	4%	in	CHH	

patients	 (Figure	 7,	 Tables	 3,	 S2).	 As	 previously	 described	 by	 our	 group	 in	 a	 different	

CHH	cohort60,	an	enrichment	of	rare	variants	has	been	confirmed	in	the	FGF8	signaling	

pathway	 (FGFR1,	 FGF8,	 IL17RD,	 FLRT3,	 HS6ST1,	 ANOS1,	 DUSP6),	 present	 in	 22%	

(25/116)	of	CHH	probands.	

	

Table	3.	Percentage	of	mutated	alleles	in	screened	cohorts	in	CHH/CDGP	known	genes,	and	RVAS	results		

in	cases	vs.	controls.	

Gene	

CHH	 KS	 nCHH	 CDGP	*	 CoLaus	
ExAC	
NFE	

%	
mutated	
alleles	

RVAS	
vs.	

CoLaus	

RVAS	
vs.	
ExAC	
NFE	

%	
mutated	
alleles	

RVAS	
vs.	

CoLaus	

RVAS	
vs.	
ExAC	
NFE	

%	
mutated	
alleles	

RVAS	
vs.	

CoLaus	

RVAS	
vs.	
ExAC	
NFE	

%	
mutated	
alleles	

%	
mutated	
alleles	

%	
mutated	
alleles	

ANOS1	 0.9%	 ns	 ns	 1.6%	 ns	 ns	 0.0%	 ns	 ns	 0.0%	 0.0%	 0.6%	

SEMA3A	 1.3%	 ns	 ns	 2.5%	 ns	 ns	 0.0%	 ns	 ns	 0.0%	 0.4%	 0.4%	

FGF8	 0.9%	 ns	 ns	 1.6%	 ns	 0.002	 0.0%	 ns	 ns	 0.0%	 0.0%	 0.1%	

FGF17	 0.4%	 ns	 ns	 0.8%	 ns	 ns	 0.0%	 ns	 ns	 0.0%	 0.0%	 0.1%	

SOX10	 2.2%	 ns	 4.4E-06	 3.3%	 2.8E-04	 7.7E-06	 0.9%	 ns	 ns	 0.0%	 0.1%	 0.1%	

IL17RD	 1.3%	 ns	 ns	 1.6%	 ns	 ns	 0.9%	 ns	 ns	 0.0%	 0.0%	 0.7%	

AXL	 1.7%	 ns	 ns	 0.8%	 ns	 ns	 2.7%	 ns	 ns	 0.7%	 1.0%	 1.6%	

FGFR1	 7.8%	 1.3E-08	 8.5E-14	 9.8%	 1.8E-08	 6.6E-11	 5.5%	 ns	 1.1E-04	 0.7%	 0.5%	 0.7%	

CHD7	 6.9%	 1.6E-07	 2.6E-05	 9.0%	 1.4E-09	 4.2E-05	 4.5%	 1.2E-04	 ns	 0.0%	 0.1%	 2.1%	

HS6ST1	 0.9%	 ns	 ns	 0.8%	 ns	 ns	 0.9%	 ns	 ns	 0.7%	 0.7%	 0.7%	

PROKR2	 3.0%	 ns	 ns	 4.1%	 ns	 ns	 1.8%	 ns	 ns	 0.7%	 1.5%	 1.2%	

WDR11	 0.9%	 ns	 ns	 0.8%	 ns	 ns	 0.9%	 ns	 ns	 0.0%	 1.5%	 1.2%	

PROK2	 0.9%	 ns	 ns	 0.0%	 ns	 ns	 1.8%	 ns	 ns	 0.0%	 0.1%	 0.1%	

GNRH1	 1.3%	 ns	 ns	 0.0%	 ns	 ns	 2.7%	 ns	 ns	 0.0%	 0.1%	 0.2%	
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GNRHR	 3.0%	 ns	 ns	 0.0%	 ns	 ns	 6.4%	 ns	 5.7E-05	 0.0%	 1.5%	 0.9%	

KISS1	 0.9%	 ns	 ns	 0.0%	 ns	 ns	 1.8%	 ns	 0.002	 0.0%	 0.0%	 0.1%	

KISS1R	 0.4%	 ns	 ns	 0.0%	 ns	 ns	 0.9%	 ns	 ns	 0.0%	 0.1%	 0.1%	

TAC3	 0.4%	 ns	 ns	 0.0%	 ns	 ns	 0.9%	 ns	 ns	 0.7%	 0.1%	 0.1%	

TACR3	 2.2%	 ns	 ns	 0.0%	 ns	 ns	 4.5%	 ns	 2.1E-05	 0.0%	 0.7%	 0.3%	

FEZF1	 0.0%	 ns	 ns	 0.0%	 ns	 ns	 0.0%	 ns	 ns	 0.7%	 0.1%	 0.1%	

IGSF10	 9.5%	 ns	 ns	 9.0%	 ns	 ns	 10.0%	 ns	 ns	 5.6%	 8.1%	 5.9%	

ns:	not	significant;	*:	RVAS	results	in	CDGP	vs.	controls	is	not	shown,	as	no	significant	association	was	found.	

	

Shared	and	specific	genetic	patterns	in	KS	and	nCHH	

The	mutational	 spectrum	within	 the	 two	 subgroups	 of	 CHH	 (nCHH,	 n=55;	 KS,	

n=61)	was	examined.	Among	KS	probands,	FGFR1	and	CHD7	were	the	most	frequently	

mutated	genes,	and	together	with	SOX10	are	significantly	enriched	when	compared	to	

controls	(Figure	8A,	Table	3).	Notably,	this	enrichment	was	present	when	evaluating	the	

whole	 CHH	 cohort,	 however	 it	was	more	 robust	 in	 the	 KS	 subgroup	 alone	 (Table	 3).	

Interestingly,	FGF8	showed	a	prevalence	of	1.6%	in	KS	probands	(vs.	0.1%	in	controls)	

yet	 this	 association	was	 not	 evident	 in	 the	 CHH	 cohort	 as	 a	whole	 (i.e.	 KS	 and	nCHH	

together)	 (Table	 3).	 Additionally,	 rare	 variants	 in	 ANOS1,	 SEMA3A,	 FGF17	 and	 FGF8	

were	only	found	in	KS	probands.	

Among	 normosmic	 (nCHH)	 probands,	 FGFR1	 and	 CHD7	 were	 also	 the	 most	

frequently	mutated	genes.	Rare	variants	in	GNRHR	and	TACR3	were	only	found	in	nCHH	

probands	 (7%	 and	 5%,	 respectively)	 (Figure	 8B).	 In	 addition	 to	 an	 enrichment	 for	

variants	in	FGFR1	in	the	nCHH,	which	was	also	seen	in	the	KS	and	entire	CHH	cohort,	a	

statistical	 enrichment	 was	 also	 observed	 for	 variants	 in	 KISS1,	 GNRHR	 and	 TACR3	

within	 the	 nCHH	 population	 vs.	 ExAC	 NFE	 controls.	 Interestingly,	 the	 enrichment	 in	

these	genes	was	not	observed	in	the	KS	and	overall	CHH	cohort	(Table	3).		
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In	 addition	 to	 FGFR1	 and	 CHD7,	 six	 other	 CHH	 genes	 (SOX10,	 IL17RD,	 AXL,	

HS6ST1,	PROKR2	and	WDR11)	were	mutated	in	both	KS	and	nCHH	probands	(Figure	8).	

This	represents	an	increased	genetic	overlap	in	comparison	to	prior	reports72.	Overall,	

these	results	 indicate	both	exclusive	and	shared	genetic	architectures	for	both	KS	and	

nCHH.	

	

	
Figure	8.	Mutation	prevalence	in	KS	and	nCHH	subgroups.	Histograms	showing	CHH	genes	and	
IGSF10	mutational	prevalence	in	(A)	KS	and	(B)	nCHH	probands.	
	
	

Biallelic	variants	(i.e.	homozygous	or	compound	heterozygous	in	the	same	gene)	

were	 found	 exclusively	 in	 nCHH	 probands	 (11%),	 and	 were	 not	 seen	 in	 CoLaus	

(p=2.3x10-6),	CDGP	(p=0.006),	or	in	KS	clinical	subgroup	(p=0.01)	(Figure	9).	
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Figure	 9.	 CHH	 genes	 mutations	 inheritance	 in	 screened	 cohorts.	 Histograms	 showing	
CHH/CDGP	 genes	mutational	 prevalence	 in	 (A)	 CHH,	 (B)	KS,	 (C)	 nCHH,	 (D)	 CDGP	 and	 (E)	 CoLaus	
screened	individuals.	
	
	

Furthermore,	27%	(4/15)	of	genes	mutated	in	nCHH	(GNRHR,	GNRH1,	PROKR2,	

PROK2,	TACR3)	only	exhibited	biallelic	variants,	consistent	with	their	recessive	mode	of	

inheritance	 (Figure	 9C,	 Table	 S3).	 Notably,	 three	 nCHH	 probands	 harboring	 biallelic	

variants	 in	GNRHR	 also	 carried	 additional	 heterozygous	 variants	 in	FGFR1,	CHD7	 and	

WDR11.	

	

Limited	genetic	overlap	between	CHH	and	CDGP	

Exome	 sequencing	 identified	 7%	 (5/72)	 of	 CDGP	 probands	 harboring	 rare	

variants	 in	 CHH	 genes,	 all	 of	 which	 are	 present	 in	 a	 heterozygote	 state	 (Figure	 10).	

Thus,	the	genetic	profile	of	the	CDGP	cohort	more	closely	resembles	the	controls	(rather	

than	 CHH	 probands).	 Among	 the	 six	 identified	 mutations,	 there	 were	 five	 missense	
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variants	 and	 one	 intronic	 variant	 predicted	 to	 affect	 splicing.	 Three	 variants	 (FEZF1	

p.Ile337Lys,	FGFR1	c.190+6G>A,	TAC3	p.His83Pro)	were	not	identified	in	3,307	Finnish	

ExAC	 controls.	 Only	 one	 CDGP	 proband	 harbored	 two	mutated	 genes	 (oligogenicity)	

(1.4%,	p=0.002	vs.	CHH),	a	similar	rate	as	observed	in	controls	(Figure	9D-E,	Table	S4).	

	

	
Figure	 10.	 Mutation	 prevalence	 in	 CDGP,	 CHH	 and	 CoLaus	 individuals.	Histograms	 showing	
CHH	 genes	 and	 IGSF10	 mutational	 prevalence	 in	 CDGP	 probands,	 compared	 to	 CHH	 and	 CoLaus	
(below).	
	
	

Recently,	mutations	in	IGSF10	were	identified	in	10	CDGP	families,	segregating	in	

an	 autosomal	 dominant	 fashion.	 The	 overall	 mutation	 rate	 for	 IGSF10	 was	 13.2%	 in	

CDGP	probands	and	10.2%	in	CHH	probands.	Additionally,	rare	variant	burden	testing	
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showed	 an	 enrichment	 of	 IGSF10	mutations	 in	 CDGP	 probands	 vs.	 controls141.	 In	 the	

present	study,	a	similar	frequency	of	putative	IGSF10	low-frequency	variants	has	been	

found	in	CHH	(14.7%)	and	CDGP	(15.3%)	probands	using	the	criteria	of	Howard	et	al.	

(MAF	 <2.5%	 and	 deleterious	 predictions	 in	 both	 SIFT	 and	 PolyPhen-2)141.	 Notably,	

when	applying	the	criteria	used	in	this	study	a	higher	number	of	CHH	patients	(16.4%)	

harbored	putative	IGSF10	mutations	compared	to	CDGP	(11.1%)	(Figure	10).		

	

Oligogenicity	is	a	common	factor	in	CHH	patients	

Oligogenic	 inheritance	was	present	 in	15%	(17/116)	of	CHH	probands	 (Figure	

11)	 –	 a	 higher	 frequency	 than	 the	 2.5-7%	 observed	 in	 previous	 reports39,60.	 A	

significantly	lower	rate	of	oligogenicity	was	observed	in	CoLaus	controls	(2%,	p=6.4x10-

7).	

Additionally,	 although	monogenic	 inheritance	was	more	 frequent	 in	 KS	 (46%)	

compared	to	nCHH	(25%,	p=0.03),	CDGP	(6%,	p=3.7x10-8)	and	CoLaus	(16%,	p=4.6x10-

7),	 similar	 frequencies	 of	 oligogenicity	 were	 identified	 in	 both	 KS	 (13%)	 and	 nCHH	

(16%)	(Figure	11,	Table	S4).	
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Figure	11.	Oligogenicity	patterns	in	CHH,	CDGP	and	CoLaus.	Histogram	showing	the	frequency	of	
KS,	 nCHH,	 CHH,	 CoLaus	 and	 CDGP	 individuals	 having	 no	 rare	 variants	 in	 CHH	 genes,	 one	 gene	
mutated	or	at	 least	two	genes	mutated	(oligogenicity).	Differences	between	KS,	nCHH	and	CHH	vs.	
CoLaus	 controls	 were	 analyzed	 via	 a	 two-sided	 Fisher’s	 exact	 test.	 p	 <	 0.05	 was	 considered	
significant.	*,	p	<	0.05;	**,	p	<	0.01;	***,	p	<	0.001;	****,	p	<	0.0001.	Not	significant	differences	among	
KS,	nCHH	and	CHH	vs.	CoLaus	are	not	displayed.	
	
	

Among	 possible	 gene	 combinations,	 FGFR1	 with	 CHD7	was	 the	 most	 frequent	

pair	observed	(n=4),	followed	by	FGFR1/IL17RD	and	CHD7/HS6ST1	(n=2)	(Figure	12A).	

When	 available,	 exome	 sequencing	 was	 performed	 on	 the	 family	 members	 of	 CHH	

probands	displaying	oligogenic	 inheritance.	One	KS	proband	(Figure	12B,	Pedigree	1)	

carrying	 both	 CHD7	 (p.Pro369Ala)	 and	 FGFR1	 (c.1430+1delG)	 variants	 had	 two	

daughters	after	receiving	fertility	treatment.	One	of	them	carried	both	variants	and	was	

eventually	diagnosed	with	KS,	while	 the	 second	daughter	was	unaffected	 and	did	not	

harbor	either	of	the	two	changes.	In	Pedigree	2,	three	mutated	genes	(FGFR1	p.Tyr654X,	

CHD7	 p.Leu2806Val	 and	 SOX10	 p.Asp64Val)	 were	 identified	 in	 a	 KS	 proband.	 Both	
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parents	were	deceased,	however	his	KS	brother	could	be	screened	and	was	shown	to	

harbor	 the	 same	FGFR1	 and	 SOX10	mutations.	 There	were	 no	 phenotypic	 differences	

between	the	proband	and	his	sibling,	therefore	the	absence	of	the	CHD7	variant	in	the	

affected	brother	likely	rules	out	CHD7	in	the	etiology	of	KS	for	this	pedigree.	Last,	a	KS	

proband	 was	 identified	 (Pedigree	 3)	 showing	 a	 digenic	 inheritance	 of	 an	 IL17RD	

mutation	 (p.Tyr379Cys)	 from	 his	 anosmic	 mother,	 and	 a	 de	 novo	 FGFR1	 variant	

(p.Gly348Arg).	No	rare	variants	 in	CHH	genes	were	detected	 in	 the	anosmic	 father	or	

the	unaffected	brother.	
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Figure	12.	Most	frequent	oligogenic	combinations	and	examples	in	pedigrees.	(A)	Matrix	showing	
color-coded	 frequencies	 CHH	 genes	 digenic	 combinations.	 (B)	 Available	 pedigrees	 of	 CHH	 probands	
displaying	oligogenic	inheritance.	Circles	denote	females;	squares	denote	males;	arrows	depict	probands;	
WT	denotes	wild-type;	a	diagonal	slash	indicates	subject	is	deceased.	
	
	

When	 assessing	 the	 rare	 variants	 identified	 in	 CHH	 probands,	 more	 than	 half	

(56%,	38/68)	were	not	found	in	the	ExAC	NFE	controls,	and	therefore	are	private.	Also,	

a	 larger	number	of	these	variants	(87%,	59/68)	were	not	seen	in	the	CoLaus	controls	

either,	however	this	larger	frequency	may	reflect	the	smaller	sample	size	of	CoLaus.	The	

presence	 of	 three	 particular	 variants	 in	 controls	 (PROKR2	 p.Leu173Arg,	 GNRHR	
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p.Gln106Arg	 and	 p.Arg206Gln)	 is	 not	 unexpected,	 as	 they	 are	 known	 founder	

mutations148.		

In	 total,	 1,492	 rare	 variants	 were	 observed	 in	 ExAC	 non-Finnish	 European	

controls	(n=33,370),	80	variants	in	18%	of	CoLaus	controls	(72/405),	and	35	variants	

in	 16%	 of	 1000	 Genomes	 European	 individuals	 (32/197).	 However,	 the	 majority	 of	

variants	 in	 CoLaus	 (89%)	 (Figure	 9E)	 and	 1000	 Genomes	 European	 controls	 (90%)	

occurred	in	a	monoallelic	pattern.	Given	the	variant-based	(rather	than	sample-based)	

nature	of	the	ExAC	database,	the	allelic	patterns	in	these	controls	could	not	be	assessed.	

	

Protein-truncating	variants	are	enriched	in	CHH	probands	

Protein-truncating	variants	(PTVs)	are	defined	as	changes	predicted	to	severely	

disrupt	 genes,	 i.e.	 splicing,	 frameshift	 and	 stop	 gain	 variants.	 A	 large	 fraction	 of	 the	

variants	 observed	 in	 CHH	 probands	 were	 PTVs	 (29%)	 while	 the	 frequency	 was	

significantly	 lower	 (5%)	 in	 ExAC	 NFE	 controls	 (p=1.0x10-9).	 Overall,	 18%	 (n=21)	 of	

patients	in	our	cohort	harbored	at	least	one	PTV	in	the	known	CHH	genes.	Specifically,	

the	CHH	cohort	was	enriched	 for	 splice	variants	 in	FGFR1	 (2.6%,	p=1.7x10-4),	 and	 for	

frameshift/stop	 gain	 variants	 in	 FGFR1	 (8%,	 p=6.9x10-13),	 SOX10	 (1.7%,	 p=1.2x10-5),	

and	TACR3	(1.7%,	p=4.9x10-3)	when	compared	to	ExAC	NFE.	

	 A	 recent	 study	 evaluated	 the	 probability	 of	 a	 gene	 being	 intolerant	 to	 PTVs	

(probability	of	being	loss-of-function	intolerant,	pLi)	as	a	method	to	explain	neutral	and	

disease-causing	PTVs	seen	in	the	control	population112.	Genes	with	pLi	scores	≥0.9	are	

defined	as	intolerant,	thus	PTVs	in	these	genes	are	more	likely	to	be	pathogenic.	Within	

the	 CHH	 cohort,	 80%	 of	 PTVs	were	 in	 intolerant	 genes,	 which	 is	 significantly	 higher	
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than	ExAC	controls	(22%,	p=0.002).	Conversely,	the	majority	of	PTVs	in	controls	(60%)	

were	present	in	highly	tolerant	genes	(pLi≤0.1)	(Figure	13).		

	

	
Figure	13.	CHH	patients	are	enriched	with	LoF	mutations	in	LoF-intolerant	genes.	

Frequency	of	LoF	mutations	occurring	in	LoF-intolerant	(orange)	and	in	LoF-tolerant	genes	(blue)	in	
CHH	and	ExAC	NFE.	Intermediate	pLi	scores	are	shown	in	yellow.	
	

Interestingly,	the	vast	majority	of	CHH	genes	showing	to	be	tolerant	to	PTVs	are	

inherited	in	an	autosomal	recessive	mode,	suggesting	the	higher	number	of	PTVs	than	

expected	 in	 controls	 is	 due	 by	 the	 high	 frequency	 of	 asymptomatic	 heterozygous	

carriers	in	the	controls	population.	Similarly,	PTV-intolerant	CHH	genes	are	inherited	in	

autosomal	dominant	mode,	implicating	a	heterozygous	PTV	might	be	sufficient	to	cause	

the	disease	phenotype	(Table	4).	
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ExAC NFE
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Table	4.	CHH	known	genes	and	tolerance	scores	to	PTVs.	

	 Gene	 Inheritance	 pLi	

PT
V	
	

to
le
ra
nt
	

IL17RD	 AD/oligogenic	 0	
TACR3	 AR	 0	
KISS1R	 AR	 0	
PROKR2	 AR	 0	
GNRHR	 AR	 0.01	
TAC3	 AR	 0.04	
NSMF	 AD	 0.05	
WDR11	 AD	 0.07	
PCSK1	 AR	 0.09	
GNRH1	 AR	 0.1	

PT
V	

in
to
le
ra
nt
	

FGF17	 AD	 0.9	
HS6ST1	 AD	 0.91	
SOX10	 AD	 0.91	
FGF8	 AD	 0.93	
ANOS1	 XLR	 0.94	
SEMA3A	 AD	 0.99	
FGFR1	 AD	 0.99	
CHD7	 AD	 1	
LEPR	 AR	 1	

AR:	 autosomal	 recessive;	 AD:	 autosomal	 dominant;	 XLR:	 X-
linked	 recessive.	PROK2,	NR0B1,	FEZF1,	KISS1,	AXL	 genes	 are	
not	shown	as	their	pLI	scores	are	between	0.1	and	0.9.	

	

Furthermore,	 80%	 of	 PTVs	 found	 in	 CHH	 probands	 (16/20)	 are	 heterozygous	

and	 occur	 in	 CHH	 genes	 traditionally	 defined	 as	 being	 inherited	 in	 an	 autosomal	

dominant	mode	(Table	S5).	All	of	the	PTVs	identified	in	CHH	probands	likely	result	 in	

haploinsufficiency,	 as	 they	 do	 not	 lie	 within	 the	 last	 exon	 (or	 in	 last	 50	 bp	 of	

penultimate	exon)	and	are	therefore	likely	to	be	subjected	to	nonsense-mediated	decay	

(NMD)149,150.		

	

Alternative	methods	of	defining	mutations	do	not	affect	results	

In	 order	 to	 assess	 oligogenic	 inheritance,	 a	 MAF	 threshold	 of	 1%	 was	 used,	

together	with	widely-used	algorithms	 to	predict	damaging	effects	 to	protein	 function.	

To	test	whether	these	criteria	were	stringent	enough,	our	data	were	re-analyzed	with	

more	 rigorous	 criteria	 for	 minor	 allele	 frequency	 (<0.1%)	 and	 in	 silico	 functional	
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predictions	for	missense	variants	(deleterious	prediction	by	both	SIFT	and	PolyPhen-2).	

Overall,	only	two	genes	showed	differences	in	the	frequency	or	prevalence	of	mutations	

in	 CHH	 probands	 using	 these	 revised	 selection	 criteria	—	CHD7	 and	PROKR2	(Figure	

S3).	When	a	more	stringent	definition	of	missense	mutations	was	used	the	prevalence	

of	CHD7	mutations	changed	 from	14%	to	9%,	and	the	prevalence	of	PROKR2	 changed	

from	6%	 to	 3%.	 The	 reduction	 in	PROKR2	 prevalence	was	 due	 to	 the	 removal	 of	 the	

p.L173R	founder	mutation,	present	in	four	CHH	probands	and	already	demonstrated	in	

vitro	 to	 be	 loss-of-function151.	 The	 remaining	 CHH	 genes	 were	 not	 significantly	

impacted	by	more	stringent	protein	prediction	or	MAF	criteria.	

	

Identification	of	known	CHH	genes	variants	using	family-based	analyses	

Seven	 known	 CHH	 genes	 gave	 positive	 results	 using	 the	 de	 novo,	 autosomal	

recessive	 and	 X-linked	 inheritance	modes,	 demonstrating	 proof-of-principle	 for	 these	

strategies.	 The	 most	 frequently	 identified	 CHH	 gene	 in	 this	 analysis	 was	 FGFR1,	

harboring	three	de	novo	mutations	in	two	KS	patients	and	one	with	neonatal	diagnosis	

of	 CHH.	 Interestingly,	 the	 two	 KS	 unrelated	 probands	 harbored	 a	 de	 novo	 variant	

occurring	at	the	same	nucleotide	of	the	exon	9	(c.1135G>A,	p.Gly379Arg),	suggestive	of	

the	 presence	 of	 a	 hotspot.	 One	 of	 the	 de	novo	 mutations	 was	 a	 potential	 mosaic,	 as	

suggested	by	its	alternate	allele	ratio	of	26%	in	WES	and	the	uneven	overlapping	peaks	

in	 Sanger	 sequencing	 (Figure	 S4).	 Targeted	deep	 amplicon	 sequencing	using	>5,000X	

coverage	 identified	 a	 similar	 alternate	 allele	 ratio	 (25.2%)	 (data	 not	 shown),	 further	

supporting	 the	 mosaic	 nature	 of	 this	 de	novo	 variant.	 A	 heterozygous	 de	novo	 CHD7	

mutation	 (p.Trp908Arg)	 was	 also	 observed	 in	 a	 KS	 patient	 with	 CHARGE-like	
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phenotypes,	presenting	with	hearing	loss	and	external	ear	anomalies.	This	variant	has	

never	been	observed	in	any	controls	database.		

A	 TACR3	 stop	 gain	 homozygous	 variant	 (p.Trp275X)	 in	 two	 affected	 siblings	

diagnosed	with	nCHH,	while	both	carrier	parents	had	a	history	of	delayed	puberty	but	

no	consanguinity.	This	specific	variant	has	been	identified	in	nCHH	patients	in	previous	

reports75,152,	and	has	been	demonstrated	to	lie	within	a	founder	haplotype	in	Caucasian	

individuals148.		

Lastly	a	private	ANOS1	stop	gained	variant	(p.Tyr630X)	in	a	sporadic	KS	patient	

was	observed,	and	was	inherited	from	his	asymptomatic	mother.		

Given	the	highly	penetrant	nature	of	the	above	genes,	 families	containing	these	

mutations	 were	 not	 utilized	 for	 subsequent	 family-based	 analyses	 for	 new	 gene	

discovery.		
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Discussion	

	

CDGP	 and	 CHH	 are	 part	 of	 a	 continuum	 of	 GnRH	 deficiency,	 ranging	 from	

transiently	 delayed	 to	 a	 complete	 absence	 of	 puberty.	 However,	 it	 is	 challenging	 to	

make	 a	 distinction	 between	 CHH	 and	 CDGP	 in	 adolescent	 patients	 presenting	 with	

delayed	puberty.	In	this	project,	the	genetic	overlap	between	these	two	conditions	was	

investigated	 by	 focusing	 on	 rare	 variants	 in	 known	 CHH	 genes	 and	 IGSF10,	 a	 gene	

recently	 identified	 in	CDGP.	 CHH	and	CDGP	differ	 in	 terms	of	 the	number	of	 patients	

harboring	 mutations	 in	 individual	 CHH	 genes	 (51%	 vs.	 7%),	 as	 well	 as	 the	 overall	

mutational	 load	 (oligogenicity).	 In	 both	 instances,	 the	 CDGP	 probands	 more	 closely	

resembled	 the	 control	 cohort.	 Similar	 frequencies	 of	 IGSF10	 mutations	 in	 CDGP	 and	

CHH	 probands	was	 observed,	 although	 higher	 than	 previously	 reported141.	 However,	

the	 association	 of	 IGSF10	 mutations	 in	 CDGP	 or	 CHH	 relative	 to	 controls	 was	 not	

replicated.	

	 Recent	 GWAS	 studies	 have	 identified	 hundreds	 of	 loci	 associated	 with	 age	 at	

menarche	 in	 females135,137	 and	 voice	 breaking	 in	 males136	 in	 the	 general	 population,	

several	 lying	 close	 to	 or	 within	 CHH	 genes.	 These	 data	 suggest	 a	 genetic	 overlap	

between	CHH	and	CDGP.	However,	GWAS	signals	may	result	 from	intergenic,	 intronic,	

promoters,	 or	 other	 regulatory	 changes	 that	 are	 not	 detected	 by	 exome	 sequencing.	

Therefore,	 our	 results	 in	 CHH	 and	 CDGP	 patients	 would	 therefore	 have	 missed	

pathogenic	mutations	 in	regulatory	regions.	Notably,	a	genome-wide	significant	signal	

in	 the	coding	sequence	of	TACR3	(p.Trp275X)	was	reported	 in	nCHH	probands	 in	 this	

report	 as	 well	 as	 in	 previous	 studies60,75,153.	 Although	 prior	 GWAS	 studies	 have	 not	
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identified	an	association	for	its	ligand	TAC3,	mutations	in	TAC3	in	both	CHH	and	CDGP	

cohorts	 were	 found	 in	 the	 current	 study.	 Further,	 TAC3	 mutations	 were	 previously	

reported	in	CHH	as	well	as	CDGP130.	TAC3	gene	codes	for	neurokinin	B,	a	modulator	of	

GnRH	 secretion	 expressed	 in	 the	 hypothalamus	 together	 with	 kisspeptin	 and	

dynorphin154.	 Combined,	 these	data	 implicate	 the	neurokinin	B	pathway	 in	both	CHH	

and	CDGP.	Larger	studies	examining	pathways	rather	 than	 individual	genes	 identified	

by	GWAS	are	likely	required	to	further	elucidate	the	genetic	overlap	between	CHH	and	

CDGP.		

Using	 HTS	 to	 examine	 a	 larger	 number	 of	 CHH	 genes	 in	 our	 study,	mutations	

were	found	in	51%	of	CHH	cases.	This	is	increased	in	relation	to	prior	reports	of	31%39	

and	 35%60	 respectively.	However,	 roughly	 half	 of	 CHH	probands	 still	 do	 not	 have	 an	

identified	 genetic	 etiology.	 Oligogenic	 inheritance	 is	 present	 in	 15%	 of	 cases	 of	 our	

cohort,	a	higher	frequency	as	compared	to	2.5%	and	7%	shown	in	previous	reports39,60.	

These	results	might	be	in	part	due	to	the	increased	number	of	CHH	genes	screened	in	

our	study.		

A	genetic	overlap	between	KS	and	nCHH	was	 identified,	as	well	as	specific	and	

distinct	 pattern	 of	 mutated	 genes.	 Using	 gene-based	 rare	 variant	 association	 studies	

(RVAS)	on	the	entire	CHH	cohort,	significant	associations	for	FGFR1,	CHD7,	and	SOX10	

were	 found.	 Notably,	 FGFR1	 and	 CHD7	 are	 the	 most	 frequently	 mutated	 genes	

accounting	for	mutations	in	~30%	of	the	entire	CHH	cohort,	while	SOX10	was	mutated	

in	 4.3%	 of	 probands.	 After	 categorizing	 CHH	 for	 KS	 and	 nCHH,	 the	 gene-collapsed	

associations	remained	significant	for	FGFR1	 in	both	subgroups	while	CHD7	and	SOX10	

were	significant	only	 for	KS.	Notably,	a	significant	association	appears	 for	FGF8	 in	KS,	
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while	GNRHR,	TACR3,	KISS1	showed	association	only	in	nCHH.	However,	it	is	important	

to	 stress	 that	 RVAS	 cannot	 represent	 the	 surrogate	 of	 functional	 and	more	 extended	

genetic	studies.	Unidirectional	burden	tests	will	not	be	able	to	find	associations	in	loci	

showing	 low	penetrance	and	variable	expressivity	 -	 even	with	 larger	 cohorts,	 as	 they	

will	 be	mutated	 at	 remarkable	 frequencies	 in	 controls	 as	well.	 An	 example	 of	 this	 is	

KISS1R	 which	 has	 been	 critical	 to	 elucidate	 a	 new	 branch	 of	 GnRH	 biology,	 and	 for	

which	 over	 900	 manuscripts	 have	 been	 published	 in	 the	 last	 13	 years.	 For	 these	

instances,	 complex	mechanisms	such	as	oligogenic	 inheritance,	variants	pathogenicity	

and	 mutational	 hotspots	 would	 be	 the	 “missing	 pieces”	 to	 differentiate	 disease-

associated	 genes	 with	 false	 positives.	 Interestingly,	 a	 recent	 report	 showed	 no	

enrichment	 in	 KISS1	 rare	 variants	 in	 1,025	 GnRH	 deficient	 patients,	 however	 no	

categorization	 for	 subgroups	 was	 used.	 (i.e.,	 patients	 with	 KS,	 nCHH,	 hypothalamic	

amenorrhea	 and	 CDGP)155.	 Conversely,	 when	 analyzing	 patients	 with	 CHH	 and	

cerebellar	 ataxia,	 another	 recent	 study	demonstrated	a	 significant	 enrichment	of	 rare	

variants	 in	 the	 RNF216	 gene	 in	 patients	 vs.	 controls71.	 Combined,	 the	 results	 of	 the	

current	 study	 along	 with	 results	 from	 previous	 studies	 indicate	 the	 importance	 of	

phenotypic	clustering	to	identify	novel	associated	genes60,69,85.	

The	 combination	 of	 mutations	 in	 both	 FGFR1	 and	 CHD7	 occurred	 most	

frequently	 (4	probands).	These	 two	genes	might	play	 coordinated	 roles	during	GnRH	

neuron	 development	 and	 migration,	 as	 CHD7	 regulates	 the	 transcription	 of	 Fgf8,	 a	

major	 ligand	 for	 FGFR1	 in	 GnRH	 neuron	 ontogeny65.	 Both	 FGFR1	 and	 CHD7	 are	

expressed	 in	 relevant	 tissues	 for	 CHH,	 such	 as	 the	 olfactory	 bulb	 and	

hypothalamus156,157.	A	previous	report	also	suggested	 functional	 interactions	between	
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these	 genes,	 as	 CHH	 patients	with	mutations	 in	FGFR1	 and	CHD7	 exhibit	 overlaps	 in	

associated	phenotypes	(cleft	lip/palate,	coloboma	or	ear	anomalies)158.		

One	 notable	 exception	 to	 oligogenic	 interactions	 was	 ANOS1	 –	 which	 was	

inherited	 in	 an	 exclusively	monoallelic	 fashion,	 due	 to	 its	 X-linked	 recessive	mode	 of	

inheritance	and	high	penetrance.	Mutations	in	other	genes	such	as	TAC3,	KISS1,	PROK2,	

and	PROKR2	were	primarily	biallelic,	and	oligogenic	 interactions	were	not	observed	–	

likely	 due	 to	 their	 recessive	 mode	 of	 inheritance.	 Interestingly,	 the	 frequency	 of	

monogenic	 inheritance	 in	 KS	 was	 significantly	 higher	 than	 in	 nCHH.	 To	 date,	 it	 is	

unclear	whether	this	difference	is	due	to	distinct	genetic	architecture	or	that	“missing”	

partners	in	an	oligogenic	inheritance	for	KS	have	yet	to	be	discovered.		

Putatively	 pathogenic	 mutations	 in	 CHH	 genes	 were	 found	 in	 17%	 of	 control	

cohorts,	 which	 at	 first	 glance	 seems	 counterintuitive.	 Importantly,	 oligogenic	

inheritance	was	rarely	found	in	controls	(2%),	supporting	the	model	of	oligogenicity	in	

the	pathogenicity	of	CHH.	Additionally,	many	of	the	putative	heterozygous	mutations	in	

controls	were	found	in	genes	with	an	autosomal	recessive	inheritance,	and	thus	would	

explain	the	lack	of	obvious	reproductive	phenotypes	among	controls.	CHH	and	controls	

differ	markedly	for	protein-truncating	variants	(PTVs)	(29%	versus	5%,	respectively),	

and	the	PTVs	in	controls	were	less	likely	to	be	pathogenic.		

The	goal	of	this	study	was	to	characterize	the	genetic	overlap	of	CHH	and	CDGP,	

screening	 the	 known	 genes	 implicated	 with	 the	 two	 disorders.	 Despite	 having	 full	

exome	data	available	from	a	cohort	of	singleton	patients,	a	parallel	analysis	to	identify	

new	candidate	genes	involved	in	the	pathogenesis	of	CDGP	was	not	taken	into	account.	
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Future	 projects	 will	 aim	 to	 do	 so,	 with	 the	 involvement	 of	 nuclear	 families	 and/or	

siblings	to	increase	the	yield	of	genetic	diagnoses	in	these	patients.	

In	conclusion,	 the	genetic	profiles	of	CHH	and	CDGP	appear	to	be	distinct.	This	

observation	may	facilitate	differential	diagnosis	of	CHH	and	CDGP	in	adolescence	when	

a	clear	and	early	diagnosis	is	critical	to	initiate	timely	induction	of	puberty	in	patients	

with	 CHH.	 A	 genetic	 test	 resulting	 in	 1)	 more	 than	 one	 CHH	 gene	 mutated	

(oligogenicity),	 2)	 hemizygous	 ANOS1	 mutations	 in	 male	 patients,	 or	 3)	 biallelic	

mutations	 in	 genes	 associated	 with	 autosomal	 recessive	 inheritance	 would	 favor	 a	

diagnosis	of	CHH.	This	study	expands	our	understanding	of	the	genetic	architecture	of	

both	 CHH	 and	 CDGP,	 and	 additional	 comprehensive	 studies	 in	 larger	 cohorts	 may	

enable	 genetic	 testing	 to	 inform	 a	 more	 precise	 differential	 diagnosis	 in	 the	 clinical	

setting.		

	 	



	 68	

Section	3	

Biology-driven	identification	of	new	CHH	genes		

	

Background	and	Rationale	

	

The	 complex	 genetic	 architecture	 of	 CHH	 including	 oligogenicity,	 variable	

expressivity	 and	 incomplete	 penetrance,	 constitute	 important	 limiting	 factors	 in	 the	

identification	of	new	CHH	loci	through	WES.	In	this	perspective,	biological	information	

could	be	 instrumental	 to	overcome	 this	 limitation.	Here,	 I	have	used	a	biology-driven	

strategy	based	on	gene	function	of	well-known	CHH	genes.	

Anosmin-1	is	encoded	by	ANOS1,	the	first	gene	reported	to	be	implicated	in	CHH	

with	anosmia	(Kallmann	syndrome,	KS)	which	plays	a	critical	 role	 in	 the	migration	of	

GnRH	neurons	from	the	olfactory	placode	to	the	brain	during	development159.	Anosmin-

1	contains	a	fibronectin	type-III	(FN3)	domain,	an	adhesion	motif	found	in	a	wide	range	

of	 extracellular	 matrix	 proteins160.	 The	 majority	 of	 ANOS1	 mutations	 reported	 in	 KS	

patients	are	located	within	the	FN3	domains	suggesting	a	critical	role	of	these	motifs	in	

GnRH	biology.	Later,	mutations	 in	additional	FN3-domain	encoding	genes	such	as	AXL	

and	FLRT3	were	 identified	 as	 causative	of	 CHH70,60.	Mutations	 in	FN3-encoding	 genes	

were	reported	in	other	human	diseases	associated	with	altered	neuronal	development,	

such	 as	 L1	 syndrome	 caused	 by	 mutated	 L1CAM161.	Other	 genes	 encoding	 for	 FN3	

domains	 proteins	 play	 important	 roles	 in	 GnRH	 neuron	 biology	 in	 murine	 studies.	
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Ephrins	 also	 contain	 FN3	 domains	 and	 are	 ligands	 for	 receptor	 tyrosine	 kinases	

involved	 in	 neuronal	 migration	 during	 early	 development.	 In	 particular,	 Ephrin	 A5	

(EPHA5)	 exhibits	 critical	 functions	 in	 the	 migration	 of	 GnRH	 neurons	 in	 mice162.	

Another	 example	 are	 the	neural	 cell	 adhesion	molecules	 (NCAM1	 and	NCAM2),	which	

contain	FN3	domains	and	directly	guide	GnRH	neurons	through	the	olfactory	axons163.	

In	 combination,	 our	 knowledge	 of	 genes	 encoding	 FN3	 domains	 suggest	 that	

additional	genes	encoding	FN3	domain	proteins	will	be	mutated	in	CHH	+	anosmia	(KS)	

through	their	role	as	guidance	molecules	during	 the	migration	of	GnRH	neurons	 from	

the	olfactory	placode	to	their	final	location	in	the	hypothalamus.		
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Methods	

	

Cohort	description	

The	cohort	consisted	of	133	probands	(73	KS	and	60	nCHH),	including	90	males	

and	43	females,	and	family	members	when	available.		

	

Bioinformatic	filtering	of	rare	variants	

A	 comprehensive	 list	 of	 genes	 (n=175)	 encoding	 for	 FN3	 domains	 (PF00041)	

was	extracted	from	the	Pfam	database	(http://pfam.xfam.org/family/FN3)	and	served	

for	 the	 basis	 of	 the	 subsequent	 filtering	 processes.	 Rare	 (MAF<0.1%)	 PTVs,	 inframe	

InDels,	 and	missense	 variants	 predicted	 to	 be	 deleterious	 in	 SIFT	 and/or	 PolyPhen-2	

were	cross-referenced	with	the	list	of	genes	encoding	for	FN3	domains.	Genes	known	to	

be	 involved	 in	 axon	 guidance	 according	 to	 the	GeneOntology	 database	 (GO:0007411)	

were	 further	 prioritized.	 Additionally,	 candidate	 genes	 were	 prioritized	 using	 OMIM	

database,	 according	 to	 their	 implication	 in	 human	 genetic	 diseases	 characterized	 by	

alterations	 in	 central	 nervous	 system	 neurobiological	 processes	 or	 CHH	 associated	

phenotypes	(i.e.,	sensorineural	hearing	loss,	cleft	palate,	dental	agenesis,	renal	agenesis,	

cerebellar	ataxia,	skeletal	malformations,	mirror	movements).	

	

Human	genetic	studies	of	putative	mutations		
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Mutations	 in	 prioritized	 genes	 were	 confirmed	 by	 Sanger	 as	 previously	

described60.	Segregation	in	available	family	members	was	assessed	and	pedigrees	were	

constructed.		

	

Immunohistochemistry	of	human	brain	tissues		

In	collaboration	with	Paolo	Giacobini,	PhD,	University	of	Lille,	human	fetuses	(10	

weeks	post-amenorrhea	n=2)	were	obtained	 from	voluntarily	 terminated	pregnancies	

with	the	parent’s	written	informed	consent	(Gynecology	Department,	Jeanne	de	Flandre	

Hospital,	 Lille,	 France,	 protocol	 n°:	 PFS16-002).	 The studies on human fetal tissue were 

approved by the French agency for biomedical research (Agence de la Biomédecine, Saint-

Denis la Plaine, France, protocol n°: PFS16-002). Fetuses	 were	 fixed	 by	 immersion	 in	 4%	

paraformaldehyde	 (PFA)	 at	 4°C	 for	 3	 days.	 The	 tissues	 were	 cryoprotected	 in	 30%	

sucrose/PBS	at	4°C	overnight,	embedded	in	Tissue-Tek	OCT	compound	(Sakura	Finetek,	

USA),	 frozen	 in	dry	 ice	and	 stored	at	 -80°C	until	 sectioning.	Frozen	 samples	were	 cut	

serially	at	20	µm	using	a	Leica	CM	3050S	cryostat	 (Leica	Biosystems	Nussloch	GmbH,	

Germany).	

Immunohistochemistry	for	GnRH	was	performed	as	previously	reported	(Casoni	

et	al.,	2016)	using	a	guinea-pig	anti-GnRH	(EH#1018;	1:10000),	produced	by	Dr.	Erik	

Hrabovszky	(Laboratory	of	Endocrine	Neurobiology,	Institute	of	Experimental	Medicine	

of	 the	 Hungarian	 Academy	 of	 Sciences,	 Budapest,	 Hungary)	 and	 previously	

characterized	 in	post-mortem	human	hypothalami164.	Antibodies	against	DCC165	 (Goat	

IgG,	 sc-6535;	 Santa	 Cruz)	 and	 Netrin-1166	 (Monoclonal	 Rat	 IgG2A;	 MAB1109;	 R&D	

System)	 were	 used	 at	 a	 dilution	 of	 1:500.	 Samples	 were	 rinsed	 in	 TBS	 (TRIS	 buffer	
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saline,	 pH	 7.6)	 and	 subsequently	 blocked	 for	 2-hrs	 at	 room	 temperature	 in	 blocking	

solution	(TBS+0.3%	Triton	X-100;	Sigma),	0.25%	BSA	(Bovine	Serum	Albumin;	Sigma)	

and	10%	normal	donkey	serum	(D9663;	Sigma).	Sections	were	incubated	in	a	cocktail	

of	primary	antibodies	(guinea	pig	anti-GnRH,	rat	anti-Netrin-1,	goat	anti-DCC)	diluted	in	

blocking	solution	for	48-hrs	at	4	°C.	Sections	were	then	rinsed	in	TBS	and	incubated	in	a	

cocktail	of	fluorochrome-conjugated	secondary	antibodies	(all	raised	in	donkey;	Alexa-

Fluor	488-,	568-,	647-conjugated	secondary	antibodies;	Molecular	Probes,	 Invitrogen)	

diluted	at	1:400	in	TBS	for	2	hrs	at	room	temperature.	Sections	were	then	rinsed	in	TBS,	

coverslipped	with	Mowiol,	and	imaged	using	an	inverted	laser	scanning	Axio	observer	

confocal	microscope	(LSM	710,	Zeiss;	Imaging	Core	Facility	of	IFR114	of	the	University	

of	Lille	2,	France).		

	

Functional	characterization	of	variants	and	cell	culture	

In	collaboration	with	Justine	Bouilly,	PhD,	CHUV,	site-directed	mutagenesis	was	used	to	

generate	all	variants	using	QuickChange	XLII	Kit	(Stratagene)	and	confirmed	by	Sanger	

sequencing.	 Primers	 flanking	 the	 mutations	 were	 used	 for	 subsequent	 PCR	

amplifications	(5’→	3’).	

CHO	and	COS7	cells	were	grown	in	DMEM-F12	and	DMEM-high	glucose	medium,	

respectively,	 and	 supplemented	with	 10%	 fetal	 bovine	 serum	 (FBS),	 1%	 L-glutamine	

and	antibiotics	(Gibco,	Carlsbad,	CA,	USA)	in	humidified	air	containing	5%	CO2	at	37°C.	

Transient	 transfections	 of	 cells	were	 carried	 out	 using	 FuGENE	6	 reagent	 (Promega),	

according	to	the	Manufacturer’s	protocol.		
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	After	transient	transfection	in	CHO	cells,	protein	expression	of	tagged	wild-type	

and	 mutated	 proteins	 was	 detected	 by	Western	 blotting.	 Briefly,	 cells	 were	 lysed	 in	

RIPA	 buffer	 and	 separated	 with	 8%	 sodium	 dodecyl	 sulphate-polyacrylamide	 gel	

electrophoresis	 (SDS-PAGE),	 followed	 by	 electro-transfer	 onto	 a	 nitrocellulose	

membrane.	 For	 immunoblotting,	 the	membranes	 were	 probed	 overnight	 at	 4°C	 with	

anti-HA	 (Roche)	 and	 anti-V5	 (Invitrogen)	 antibodies	 and	 then	 incubated	 with	

appropriate	infrared	fluorescent	secondary	antibodies	(Licor).	

	Total	 RNAs	 were	 extracted	 from	 CHO	 cells	 after	 transient	 transfection	 using	

Trizol	 reagent	 (Ambion)	 according	 to	 the	 manufacturer's	 recommendations	 and	

processed	for	RT-PCR	as	previously	described167.	

	Cells	 were	 transfected	 with	 plasmids	 encoding	 the	 different	 wild-type	 and	

mutant	 DCCs,	 Netrin-1,	 appropriate	 firefly	 luciferase	 reporters,	 and	 β-Galactosidase	

(internal	control)	in	96-well	plates,	using	the	FuGENE	6	transfection	reagent	(Promega).	

Luciferase	 activity	was	measured	 using	NOVOstar	 (BMG	LABTECH),	 normalized	 to	 β-

galactosidase	activity	and	analyzed	usingSynergy™	Mx	(BioTek).	All	experiments	were	

performed	three	times	in	sextuplicates	and	are	expressed	as	relative	light	units	(RLU).	

	Briefly,	 COS7	 cells	 were	 plated	 in	 24-well	 dishes	 and	 cultured	 in	 DMEM-high	

glucose	supplemented	with	10%	FBS	and	penicillin/streptomycin.	After	24h,	cells	were	

transfected	 with	 1µg	 of	 control	 vector,	 pCMV-hDCC-HA	 WT	 or	 mutants	 using	

Lipofectamine	 2000	 reagent	 (Invitrogen).	 Culture	 media	 was	 removed	 24h	 after	

transfection	 and	 replaced	 by	Netrin-1-V5	 protein	 in	DMEM;	 10%	FBS	 for	 2h	 at	 37°C.	

Cells	were	then	washed,	fixed	5	min	with	4%	PFA,	blocked	using	PBS-10%	goat	serum,	

and	 permeabilized	 with	 0.1%	 triton	 X-100.	 Bound	 Netrin-1-V5	 protein	 was	 detected	
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using	 a	 monoclonal	 primary	 antibody	 (Invitrogen)	 in	 10%	 goat	 serum-PBS	 and	 a	

horseradish	peroxidase	 (HRP)-conjugated	 goat	 anti-mouse	 secondary	 antibody	 in	 1%	

goat	 serum-PBS	 (Thermo	 Fisher).	 HRP	 activity	 was	 revealed	 using	 SigmaFast	 OPD	

peroxidase	 substrate	 (Sigma)	 and	 read	 at	 492	 nm	 using	 a	 microplate	

spectrophotometer.	The	signal	is	calculated	relative	to	protein	concentration.	48h	post-

transfection,	CHO	cells	expressing	WT	or	mutated	DCC	were	treated	with	Netrin-1	WT	

or	 Mock-CM.	 DCC/Netrin-1	 binding	 was	 revealed	 by	 ELISA	 assays	 and	 expressed	 in	

relative	 units.	 Conditioned-media,	 collected	 24h	 after	 transfection	 with	 plasmids	

encoding	 WT,	 mutated	 Netrin-1	 or	 empty	 vector,	 were	 used	 to	 treat	 DCC-WT	

transfected	 CHO	 cells.	 DCC/Netrin-1	 binding	 was	 revealed	 by	 ELISA	 assays	 and	

expressed	 in	 relative	 units.	 CHO	 cells	 were	 transiently	 co-transfected	 with	 Egr1-

luciferase	reporter	and	B-galactosidase	control	plasmid	plus	different	combinations	of	

plasmid	 encoding	 WT	 Netrin-1	 and	 DCC	 mutants	 or	 vice	 versa.	 ERK	 signaling	 was	

observed	as	luciferase	activity	above	baseline,	defined	as	the	activity	observed	with	the	

empty	vector	alone.		

Results	 were	 presented	 as	 mean	 ±	 SEM	 of	 3	 independent	 experiments	 each	

performed	 in	 sextuplicate.	 Statistical	 significance	was	evaluated	with	ANOVA	 test.	P	<	

0.05.	

	

Results	

	

CHH	probands	harbor	rare	variants	in	DCC	and	its	ligand	NTN1	
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Variants	 in	 133	 CHH	 patients	 were	 filtered	 to	 include	 1)	 genes	 encoding	 FN3	

domain-proteins	involved	in	axon	guidance	(GO:0007411),	2)	rare	variants	(MAF<0.1%	

in	ExAC),	and	3)	PTVs,	inframe	InDels	or	missense	variants	predicted	to	be	deleterious	

by	 SIFT	 and/or	 PolyPhen-2.	 Based	 on	 this	 analysis,	 18	 genes	 were	 selected.	 Four	 of	

these	 genes	 –	 including	 ANOS1	 –	 are	 implicated	 with	 human	 neurological	 disorders	

(Table	5).		

Several	 lines	of	evidence	pointed	to	DCC	as	a	putative	novel	gene	 implicated	 in	

CHH:	 1)	 human	 genetic	 studies	 had	 identified	 DCC	 mutations	 in	 large	 kindreds	

exhibiting	synkinesia	(mirror	movements),	a	phenotype	often	associated	with	KS72,168,	

2)	 studies	 have	 demonstrated	 the	 key	 roles	 of	 the	 DCC/Netrin-1	 complex	 in	 axonal	

growth169	and	3)	Dcc	knockout	mice	exhibit	impaired	GnRH	neuron	migration170,171.	

	

Table	5.	Genes	encoding	FN3-domain	proteins	implicated	with	neurological	disorders	in	

OMIM.	

Gene	 Human	Diseases	in	OMIM	 Inheritance	

ANOS1	 Hypogonadotropic	hypogonadism	1	with	or	without	
anosmia	(Kallmann	syndrome	1)	 X-linked	

CNTN2	 Epilepsy,	myoclonic,	familial	adult,	5	 Autosomal	recessive	

DCC	 Mirror	movements	1	 Autosomal	dominant	

L1CAM	 Corpus	callosum	partial	agenesis;	MASA	syndrome;	
Hydrocephalus	with	Hirschprung	disease		 X-linked	recessive	

	
	

A	total	of	 four	heterozygous	DCC	missense	variants	(p.Asn176Ser,	p.Pro645Ser,	

p.Gly649Glu,	 p.Ser876Tyr)	 were	 identified	 in	 the	 cohort.	 Two	 variants	 were	 not	

observed	 in	 ExAC	 controls.	 DCC	 encodes	 for	 Deleted	 in	 colorectal	 carcinoma,	 the	

receptor	 for	 Netrin-1	 involved	 in	 neuronal	 axon	 guidance	 in	 the	 developing	 nervous	

system.	 DCC	 is	 part	 of	 the	 Immunoglobulin	 superfamily,	 and	 has	 critical	 roles	 in	
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inducing	apoptosis	when	it	does	not	bind	its	ligand.	While	only	the	p.Asn176Ser	variant	

maps	to	the	second	Immunoglobulin-like	domain	of	the	protein	–	implicated	in	protein	

stability,	 the	 remaining	 4	 variants	 are	 located	 in	 the	 FN3	 domains.	 Interestingly,	 the	

p.Ser876Tyr	 variant	 maps	 to	 the	 fifth	 FN3	 domain,	 which	 is	 implicated	 in	 the	

interaction	of	DCC	with	its	ligand,	Netrin-1172	(Figure	14).		

	

	
Figure	14.	DCC	variants	located	in	protein	structures	with	conservation	across	species.	
	

Given	 this	 relationship,	 the	 screening	 was	 then	 expanded	 to	 DCC’s	 cognate	

ligand,	NTN1	 and	 one	 heterozygous	 missense	 variant	 was	 identified	 in	 the	 NTR-like	

domain.	The	NTN1	variant	was	absent	from	both	ExAC	and	CoLaus	controls	(Figure	15).	

	

	
Figure	15.	NTN1	variants	located	in	protein	structures	with	conservation	across	species.	
	

Interestingly,	the	proband	harboring	the	p.Thr525Arg	NTN1	variant	also	exhibits	

a	rare	variant	in	DCC	(p.Gly470Asp;	MAF<0.3%).	This	variant	was	also	identified	in	his	

affected	 KS	 brother	 and	 in	 an	 unrelated	 KS	 proband.	 Although	 our	 original	 filtering	
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strategy	for	novel	gene	discovery	included	a	MAF<0.1%,	the	variant	was	kept	because	

of	 digenic	 inheritance.	 All	 rare	 variants	 except	 two	 (DCC	 p.Gly649Glu	 and	 NTN1	

p.Thr525Arg)	were	predicted	to	be	deleterious	by	at	least	one	algorithm	(Table	6).	

	

Table	6.	DCC	and	NTN1	variants	identified	in	CHH	probands.	

	Gene	 		
Amino	acid	

Change	 	

ExAC	

MAF	 	

Deleterious	

predictions	
		

DCC	

		 p.Asn176Ser	 	 0.01%	 	 2/2	 		
		 p.Gly470Asp	 	 0.32%	 	 2/2	 		
		 p.Pro645Ser	 	 0.02%	 	 2/2	 		
		 p.Gly649Glu	 	 private	 	 0/2	 		
		 p.Ser876Tyr	 	 private	 	 2/2	 		

NTN1	 		 p.Thr525Arg	 	 private	 	 0/2	 		

ExAC	 MAF	 was	 calculated	 on	 ethnicity-matched	 controls.	
Deleterious	 predictions	 were	 output	 by	 SIFT	 and	 PolyPhen-2	
algorithms.	

	
	
	
DCC	and	NTN1variants	are	loss-of-function	

Western	blot	analysis	demonstrated	that	protein	expression	was	not	affected	by	

the	mutations	 (data	not	shown).	The	 functional	effects	of	 the	 identified	variants	were	

then	tested	by	evaluating	the	binding	properties	of	DCC	to	 its	 ligand,	Netrin-1168.	Two	

DCC	mutants	(p.Asn176Ser	and	p.Ser876Tyr)	displayed	impaired	binding	to	wild-type	

Netrin-1	 (Figure	 16A),	while	 both	Netrin-1	mutants	 exhibited	 a	 significantly	 reduced	

binding	to	DCC	WT	(Figure	16B).	Finally,	a	transcription	reporter	assay	confirmed	that	

all	DCC	and	Netrin-1	mutants	cause	significant	defects	in	ERK	signaling	(Figure	16C-D)	

—	 a	 signaling	 pathway	 known	 for	 its	 role	 in	 axon	 guidance	 and	 cell	 migration.	

Combined,	 the	 in	vitro	 data	 demonstrate	 that	 the	 rare	 variants	 observed	 in	DCC	 and	

NTN1	are	loss-of-function	mutations.		
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Figure	16.	DCC	and	Netrin-1	variants	are	loss	of	function.	(A)	Analysis	of	Netrin-1	binding	on	the	
mutant	and	WT	DCC	receptor.	(B)	Binding	analysis	of	WT	and	mutant	Netrin-1.	(C,	D)	Transcription	
reporter	assay	of	WT	and	altered	DCC	or	Netrin-1.	Different	 letters	 indicate	significant	differences	
between	groups.	
	
	
Mutations	in	DCC	and	NTN1	are	associated	with	severe	GnRH	deficiency	

In	 total,	 3	 male	 and	 3	 female	 unrelated	 CHH	 probands	 (4.5%)	 harbor	

heterozygous	DCC	and/or	NTN1	mutations	 (Figure	17,	Table	7),	 and	most	 cases	 (5/6)	

exhibit	a	familial	inheritance	pattern.		

	
Table	7.	Clinical	phenotypes	of	CHH	patients	with	heterozygous	DCC	and	NTN1	mutations.	

Family	 Subject	 Diagnosis	
DCC	

variants	

NTN1	
variants	

Sex	 Inheritance	 Additional	phenotypes	
CHH	genes	

variants	

1	 II-1	 KS	 p.Asn176Ser	 -	 M	 Sporadic	 Cryptorchidism,	
micropenis,	hypospadias	

PROKR2	
p.Leu173Arg	

2	 II-1	 KS	 p.Gly470Asp	 -	 M	 Sporadic	 Micropenis	 -	

A B
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(neonatal)	
3	 III-1	 KS	 p.Pro645Ser	 -	 F	 Familial	 -	 -	

4	 II-2	 KS	 p.Gly649Asp	 -	 F	 Familial	 -	

CHD7	
p.Tyr1616Cys	
SEMA3A	

p.Arg66Trp	
5	 II-1	 nCHH	 p.Ser876Tyr	 -	 F	 Familial	 -	 -	

6	 II-1	
II-2	

KS	
KS	

p.Gly470Asp	
p.Gly470Asp	

p.Thr525Arg	
p.Thr525Arg	

M	
M	 Familial	 Cryptorchidism	

Cryptorchidism	 -	

	
	

Notably,	 all	 probands	 had	 absent	 puberty,	 and	 all	 males	 had	 a	 history	 of	

micropenis	with	or	without	cryptorchidism,	a	phenotype	associated	with	severe	GnRH	

deficiency.	The	majority	of	probands	harboring	mutations	 in	DCC	or	NTN1	 (5/6)	have	

KS,	 based	 on	 abnormal	 olfactory	 function.	 This	 includes	 a	 neonatal	 KS	 proband	

(Pedigree	2,	Subject	II-1)	with	unilateral	right	olfactory	bulb	agenesis	on	brain	MRI.	

Previous	 reports	 have	 shown	 a	 reversal	 of	 CHH	 in	 approximately	 10%	 of	

cases173.	However,	no	reversals	were	observed	among	probands	harboring	mutations	in	

DCC	 or	 NTN1.	 Additional	 CHH-associated	 phenotypes	 in	 the	 present	 cohort	 were	

variable,	 including	synkinesia	(n=2),	bilateral	sensorineural	hearing	 loss	confirmed	by	

audiogram	 (n=1)	 and	 mild	 facial	 asymmetry	 with	 unilateral	 auricular	 hyperplasia	

(n=1).	 Three	 of	 the	 6	 probands	 with	 DCC	 or	 NTN1	 mutations	 are	 obese,	 one	 has	

confirmed	 glucose	 intolerance,	 and	 two	 presented	 with	 reduced	 bone	 density	

(osteopenia/osteoporosis).	

Family	members	were	 available	 for	 genetic	 analysis	 in	 five	 cases	 and	 revealed	

asymptomatic	 carriers	 consistent	 with	 reduced	 penetrance	 in	 Pedigrees	 1,	 2	 and	 3	

(Figure	 16).	 Mutations	 in	 other	 CHH	 loci	 in	 addition	 to	 the	 DCC/NTN1	 mutations	

(oligogenicity)	were	 identified	 in	Pedigrees	1,	3,	 and	6	 (Figure	17).	 In	Pedigree	1,	 the	

proband	 and	 the	 unaffected	 brother	 exhibit	 both	 a	 heterozygous	 mutation	 in	 DCC	
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(p.Asn176Ser),	 and	 a	 known	 founder	 loss-of-function	 heterozygous	 mutation	 in	

PROKR2	(p.Leu173Arg)148.	 The	 parents	 are	 asymptomatic	 carriers	 of	 these	 respective	

mutations.	 In	 Pedigree	 3,	 the	 proband	 harbors	 triallelic	 mutations	 in	 CHD7	

(p.Tyr1616Cys)	and	SEMA3A	(p.Arg66Trp)	in	addition	to	DCC	(p.Gly649Glu).	CHD7	and	

SEMA3A	 mutations	 are	 predicted	 to	 be	 deleterious	 in	silico	 (Table	 5)74,174.	 Last,	

oligogenic	combination	of	NTN1	(p.Thr525Arg)	and	DCC	(p.Gly470Asp)	mutations	was	

observed	in	in	two	monozygotic	twins	diagnosed	with	KS	(Pedigree	6).	DNA	from	their	

parents	was	not	available.	
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Figure	17.	DCC	and	NTN1	heterozygous	variants	identified	in	CHH	probands.		
Pedigree	1,	3,	and	6	exhibit	oligogenicity.	
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Netrin-1	 and	 DCC	 are	 expressed	 in	 human	 GnRH	 neurons	 and	 the	 human	 fetal	

olfactory	system	

We	then	wanted	to	further	support	the	biological	role	of	DCC/NTN1	pathway	in	

human	GnRH	biology.	 In	 collaboration	with	Paolo	Giacobini,	PhD	 (University	of	Lille),	

we	evaluated	DCC	and	NTN1	expression	in	GnRH	neurons	and	in	adjacent	tissues	during	

human	fetal	development	(10	gestational	week	(GW)	fetuses)	(Figure	18).	Simultaneous	

triple-immunofluorescence	 experiments	 on	 coronal	 sections	 of	 10	 GW	 fetuses	 (n=2)	

revealed	that	NTN1	and	DCC	are	expressed	in	the	developing	vomeronasal	organ	(VNO)	

(Figure	 18A-C),	 along	 the	 vomeronasal	 nerve	 extending	 from	 the	 VNO	 towards	 the	

forebrain	(Figure	18B,	C),	and	in	GnRH	neurons	(Figure	18D-I).	Moreover,	NTN1	is	also	

expressed	 in	 other	 cell	 types	 belonging	 to	 the	 migratory	 mass	 (Figure	 18F,	 H),	 a	

heterogeneous	 coalescence	 of	 placode-derived	 and	 neural	 crest-derived	 migratory	

cells175.	Expression	of	NTN1	was	detected	also	in	the	olfactory	epithelium	(Figure	18A),	

consistent	with	a	role	of	DCC/Netrin-1	pathway	in	the	migration	of	GnRH	neurons.	
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Figure	 18.	 GnRH,	 DCC	 and	 Netrin-1	 expression	 in	 GW10	 human	 fetus.	 (A)	 Schematic	
representation	 of	 a	 GW10	 human	 fetus	 head	 (sagittal	 view)	 illustrating	 the	 plane	 of	 section	 (red	
dotted	 line)	used	 for	 immunofluorescence.	 (B)	Netrin-1	 (green)	 is	 expressed	 in	 the	VNO.	Netrin-1	
(B)	 and	 DCC	 (red,	 C)	 are	 both	 expressed	 in	 the	 VNO,	 VNN	 and	 in	 cells	 of	 migratory	 mass	
(arrowheads).	(D-F)	Single-optical	confocal	planes	showing	migrating	GnRH	neurons	(white,	D)	co-
expressing	DCC	(E)	and	Netrin-1	(F).	(G-I)	High-power	photomicrograph	of	the	region	indicated	in	
white	box	 (D),	 confirming	 the	co-localization	of	 the	 three	antigens.	OE:	olfactory	epithelium.	VNO:	
Vomeronasal	organ.	Scale	bars:	20	µm.	
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Discussion	

	

WES	 coupled	 with	 a	 bioinformatics	 approach	 to	 prioritize	 FN3-domain	

containing	 proteins	 involved	 in	 axonal	 guidance	was	 used	 to	 identify	 novel	 potential	

loci	 implicated	with	CHH.	This	 approach	was	 successful	with	 identification	of	 loss-of-

function	 mutations	 in	DCC	 and	NTN1,	 which	 encodes	 for	 a	 ligand	 of	DCC.	 In	 total,	 I	

report	 loss-of-function	 heterozygous	mutations	 in	DCC	 and	NTN1	 in	 6	 CHH	probands	

with	prevalence	of	4.5%	in	our	CHH	cohort.		

Several	evidences	point	out	to	NTN1	and	DCC	as	promising	candidate	CHH	genes:	

1)	 Netrin-1	 and	 its	 receptor	 DCC	 play	 a	 critical	 role	 in	 axonal	 guidance	 during	 brain	

development176,177;	 2)	 mouse	 genetic	 studies	 showed	 that	 both	 NTN1	 and	 DCC	 are	

essential	for	GnRH	neuron	migration170,171,178;	3)	DCC	mutations	are	also	implicated	in	

human	 congenital	mirror	movements	 (CMM)168,179,180,	 a	 CHH-associated	 phenotype72.	

DCC	and	NTN1	are	expressed	along	the	GnRH	neurons	migratory	route,	suggesting	an	

analogous	 mechanism	 in	 human	 GnRH	 neuron	 migration	 and	 vomeronasal	 axon	

guidance.	Consistently,	the	majority	of	the	CHH	probands	also	present	with	KS,	which	is	

consistent	with	 the	 role	of	DCC	and	Netrin-1	 in	GnRH	neuron	migration	and	 thus	 the	

pathophysiology	 of	 KS72.	 Notably,	 digenic	mutations	 in	NTN1	(p.Thr525Arg)	 and	DCC	

(p.Gly470Asp)	were	found	in	two	monozygotic	twins	affected	by	severe	KS	associated	

with	cryptorchidism,	suggesting	a	synergistic	effect	of	the	two	variants.	Unfortunately,	

DNA	from	the	parents	was	unavailable	in	this	case.	Interestingly,	two	KS	probands	with	

DCC	loss-of-function	mutations	have	CMM,	a	phenotype	thought	to	be	involved	with	the	

fibers	of	the	corpus	callosum,	and	previously	associated	with	DCC168.	Finally,	I	showed	
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that	DCC	and	NTN1	are	expressed	along	the	GnRH	migratory	pathway	in	human	brain	

development.		

Consistent	 with	 patterns	 seen	 in	 other	 known	 CHH	 genes,	 a	 complex	 genetic	

architecture	 is	 observed	 in	 the	 families	 analyzed	 in	 this	 study.	 Three	 probands	with	

heterozygous	 DCC/NTN1	 mutations	 harbored	 additional	 mutations	 in	 known	 CHH	

genes.	In	some	cases,	heterozygous	DCC	mutations	were	inherited	from	asymptomatic	

parents.	 This	makes	 a	 difficult	 task	 to	 fully	 ascertain	 that	 heterozygous	mutations	 in	

DCC	 or	NTN1	may	 cause	 alone	CHH.	The	genetic	 architecture	of	CHH	 is	 complex,	 and	

oligogenic	 inheritance	of	mutations	 in	 the	known	CHH	genes	 is	 observed.	This	 can	at	

least	 partially	 explain	 the	 low	 penetrance	 and	 variable	 expressivity	 observed	 both	

within	 and	 across	 CHH	 families82.	 In	 particular,	 I	 observed	 oligogenic	 inheritance	

concomitant	with	pathogenic	variants	in	known	CHH	genes.	Digenic	mutations	in	NTN1	

and	DCC	were	 found	 in	two	monozygotic	 twins,	affected	by	severe	KS	associated	with	

cryptorchidism,	 suggesting	 a	 synergistic	 effect.	 Finally,	 based	 on	 the	 incomplete	

penetrance	 and	 the	 clinical	 family	 histories,	 an	 oligogenic	 inheritance	 implicating	 the	

presence	of	mutations	in	unknown	CHH	loci	cannot	be	ruled	out.	

A	recent	report	demonstrated	that,	in	addition	to	the	CHH-associated	phenotype	

of	CMM,	pathogenic	mutations	in	DCC	cause	isolated	absence	of	corpus	callosum	(ACC)	

with	a	complex	phenotypic	variability181.	Similarly,	biallelic	mutations	in	DCC	have	been	

recently	found	in	association	with	a	new	genetic	syndrome	including	HGPPS	(horizontal	

gaze	 palsy,	 scoliosis),	 ACC,	 and	midline	 brainstem	 cleft182.	 The	 severity	 (missense	 vs.	

PTVs)	 and	 inheritance	 (heterozygous	 vs.	 biallelic)	 patterns	 of	 DCC	 mutations	 could	

partially	explain	the	phenotypic	overlap	and	variability	ranging	from	CMM,	ACC,	HGPPS	
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to	 CHH,	 suggesting	 a	 significant	 contribution	 of	 oligogenicity	 and/or	 environmental	

factors.	Together	with	 these	evidences,	 the	results	shown	 in	 this	section	 illustrate	 the	

complexity	of	DCC	mutations	 in	 the	genetics	 architecture	of	human	disorders	of	 axon	

guidance	 and	 stress	 the	 relevance	 of	 taking	 into	 account	 the	 potential	

physiopathological	 consequences	 of	 these	 mutations	 in	 a	 genetic	 counseling	

perspective.	

While	homozygous	Dcc	 knockout	mice	harbor	GnRH	neuron	migration	defects,	

previous	 studies	 have	 reported	 abnormal	 neuronal	 axon	 guidance,	 ataxia,	 and	 absent	

corpus	 callosum	 in	 heterozygous	Dcc	knockout	mice.	 It	 is	 important	 to	 note	 that	 the	

reproductive	system	was	not	assessed	in	Dcc-/-	and	Dcc+/	-	mice	from	these	studies,	and	

therefore	 is	 a	 promising	 avenue	 for	 future	 research.	This	 suggests	 that	 heterozygous	

loss-of-function	mutations	may	be	pathogenic	per	se.		

For	 two	 out	 of	 five	 DCC	 mutations	 (p.N176S	 and	 p.S876Y)	 and	 one	 NTN1	

mutation	 (p.R362C),	 located	 in	 regions	 already	 known	 to	 be	 critical	 for	 structural	

integrity	and/or	for	binding172,183-185,	our	experiments	confirmed	that	these	mutations	

abolish	 Netrin-1/DCC	 interaction.	 Interestingly,	 although	 located	 in	 a	 region	 with	

unknown	function,	T525R	NTN1	mutation	also	displays	a	clear	loss	of	binding	for	DCC,	

suggesting	a	novel	potential	biological	function	of	this	NTR-like	domain.	In	correlation	

with	our	binding	assay	results,	 these	mutations	showed	 loss	of	ERK	signaling	 in	vitro.	

Interestingly,	we	observed	a	similar	ERK	signaling	defect	with	DCC	mutants	along	intact	

binding	 to	Netrin-1,	 in	 line	with	 a	 recent	 report	 in	which	 artificial	DCC	mutants	with	

normal	binding	to	Netrin-1	displayed	defective	signaling183.	

In	 summary,	 I	 report	 loss-of-function	mutations	 in	DCC,	 a	 gene	 encoding	 FN3-
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domain	 protein,	 and	 its	 ligand,	 Netrin-1	 in	 our	 CHH	 cohort.	 The	 prevalence	 of	

NTN1/DCC	mutations	 is	 similar	 to	 another	 FN3-containing	 gene,	ANOS172,	 suggesting	

that	cumulative	prevalence	of	 this	 family	of	genes	 is	about	10%	in	CHH,	equivalent	to	

FGF8/FGFR1.	These	latter	were	reported	as	the	first	genes	to	be	associated	with	both	KS	

and	 nCHH	 with	 a	 prevalence	 of	 10-12%9,51.	 The	 high	 prevalence	 of	 DCC/NTN1	

mutations	in	CHH,	the	impaired	ERK	signaling	observed	with	DCC/NTN1	mutations	and	

the	expression	 in	 the	developing	human	GnRH	system	are	consistent	with	 the	altered	

migration	 of	 GnRH	 neurons	 previously	 observed	 in	DCC	 and	Netrin-1	 knockout	mice	

models170,171,	 and	 provide	 a	 functional	 link	with	 the	 phenotype	 of	 our	 CHH	 patients.	

These	results	further	confirm	the	implication	of	genes	encoding	FN3-domain	protein	in	

the	physiopathology	of	CHH,	KS	 in	particular.	Finally,	 this	study	highlights	 the	clinical	

relevance	of	Netrin-1/DCC	pathway	in	CHH,	confirms	their	essential	role	in	signaling	in	

human	GnRH	biology,	and	constitutes	evidence	for	the	inclusion	of	DCC	and	NTN1	in	the	

list	of	genes	implicated	with	CHH.	

	 	



	 88	

Section	4	

New	CHH	genes	discovery		

with	family-	and	population-based	analyses		

	

Background	and	Rationale	

	

In	Section	2,	the	power	of	WES	to	comprehensively	identify	mutations	in	known	

CHH	genes	was	demonstrated,	which	allowed	 for	an	 improved	characterization	of	 the	

genetic	 architecture	 for	 this	 complex	 disease.	 In	 Section	 3,	 a	 biology-driven	

bioinformatics	analysis	was	employed	to	identify	new	genes	implicated	in	CHH.	In	the	

current	 project,	 I	 wanted	 to	 use	 an	 unbiased	 genetic	 analysis	 to	 uncover	 novel	

genes/pathways	 and	 biological	 processes	 not	 previously	 linked	 to	 CHH	 or	 GnRH	

biology.	

Historically,	 one	 successful	 strategy	 to	 identify	 likely	 causative	 novel	 genes	

associated	with	diseases	has	been	to	identify	and	evaluate	de	novo	variants	in	affected	

individuals186.	De	novo	variants	are	compelling	candidates	to	pursue	when	dealing	with	

rare,	 sporadic	 disorders	 —	 especially	 those	 characterized	 by	 low	 reproductive	

fitness186,187.	In	fact,	as	inherited	changes	are	subjected	to	evolutionary	selection188,189,	

there	 is	a	higher	 likelihood	to	 identify	de	novo	variants	with	deleterious	effects.	While	

the	role	of	de	novo	copy	number	variations	(CNVs)	in	human	diseases	has	been	studied	

for	many	years190,191,	a	comprehensive	role	of	de	novo	SNVs/InDels	 in	severe	diseases	
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has	 only	 recently	 been	 enabled.	 The	 advent	 of	WES	 allowed	 for	 the	 implication	 of	de	

novo	 mutations	 in	 many	 rare	 diseases	 (e.g.	 Schinzel-Giedion	 syndrome192,	 Kabuki	

syndrome193	 and	 autism	 spectrum	 disorders194-196).	 Other	 strategies	 often	 used	 to	

identify	 disease-causing	 mutations	 include	 autosomal	 recessive	 analysis	 —	 the	

targeting	 of	 homozygous	 or	 compound	 heterozygous	 variants	 in	 affected	 individuals	

and	 inherited	 from	 unaffected	 carriers.	 X-linked	 recessive	 analyses	 are	 also	 advised	

when	evaluating	disorders	with	a	predominance	of	affected	male	probands,	given	that	

these	probands	would	inherit	the	disorder	from	their	unaffected	carrier	mothers.	This	

strategy	 has	 been	 successfully	 employed	with	 disorders	 such	 as	 X-linked	 intellectual	

disability	(XLID)197	or	CHH	(ANOS1,	NR0B1)57,76.		

One	 challenge	 to	 studying	 rare	 disorders,	 especially	 those	 that	 impact	

reproductive	fitness	such	as	CHH,	is	the	rarity	of	even	small	families.	Thus,	the	majority	

of	 study	 subjects	 are	 often	 singletons.	 However,	 cohorts	 of	 singletons	 can	 be	 used	 to	

identify	 significant	 enrichments	 of	 individual	 variants	 or	 variants	within	 a	 particular	

gene	 relative	 to	 controls,	 and	 has	 been	 successful	 in	 identifying	 novel	 genes	 in	 rare	

diseases198,199.	 In	contrast	 to	GWAS	studies	 that	utilize	SNP	arrays	 to	discover	genetic	

associations	 for	common	traits,	RVAS	uses	WES	or	WGS	data	 to	 identify	 rare	variants	

with	a	moderate	to	high	deleterious	effect	on	disease	phenotype.	Additionally,	targeting	

rare	 variants	 in	 rare	 diseases	 allows	 RVAS	 to	 require	 samples	 sizes	 2-3	 orders	 of	

magnitude	 smaller	 than	 traditional	 GWAS200	 —	 meaning	 that	 cohorts	 with	 <100	

probands	can	generate	statistically	significant	results201.		
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In	 summary,	 the	 three	 family-based	 and	 one	 population-based	 strategies	 are	

well-suited	 to	 the	 specific	 disease	model	 of	 CHH,	 and	 therefore	 are	 likely	 to	 identify	

novel	genes	associated	with	this	form	of	GnRH	deficiency.	 	
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Methods	

	

Cohort	description	

The	overall	 cohort	 consisted	of	 294	 subjects,	 including	183	probands	 (103	KS,	 77	

nCHH,	3	neonatal	HH)	and	111	 family	members.	Family-based	analysis	 for	novel	CHH	

gene	 discovery	was	 performed	 on	 families	 in	which	 no	 disease-causing	mutations	 in	

CHH	 genes	were	 already	 identified.	 Analysis	 was	 performed	 on	 23	 CHH	 families	 (17	

trios,	 4	 quartets	 and	 2	 complex	 families).	 The	majority	 of	 probands	were	 KS	 (n=16),	

with	 the	 remaining	 probands	 having	 nCHH	 (n=6),	 or	 neonatal	 hypogonadotropic	

hypogonadism	(n=1).		

	

Family-based	analysis	

De	novo	 analysis	 was	 performed	 using	 TrioDeNovo202	 version	 0.04,	 which	 uses	

Phred-scaled	 genotype	 likelihoods	 generated	 by	 GATK’s	 HaplotypeCaller.	 A	 Bayesian	

model	 is	 then	 applied	 to	 each	 variant	 in	 the	 proband	 to	 estimate	 the	 two	 possible	

outcomes:	 1)	 the	 variant	 follows	 the	 Mendelian	 transmission	 (i.e.	 the	 variant	 is	

inherited	by	the	parents),	or	2)	the	variant	does	not	follow	Mendelian	transmission	(i.e.	

the	 variant	 is	 not	 present	 in	 parents,	 and	 therefore	 is	 likely	 to	 be	 de	novo).	 Variants	

which	 met	 the	 following	 criteria	 were	 used:	 1)	 Phred-scaled	 quality	 of	 >50,	 2)	 read	

depth	>8x,	and	3)	MAF	<0.01%	in	ExAC	ethnically-matched	controls.	Variants	in	genes	

known	 to	 show	 a	 high	 number	 of	 false	 positives	 due	 to	 their	 presence	 in	 highly	

polymorphic	genes	or	copy	number	regions203,	and	variants	 in	segmentally	duplicated	

regions204,205	 (identified	 using	 the	 UCSC	 Human	 Genome	 Browser	 “Segmental	 Dups”	
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track,	 https://genome.ucsc.edu/)	 were	 excluded	 from	 analysis.	 Paternity	 was	

confirmed	 using	 all	 exome	 variants	 to	 calculate	 relatedness206	 using	 the	 relatedness2	

function	of	VCFtools207. 

The	 raw	 sequence	 alignment	 files	 (BAM	 files)	were	 visually	 evaluated	 using	 the	

Integrative	Genomics	Viewer	(IGV)208	for	probands	and	their	parents.	De	novo	variants	

were	 considered	 as	 passing	 if	 the	 heterozygous	 variant	 was	 clearly	 visible	 in	 the	

proband	 and	 absent	 in	 both	 parents.	 All	 passing	 de	 novo	 variants	 were	 verified	 by	

Sanger	sequencing	using	previously	described	methods60.	

Autosomal	 recessive	and	X-linked	 recessive	analyses	were	performed	using	 rare	

variants	 (MAF<0.1%)	 with	 genotype	 Phred-scaled	 quality	 scores	 >50.	 Variants	 in	

polymorphic	 genes	 and	 segemental	 duplications	 were	 excluded.	 The	 analysis	 was	

conducted	with	the	GEMINI	(GEnome	MINIng)	version	0.11	software.	Specifically,	 this	

software	 identifies	 variants	which	 are	heterozygous	 in	 unaffected	parents,	 and	 either	

homozygous	 (using	 the	 autosomal_recessive	 function)	 or	 compound	 heterozygous	

(using	 the	 comp_hets	 function)	 in	 affected	 probands.	 Last,	 the	 X_linked_recessive	

function	 filters	 all	 the	 variants	 showing	 “homozygous”	 genotypes	 in	 male	 (i.e.,	

hemizygous)	affected	individuals,	inherited	from	the	unaffected	mother.	

	

Array-CGH	in	CHH	trios	

Array-CGH	 analysis	 was	 performed	 in	 patient-parents	 trios	 on	 the	 Affymetrix	

CytoScan	 HD	 array	 platform,	 with	 an	 average	 resolution	 of	 ~20	 kb	 according	 to	 the	

Human	Genome	build	hg19.	Cytoscan	HD	array	includes	2.6	million	markers,	including	

750,000	 genotypeable	 SNPs	 and	 1.9	 million	 non-polymorphic	 probes.	 Analysis	 was	
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carried	out	 following	the	manufacturer’s	protocols,	and	array	data	were	visualized	on	

the	Chromosome	Analysis	Suite	(ChAS)	version	3.1.		

	

Segregation	analysis	

	 Given	 the	 incomplete	 penetrance,	 variable	 expressivity	 and	 oligogenicity	

observed	 in	 CHH,	 unaffected	 and	 partially-affected	 (i.e.	 CDGP,	 partial	 CHH,	 anosmia	

only,	 etc)	 family	 members	 were	 not	 used	 for	 segregation	 analysis.	 Variants	 were	

evaluated	for	segregation	with	the	phenotype	using	17	pairs	of	affected	relatives.	This	

included	 12	 affected	 sibling	 pairs,	 and	 5	 affected	 parent-child	 pairs.	 Segregation	was	

noted	to	be	discordant	only	when	the	identical	variant	was	not	shared	by	the	affected	

pairs.	

	

Variants	and	genes	prioritization	

Clinical	 significance	 of	 the	 variants	 identified	 in	 family-based	 analyses	 was	

annotated	 according	 the	American	College	of	Medical	Genetics	 and	Genomics	 and	 the	

Association	of	Medical	Pathology	(ACMG/AMP)	guidelines209	using	InterVar210.	Variants	

deemed	 to	 be	 “Pathogenic/Likely	 Pathogenic”	 were	 retained	 for	 gene	 prioritization	

steps.	Genes	were	prioritized	if	they	1)	are	implicated	in	CHH	overlapping	phenotypes	

in	human	(OMIM,	www.omim.org),	2)	underlie	CHH	overlapping	phenotypes	in	mouse	

models	(MGI,	www.informatics.jax.org),	3)	have	additional	CHH	patients	harboring	rare	

variants,	 4)	 have	 absent/low	 frequency	 of	 homozygous/compound	 and	

heterozygous/hemizygous	 variants	 in	both	CoLaus	 and	ExAC	 controls,	 5)	 have	 a	high	

constraint	for	missense	variants	in	ExAC	individuals	(z	score	>1.96)112,	and/or	6)	show	
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differential	expression	 in	our	RNA-seq	dataset	of	migratory	and	post-migratory	GnRH	

neurons	in	mouse	(see	below).	

	

RNA-seq	in	GnRH-positive	and	GnRH-negative	neurons	

Noses	 and	 basal	 forebrains	 from	 Gnrh::Gfp	 mouse	 embryos	 (E13.5)	 were	

microdissected	 and	 enzymatically	 dissociated	 using	 a	 Papain	 Dissociation	 System	

(Worthington)	 to	 obtain	 single-cell	 suspensions.	 Fluorescence-Activated	 Cell	 Sorting	

(FACS)	was	 performed	 based	 on	measurements	 of	 GFP	 fluorescence	 (excitation:	 488	

nm;	detection:	GFP	bandpass	526/21	nm,	 autofluorescence	bandpass	664/20	nm)	by	

comparing	cell	suspensions	from	Gnrh::Gfp	and	wild-type	animals211.	For	each	animal,	

400	to	800	GFP-positive	or	1000	GFP-negative	cells	were	sorted	directly.	

50	ng	of	total	RNA	from	each	sample	were	reverse	transcribed	(Maxima	H	Minus	

RT)	with	 individual	 oligo-dT	primers,	 featuring	 a	 6	 nt	 long	multiplexing	 barcode	 and	

template	 switch	 oligo	 (Microsynth).	 The	 sequencing	 library	 was	 prepared	 by	

tagmentation	 of	 full	 length	 cDNA	 with	 an	 in-house	 Tn5	 transposase	 at	 55°C	 for	 9	

minutes	and	purified	(DNA	Clean	and	Concentration	kit)	prior	to	paired-end	sequencing	

using	the	NextSeq	500	(Illumina).	

Reads	from	barcoded	mRNA-seq	experiments	have	two	barcodes	corresponding	

to	the	two	levels	of	multiplexing.	The	first	one	is	common	to	standard	protocols	and	is	

used	 to	 separate	 the	 libraries.	 The	 second	 is	 specific	 to	 the	 barcoded	 mRNA-seq	

protocol	and	is	used	to	separate	the	multiplexed	samples	from	the	bulk	data.	Raw	reads	

were	mapped	to	the	mouse	genome	(GRCm38)	using	STAR	(with	default	parameters).	

Samples	 that	 did	 not	 aggregate	 enough	 reads	 were	 excluded	 from	 further	 analysis	
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(<1M).	The	count	table	was	then	obtained	using	HTseq.	Genes	with	a	count	per	million	

(cpm)	greater	than	1	 for	more	than	20	samples	were	retained.	Raw	counts	were	then	

normalized	using	the	voom	package	in	R212.	

	

Genome-wide	gene-collapsed	RVAS	

In	order	to	standard	our	datasets	and	avoid	introducing	bias	into	our	results	due	

to	 different	 probe	 sets	 used	 by	 the	 different	 cohorts,	 only	 variants	 identified	 by	

BEDTools	v2.17.0213	as	present	 in	overlapping	regions	covered	by	Agilent	V2	(used	 in	

cohort	1	[see	Figure	5]	and	CoLaus)	and	V5	(used	in	cohorts	2-5)	were	used.		

A	 first	 filtering	 process	 removed	 all	 variants	 without	 a	 “PASS”	 filter	 after	

HaplotypeCaller	 genotyping,	 in	 order	 to	 reduce	 the	 signal	 due	 to	 false	 positives.	 Two	

different	 variants	 sets	 were	 created	 taking	 into	 account	 ExAC	 non-Finnish	 European	

and	 CoLaus	 controls:	 1)	 variants	 having	 MAF<1%,	 and	 2)	 variants	 with	 MAF<0.1%.	

Next,	variants	were	filtered	to	include	only	PTVs,	inframe	InDels	and	missense	variants	

predicted	 to	 be	 pathogenic	 by	 SIFT	 and/or	 PolyPhen-2.	 PLINK/SEQ	 was	 used	 to	

perform	 the	 gene-based	 association	 test,	 using	 the	 default	 “BURDEN”	 test	 which	

calculates	the	excess	of	rare	alleles	in	cases	compared	to	controls	in	a	contingency	table	

similar	 to	 a	 c2	 test147.	 To	 reduce	 computing	 time,	 the	 genome-wide	 analysis	 was	

performed	 using	 a	 two-step	 approach,	 using	 1)	 adaptive	 permutations,	 that	 stop	 the	

test	 if	 the	 ultimate	 empirical	 p-value	 shows	 not	 to	 be	 significant,	 and	 2)	 10	 million	

permutations,	 in	 order	 to	 reach	 a	 minimum	 p-value	 of	 1x10-7,	 sufficient	 to	 identify	

genome-wide	significance	in	gene-based	RVAS,	i.e.	p=2.6x10-6.	Gene-based	associations	

were	calculated	for	CHH	European	probands	vs.	CoLaus	controls,	as	well	as	for	the	KS	
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and	nCHH	subgroups	separately	vs.	CoLaus	controls.	Significant	associations	were	then	

validated	 in	 a	 second,	 larger	 set	 of	 controls,	 using	 33,370	 non-Finnish	 European	

individuals	from	ExAC	using	a	Fisher’s	exact	test.	Genome-wide	associations	in	cases	vs.	

controls	were	plotted	using	the	“qqman”	package	in	R214.	
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Results	

	

De	novo	analysis	

Using	 TrioDeNovo	 in	 14	 trios	 with	 asymptomatic	 parents,	 17	 variants	 in	 9	

families	 were	 identified	 after	 filtering	 as	 described	 in	 Methods.	 Visual	 inspection	 of	

filtered	 variants	 identified	 9	 probable	 de	 novo	 variants	 (53%),	 while	 the	 remainder	

were	either	inherited	from	one	of	the	two	parents,	or	were	false	positives	due	to	reads	

misalignments	(Figure	S6).	All	variants	were	confirmed	using	Sanger	sequencing	were	

confirmed	 to	be	de	novo.	 Paternity	was	 confirmed	 in	 all	 trios.	Array-CGH	analysis	did	

not	identify	any	de	novo	CNVs	in	the	trios	(Table	S6).	

	

Autosomal	recessive	analysis		

Autosomal	 recessive	 analysis	 identified	 rare	 (MAF<0.1%)	 homozygous	 and/or	

compound	 heterozygous	 variants	 in	 23	 families.	 Of	 note,	 one	 or	 both	 parents	 had	 a	

history	of	delayed	puberty	 in	seven	 families	 (30%	of	analyzed	pedigrees).	 In	 total,	15	

compound	heterozygous	and	6	homozygous	variants	were	identified	in	9	families.	aCGH	

did	 not	 reveal	 any	 CNVs	 segregating	 in	 an	 autosomal	 recessive	 mode	 of	 inheritance	

(Table	S6).	

	

	X-linked	recessive	analysis	

X-linked	recessive	analysis	in	18	families	with	affected	male	probands	identified	

29	 rare	 hemizygous	 variants	 in	 11	male	 probands.	 aCGH	 did	 not	 detect	 any	 CNVs	 in	

probands’	X	chromosomes	inherited	from	their	asymptomatic	mothers	(Table	S6).	 	



	 98	

In	summary,	a	set	of	59	rare	variants	resulting	 from	the	 family-based	analyses	

were	considered	for	prioritization	steps,	in	order	to	identify	the	most	promising	novel	

candidate	CHH	genes	(Table	S7).		

	

Variants	filtering	and	prioritization	of	best	candidates	

Variants	 were	 annotated	 using	 InterVar	 which	 is	 guided	 by	 the	 ACMG/AMP	

recommendations	 to	 define	 each	 variant’s	 clinical	 significance.	 Prior	 to	 scoring	 in	

InterVar,	variants	were	manually	annotating	 to	 include	whether	 they	were	de	novo	or	

inherited	in	an	autosomal	recessive	or	X-linked	fashion	as	this	information	plays	a	vital	

role	 in	 the	 classification	 of	 pathogenicity.	 In	 total,	 11	 of	 the	 59	 variants	 (18%)	were	

classified	 as	 “Likely	 pathogenic”	 (Table	 8).
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Table	8.	Candidate	genes	with	likely	pathogenic	variants	identified	through	family-based	analysis.	 	

	 	 	 	 	

Other	
individuals	with	
rare	variants	

Rare	homozygous/compound	
heterozygous	variants	 	 	 	 	

Gene	 Inher.	 Variant	
Segreg.	
in	aff.	
pairs	

ExAC	
MAF	 CHH	 CoLaus	 CHH	 CoLaus	 ExAC	

ExAC	
miss.	
const.	

Human	associated	
diseases	 Mouse	phenotypes	

Diff.	exp.	
in	GnRH	
neurons	

ASAP3	 DN	 p.Thr97Ala	 -	 private	 12	 3	 1	 0	 0	 0.87	 -	 -	 NS	

BARHL1	 DN	 p.Arg182Leu	 -	 private	 0	 0	 0	 0	 1	 3.22	 -	 deafness	 ND	

SMC3	 DN	 p.Cys549Tyr	 -	 private	 0	 0	 0	 0	 0	 6.25	 Cornelia	de	Lange	
syndrome	

abnormal	craniofacial	
morphology	

NS	

ERCC4	 DN	 p.Arg740Cys	 -	 0.004%	 6	 6	 0	 0	 1	 -1.06	

Fanconi	anemia,	
complementation	
group	Q;	Xeroderma	
pigmentosum,	type	

F/Cockayne	syndrome	

decreased	body	weight;	
abnormal	liver	
morphology	

NS	

RCAN1	 DN	 p.Glu135Ala	 -	 private	 0	 1	 0	 0	 0	 1.12	 -	 reduced	fertility	 NS	

MGAT1	 DN	 p.Arg129Trp	 -	 private	 0	 0	 0	 0	 0	 3.55	 -	
abnormal	oogenesis;	
decreased	litter	size;	
reduced	female	fertility	

NS	

POLR3B	 AR	
p.Phe400Se/	
p.Val523Glu	

-	
private/
0.05%	

0	 0	 0	 0	 0	 3.43	

Leukodystrophy,	
hypomyelinating,	8,	
with	or	without	

oligodontia	and/or	
hypogonadotropic	
hypogonadism	

-	 NS	

SLIT2	 AR	 p.Asp1074His	 -	 0.06%	 2	 2	 0	 0	 0	 1.71	 -	

abnormal	Purkinje	cell	
dendrite	morphology;	

abnormal	axon	
guidance;	abnormal	
olfactory	tract	
morphology	

0.002	

GUF1	 AR	
p.Ala353Val/	
p.Ile478Ser	

2/2	
0.01%/	
0.00%	

1	 5	 0	 0	 2	 -1.1	
Epileptic	

encephalopathy,	early	
infantile,	40	

-	 NS	

C11orf35	 AR	 p.Glu463Val	 -	 private	 1	 1	 0	 0	 0	 -1.13	 -	 -	 NS	

Prioritized	variants	and	gene	information.	DN:	de	novo;	AR:	Autosomal	recessive.	Segregation	in	17	affected	relatives;	2/2:	segregating	with	the	disease	in	two	different	pairs	with	a	variant	in	the	
gene.	ExAC	MAF	was	calculated	in	all	ethnicities.	Other	variants	in	CHH	cohot	and	CoLaus/ExAC	controls	were	filtered	with	the	same	criteria	described	in	Methods.	Compound	heterozygous	in	
ExAC	could	not	be	assessed.	ExAC	missense	constraint	evaluated	the	number	of	observed	vs.	expected	missense	variants	in	each	gene,	generating	a	Z	score	of	its	constraint	of	harboring	missense	
variants.	Z	scores	>1.96	are	considered	nominally	significant.	Human	associated	diseases	information	is	extracted	from	OMIM.	Mouse	phenotypes	information	is	extracted	from	MGI.	Differential	
expression	in	GnRH	neurons	shows	p-values	from	our	RNA-seq	analysis	(see	Methods	and	Table	S8).	ND:	not	detected;	NS:	not	significant.	



	

These	11	genes	containing	likely	pathogenic	variants	were	then	prioritized	using	

1)	 the	 presence	 of	 CHH-associated	 phenotypes	 in	 human	 disease,	 2)	 the	 presence	 of	

CHH-associated	 phenotypes	 in	 knockout	 mice,	 or	 3)	 differential	 expression	

demonstrated	 in	 migratory	 vs.	 post-migratory	 GnRH	 neurons	 in	 our	 RNA-seq	

experiment.	This	resulted	in	the	identification	of	4	high	priority	candidate	genes	—	two	

from	the	de	novo	analysis	(MGAT1	p.Arg129Trp	and	SMC3	p.Cys549Tyr)	and	two	from	

the	 recessive	 analysis	 (SLIT2	 p.Asp1074His/p.Asp1074His	 and	 POLR3B	

p.Phe400Ser/p.Val523Glu)	(Figure	19).	
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Figure	19.	Schematic	representing	proteins	encoded	by	candidate	genes	with	localization	of	
variants	identified	in	CHH	patients.	

	
Characterization	of	prioritized	genes	

	

SLIT2	

The	homozygous	SLIT2	variant	 (p.Asp1074His)	 (Figure	19A)	was	detected	 in	a	

KS	 patient	 with	 unilateral	 cryptorchidism	 and	 microphallus	 (Figure	 21,	 Pedigree	 A).	

Additionally,	 the	 patient	 has	 been	 diagnosed	 with	 Dandy-Walker	 malformation	

(macrocephalia,	mental	retardation,	cerebellar	ataxia,	and	agenesis	of	corpus	callosum),	

as	 well	 as	 hypertelorism,	 high	 myopia,	 high-arched	 palate,	 and	 metabolic	 defects	

(insulin	 resistance	 and	 high	 body	 fat	 percentage).	 Two	 additional	 rare	 heterozygous	

missense	 variants	 (p.Arg225His,	 p.Thr594Met)	 were	 identified	 in	 a	 nCHH	 and	 a	 KS	

singleton.	

SLIT2	 encodes	 for	 Slit	 homolog	 2	 protein,	 a	 member	 of	 a	 family	 of	 secreted	

glycoproteins	 involved	 in	 neuronal	 axon	 guidance.	 In	 mice,	 Slit2	 is	 highly	 expressed	

along	 the	 migratory	 route	 of	 GnRH	 neurons	 (nasal	 compartment,	 forebrain	 and	

hypothalamus),	and	regulates	their	migration	upon	binding	to	Robo3215	(Figure	20).	
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Figure	20.	Slit2	and	GnRH	expression	during	GnRH	neuron	migration	at	E14.5.		
(From	Cariboni	et	al.,	2012)	
	
	

Additionally,	Slit2-/-	mice	 showed	 early	GnRH	migratory	defects,	 as	most	GnRH	

cells	 fail	 to	 reach	 the	 hypothalamus	 and	 instead	 accumulate	 in	 the	 nasal	

compartment215.	Confirming	this	observation,	Slit2	was	the	only	gene	among	the	list	of	

filtered	 genes	 to	 show	 significant	 differential	 expression	 in	 migratory	 vs.	 post-

migratory	GnRH	neurons	in	our	RNA-seq	experiment	(Table	S8).		

	

POLR3B	

Compound	 heterozygous	 variants	 in	POLR3B	 (p.Phe400Ser/p.Val523Glu)	were	

identified	in	two	nCHH	siblings	(Figure	21,	Pedigree	B).	POLR3B	encodes	for	the	DNA-

directed	 RNA	 polymerase	 III	 subunit	 B	 involved	 in	 the	 synthesis	 of	 small	 RNAs.	 No	

additional	 rare	variants	were	 identified	 in	other	CHH	probands.	Mutations	 in	POLR3B	
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have	 been	 implicated	 in	 a	 complex	 syndromic	 disorder	 which	 is	 characterized	 by	

childhood-onset	 hypomyelinating	 leukodystrophies	 with	 prominent	 cerebellar	

dysfunction,	 oligodontia,	 and	 hypogonadotropic	 hypogonadism216,	 217.	 The	 identical	

combination	 of	 compound	 heterozygous	POLR3B	 variants	 found	 in	 our	 siblings	were	

identified	 and	 published	 in	 two	 siblings	 with	 CHH	 and	 no	 additional	 phenotypes218.	

Post-analytical	 follow-up	 of	 our	 two	 siblings	 confirmed	 this	 was	 the	 identical	 family	

published	by	Richards et al. 

 

MGAT1	

The	de	novo	MGAT1	variant	(p.Arg129Trp)	(Figure	19C)	was	identified	in	a	male	

KS	 proband	 with	 unilateral	 cryptorchidism	 (Figure	 21,	 Pedigree	 C).	 The	 MGAT1	

	gene	 encodes	 for	 mannosyl	 (alpha-1,3-)-glycoprotein	 beta-1,2-N-

acetylglucosaminyltransferase,	a	glycosyltransferase	involved	in	the	conversion	of	high-

mannose	 to	 complex	 N-glycans.	 Specifically,	 MGAT1	 is	 directly	 involved	 in	 the	

modification	 of	 gonadotropin	 (FSH,	 LH,	 hCG)	 glycans219.	 Interestingly,	 the	 KS	 patient	

harboring	 the	 MGAT1	 de	 novo	 missense	 variant	 displays	 resistance	 to	 hCG/FSH	

treatment	to	initiate	puberty.	Mgat1	knock-out	mice	showed	developmental	retardation	

at	 E10.5	 with	 lack	 of	 neural	 tube	 formation	 and	 neural	 vascularization,	 and	 die	 at	

E12.5220.	 Oocyte-specific	 deletion	 of	Mgat1	 in	 female	mice	 results	 in	 infertility	 and	 a	

reduction	 of	 ovulated	 eggs221.	 Brain-specific	 Mgat1	 knock-out	 mice	 showed	

neurological	 defects	 and	 live	 no	 longer	 than	 18	weeks.	 Increased	 neuronal	 apoptosis	

has	been	observed	in	these	mice,	and	reduced	levels	of	voltage-gated	channels	proteins	

were	 detected	 (KCNA1,	 SCNA1,	 and	 SCN1B)222.	 Mutations	 in	MGAT1	 have	 not	 been	
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implicated	in	human	diseases,	and	no	additional	CHH	probands	harbor	rare	variants	in	

MGAT1.	 High	 expression	 levels	 in	 human	 hypothalamus	 and	 pituitary	 has	 been	

observed,	and	RNA-seq	in	mouse	GnRH	neurons	detected	Mgat1	expression	(Table	S8).	

	

	
Figure	21.	Pedigrees	prioritized	from	family-based	analyses.	
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SMC3	

The	SMC3	de	novo	missense	mutation	(p.Cys549Tyr)	(Figure	19D)	was	identified	

in	 a	 KS	 patient	 (Figure	 21,	 Pedigree	 D),	 and	 is	 not	 present	 in	 any	 of	 the	 control	

databases.	SMC3	 encodes	 for	 the	structural	maintenance	of	chromosomes	protein	3,	a	

key	 component	 of	 the	 cohesin	 complex.	 Pathogenic	mutations	 in	proteins	 involved	 in	

cohesin	 function	 underlie	 human	 diseases	 described	 as	 “cohesinopathies”.	 The	 two	

main	cohesinopathies	are	Cornelia	de	Lange	syndrome	(CdLS)	and	Roberts	 syndrome	

(RS).	 CdLS	 is	 a	 rare	 (1:50,000)	 autosomal	 dominant	 disease	mainly	 characterized	 by	

mental	 and	 growth	 retardation,	 facial	 dysmorphism,	 and	 upper	 limb	 abnormalities.	

Mutations	in	SMC3	are	found	in	2%	of	individuals	with	a	non-syndromic,	milder	form	of	

CdLS.	 Interestingly,	 19%	 of	 SMC3-mutated	 patients	 also	 had	 symptoms	 suggestive	 of	

hypogonadism	 such	 as	 cryptorchidism	 in	males	 and	 late	menarche	with	 small	 breast	

development	in	females.	CHH-associated	phenotypes	of	hearing	loss	and	clinodactily	of	

5th	finger	were	also	observed	in	CdLS	patients223.	

	

SMC3	expression	

SMC3	 is	expressed	in	all	human	tissues	according	to	the	GTEx	database,	as	well	

as	 in	mouse	pre-migratory	and	post-migratory	GnRH	neurons	from	our	RNA-seq	data.	

Smc3	 expression	 patterns	 in	 the	 Allen	 Brain	 Atlas	 and	 GenePaint	 databases	

demonstrate	it	is	expressed	in	the	neuroepithelium	and	olfactory	epithelium	of	mouse	

embryos	at	E14.5.	The	highest	expression	 levels	 in	the	adult	brain	are	detected	 in	the	

olfactory	 bulb,	 the	 rostral	 migratory	 stream,	 sub-ventricular	 zone,	 hippocampus	 and	
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cerebellum.	 However,	 focal	 expression	 in	 specific	 hypothalamic	 nuclei,	 (supra-

chiasmatic,	paraventricular,	and	arcuate)	involved	in	energy	balance,	circadian	rhythm	

and	fertility	(Figure	22)	is	also	observed.	

	

	
Figure	23.	Smc3	expression	in	mouse	embryo	and	adult	brain.	
(A)	 SMC3	 In	 situ	 hybridization	 in	 E.14.5	 mouse	 embryo	 head	 sagittal	 section.	 (B)	 Higher	
magnification	of	the	nasal	forebrain	junction	(black	box	in	A).	(C)	SMC3	In	situ	hybridization	in	adult	
mouse	brain	sagittal	section.	(D)	Higher	magnification	of	the	hypothalamic	region	(black	box	in	C).	
NE,	neuroepithelium;	OE,	olfactory	epithelium;	OB,	olfactory	bulb;	CX,	cortex;	RMS,	rostral	migratory	
stream;	 SVZ,	 sub-ventricular	 zone;	 HC,	 hippocampus;	 CB,	 cerebellum;	 Hyp,	 hypothalamus;	 PVN,	
paraventricular	nucleus;	SCH,	supra-chiasmatic	nucleus;	ARH,	arcuate	nucleus.	
	
	

To	better	define	the	Smc3	expression	patterns	during	development	in	key	tissues	

for	GnRH	biology,	I	performed	semi-quantitative	RT-PCR	in	mouse	tissues	and	cell	lines.	

First,	 Smc3	 expression	 levels	 in	 embryonic	 development	 and	 postnatal	 stages	 were	

compared.	 Smc3	 levels	 are	 significantly	 higher	 in	 E14.5	 embryos	 when	 compared	 to	
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postnatal	and	adult	mice,	supporting	a	crucial	role	during	development	consistent	with	

its	role	in	cell	replication.	No	differences	in	the	expression	between	embryonic	nose	and	

brain	were	observed,	however	a	significant	decrease	of	Smc3	levels	in	the	preoptic	area	

of	the	hypothalamus	from	birth	(P0)	to	adulthood	was	detected.	The	broad	expression	

of	 Smc3	 the	 brain	 was	 confirmed,	 but	 notably	 the	 olfactory	 bulb	 (an	 area	 where	

neurogenesis	also	occurs	during	adulthood)	showed	a	significantly	higher	abundance	of	

Smc3	(Figure	23).	

	

	
Figure	23.	Smc3	 quantitative	 expression	 in	mouse.	 (A)	 Expression	 levels	 in	 nose	 and	 brain	 at	
embryonic	stage	E14.5	and	in	hypothalamic	preoptic	areas	from	birth	(P0)	to	adulthood	(P56);	(B)	
Expression	 levels	 at	 adult	 stage	 in	 different	 brain	 areas	 (preoptic	 area	 of	 the	 hypothalamus,	
olfactory	 bulb,	 medial	 basal	 hypothalamus,	 median	 eminence	 of	 the	 hypothalamus,	 cortex).	
Statistical	significance	was	evaluated	with	ANOVA	test.	****	=	p<0.0001;	a	vs.	b	=	p<0.05	
	
	
p.Cys549Tyr	mutation	impairs	SMC3	function	

The	de	novo	 p.Cys549Tyr	 variant	 lies	within	 the	hinge	domain	of	 SMC3,	which	

interacts	with	 its	SMC1	counterpart	to	assemble	the	cohesin	ring.	 In	somatic	cells,	 the	

SMC3	 and	 SMC1A	hinge	 domains	 bind	 to	 forming	 an	 inverted	V-shaped	heterodimer.	

A B



	 108	

RAD21	 interacts	with	 the	ATPase	heads	of	 both	SMC3	and	SMC1A.	 Stromal	 antigen	1	

(SA1)	 or	 2	 (SA2)	 then	 bind	 to	 RAD21,	 forming	 the	 ring-shaped	 structure	 of	 cohesin	

(Figure	 24).	 The	 SMC1-SMC3-RAD21	 complex	 functions	 as	 a	 ring	 to	 surround	 DNA	

fibers,	while	SA1-2	proteins	are	crucial	for	cohesin	loading	on	chromatin224.		

	

	
Figure	24.	Cohesin	complex	with	SMC3,	SMC1,	RAD21	and	SA1/2	proteins.	

	
	
In	collaboration	with	 Jérôme	Fagart	 (INSERM	U1185,	Kremlin-Bicêtre,	France),	

the	crystal	structures	of	SMC3/SMC1B	hinge	domains	heterodimer	were	used	to	predict	

the	 effect	 of	 the	 p.Cys549Tyr	 variant.	 The	 cysteine	 is	 located	 within	 a	 hydrophobic	

environment,	 surrounded	 by	methionine,	 leucine	 and	 phenylalanine	 (Figure	 25).	 The	

aromatic	 ring	 of	 the	 substituted	 tyrosine	 residue	would	 disrupt	 the	 hydrophobic	 site	

resulting	in	the	potential	mis-folding/destabilization	of	the	SMC3/SMC1B	hinge	binding	

due	to	steric	hindrance	and/or	the	formation	of	new	interactions.	
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Figure	25.	Predicted	structural	conformations	of	WT	and	mutated	SMC3	hinge	domains.	

	
	

To	 test	 these	 hypotheses,	 a	 yeast	 two-hybrid	 assay	 was	 performed	 in	

collaboration	 with	 Justine	 Bouilly,	 PhD	 (CHUV).	 Wild	 type	 and	 mutated	 SMC3	 hinge	

domains	 were	 transfected	 with	 wild	 type	 SMC1b	 hinge	 counterparts.	 SMC3	 hinge	

domains	were	 cloned	 into	 pBind	 plasmids,	 encoding	 for	 the	 binding	 domain	 of	 GAL4	

promoter,	while	SMC1b	hinge	was	cloned	into	pAct	plasmids,	encoding	for	the	activator	

domain	of	GAL4	promoter.	The	binding	of	the	two	hinges	activate	the	transcription	of	

GAL4	 resulting	 in	 the	 production	 of	 luciferase.	 A	 significant	 increase	 of	 luciferase	 in	

mutant	SMC3	interacting	with	SMC1b	was	observed	compared	to	the	interaction	of	wild	

type	SMC3	with	SMC1b	(Figure	26).	This	result	shows	that	the	SMC3/SMC1B	complex	is	

more	 stable	with	 the	 introduction	 of	 the	 tyrosine	 and	 indicates	 of	 a	 gain-of-function	

mutation.	

	

WT C549Y
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Figure	26.	Double-hybrid	assay	experiments	on	WT	and	mutated	SMC3	hinge	vs.	SMC1	hinge.	

	
	

Potential	genetic	and	phenotypic	overlap	of	CHH	and	CdLS	

The	 patient	 harboring	 a	 de	 novo	 missense	 variant	 in	 SMC3	 was	 clinically	

diagnosed	with	 CdLS	 and	 showed	mental	 and	 growth	 retardation.	 LH	 and	 FSH	 levels	

were	 low	 (FSH=0.7	 UI/L,	 LH=0.5	 UI/L),	 indicating	 hypogonadotropic	 hypogonadism.	

MRI	 identified	 small	 pituitary	 and	 the	 absence	 of	 olfactory	 bulbs,	 thus	 refining	 the	

additional	diagnosis	to	KS.		

Cornelia	de	Lange	syndrome	presents	with	variable	phenotypic	severity.	NIPBL	

and	HDAC8	mutations	typically	underlie	the	most	severe	form	of	CdLS,	while	SMC1A	and	

SMC3	mutations	are	present	 in	patients	with	mild,	non-syndromic	 forms225.	However,	

the	broad	spectrum	of	CdLS	phenotypes	makes	it	challenging	to	define	clear	genotype-

phenotype	distinctions.	Therefore,	all	published	reports	describing	the	clinical	aspects	
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of	CdLS	patients	were	reviewed	to	identify	overlapping	CHH	phenotypes.	The	absence	

of	menarche,	 lack	 of	 breast	 development	 or	 irregular	menstruation	 is	 found	 in	 13%,	

20%,	 and	 50%	 of	 female	 CdLS	 patients,	 respectively226.	 Cryptorchidism,	 hypoplastic	

genitalia	or	micropenis	is	reported	in	45-98%226-228,	57%,	and	37%226,229	of	male	CdLS	

patients.	 Additional	 phenotypes	 observed	 in	 both	 genders	 include	 cleft	 palate	 (20%-

59%)229,230,	hearing	loss	(45%-60%)228,229,	and	clinodactyly	(74%)229.	

Personal	 communications	 with	 Endocrinologists	 in	 Europe	 established	

collaborations	 which	 identified	 additional	 CdLS	 patients	 with	 indications	 of	 delayed	

puberty	 and/or	 infertility.	 An	 additional	 male	 patient	 with	 a	 mild	 form	 of	 CdLS	

(moderate	mental	retardation,	short	stature,	ear	anomalies,	small	and	upturned	nose)	

was	 identified	 from	 the	 clinical	 practice	 of	 Dr.	 Duarte	 Pignatelli	 (University	 of	 Porto,	

Portugal).	In	addition	to	meeting	the	criteria	for	CdLS,	this	patient	also	had	a	complete	

absence	 of	 puberty,	micropenis,	 and	 low	 sex	 hormones	 levels	 (LH=0.3	UI/L,	 FSH=0.5	

UI/L).	MRI	showed	an	absence	of	 the	 left	olfactory	bulb	and	reduced	size	of	 the	right,	

resulting	in	a	diagnosis	of	Kallmann	syndrome.	In	addition,	the	patient	had	hearing	loss,	

scoliosis,	and	clinodactyly.	Subsequent	WES	identified	a	heterozygous	NIPBL	frameshift	

variant	 (p.Pro2761fs).	 This	 variant	 was	 not	 observed	 in	 controls	 from	 ExAC,	

1000Genomes,	ESP	or	CoLaus	datasets.	This	variant	was	not	present	 in	 the	proband’s	

father,	and	DNA	was	not	available	from	the	deceased	mother.	Given	that	mother	had	no	

reported	 CdLS	 phenotype,	 it	 is	 likely	 that	 this	 mutation	 is	 de	novo,	 which	 would	 be	

consistent	with	previous	reports	of	mutations	 in	NIPBL231.	The	variant	 lies	within	 the	

last	exon	(47)	of	NIPBL,	and	is	predicted	to	result	in	the	truncation	of	the	last	43	amino	

acids	of	the	protein	(Figure	27).	
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Figure	27.	Schematic	showing	the	p.Pro2761fs	variant	localized	in	NIPBL	protein.	

	
	

In	 summary,	 our	 data	 suggests	 potential	 phenotypic	 and	 genotypic	 overlap	

between	CHH	and	CdLS.	Based	on	this,	all	of	the	cohesin/CdLS	genes	were	evaluated	in	

our	 CHH	 cohort,	 however	 no	 additional	 rare,	 putatively	 pathogenic	 variants	 were	

identified.	 Additional	 investigation	 of	 the	 potential	 clinical	 and	 genetic	 overlap	 is	

ongoing.	

	

Rare	variant	association	studies	in	CHH	patients	vs.	controls	

	

A	 gene-collapsed	 burden	 test	 evaluates	 the	 number	 of	 individuals	 harboring	 a	

mutation	 in	 a	 given	 gene,	 and	 assumes	 all	 collapsed	 variants	 in	 a	 gene	 result	 in	 a	

deleterious	 effect.	 Variants	 in	 CHH	 European	 probands	 (n=159)	 and	 CoLaus	 (n=405)	

with	 MAF<1%	 were	 filtered	 to	 include	 PTVs,	 inframe	 InDels	 and	 missense	 changes	

predicted	 deleterious	 by	 SIFT	 and/or	 PolyPhen-2.	 Genome-wide	 significance		

(p<2.6x10-6)	 was	 found	 for	 17	 genes,	 including	 FGFR1	 and	 CHD7	—	 the	 two	 most	

frequently	mutated	genes	in	CHH	(Figure	28).		
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Figure	28.	Gene-collapsed	RVAS	in	CHH	probands	vs.	CoLaus	controls.	Manhattan	plot	showing	
gene-collapsed	 associations	 in	 cases	 vs.	 controls.	 Red	 line	 defines	 genome-wide	 significance	 at	
p=2.6x10-6.	Labeled	genes	below	red	 line	reached	a	marginal	significance	(p=2.6x10-5).	Underlined	
genes	are	known	CHH	genes.	Genes	in	red	achieved	genome-wide	significance	vs.	both	CoLaus	and	
ExAC	NFE	controls.	Genes	in	black	achieved	genome-wide	significance	vs.	CoLaus	and	no	association	
in	ExAC	EUR	controls.	Asterisks	next	to	gene	names	indicate	no	coverage	in	ExAC	individuals.	
	

Gene-collapsed	RVAS	in	CHH	subgroups	

Gene-collapsed	 burden	 analysis	was	 then	 performed	 for	 the	 individual	KS	 and	

nCHH	 subgroups.	 The	 analysis	 for	 KS	 (n=91)	 vs	 CoLaus	 identified	 9	 genes	 reaching	

genome-wide	 significance,	 including	 FGFR1	 and	 CHD7	 (Figure	 29).	 The	 analysis	 for	

nCHH	(n=68)	vs.	CoLaus	demonstrated	4	genes	(WDFY4,	ZNF469,	FRMD4B,	and	DIP2A)	

achieved	genome-wide	significance	(Figure	30).	
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Figure	29.	Gene-collapsed	RVAS	 in	KS	probands	vs.	CoLaus	controls.	Manhattan	plot	 showing	
gene-collapsed	 associations	 in	 cases	 vs.	 controls.	 Red	 line	 defines	 genome-wide	 significance	 at	
p=2.6x10-6.	Labeled	genes	below	red	 line	reached	a	marginal	significance	(p=2.6x10-5).	Underlined	
genes	are	known	CHH	genes.	Genes	in	red	achieved	genome-wide	significance	vs.	both	CoLaus	and	
ExAC	NFE	controls.	Genes	in	black	achieved	genome-wide	significance	vs.	CoLaus	and	no	association	
in	ExAC	EUR	controls.	Asterisks	next	to	gene	names	indicate	no	coverage	in	ExAC	individuals.	
	

 	
Figure	 30.	 Gene-collapsed	 RVAS	 in	 nCHH	 probands	 vs.	 CoLaus	 controls.	 Manhattan	 plot	
showing	gene-collapsed	associations	in	cases	vs.	controls.	Red	line	defines	genome-wide	significance	
at	 p=2.6x10-6.	 Labeled	 genes	 below	 red	 line	 reached	 a	 marginal	 significance	 (p=2.6x10-5).	
Underlined	genes	are	known	CHH	genes.	Genes	 in	red	achieved	genome-wide	significance	vs.	both	
CoLaus	and	ExAC	NFE	controls.	Genes	in	black	achieved	genome-wide	significance	vs.	CoLaus	and	no	
association	 in	 ExAC	 EUR	 controls.	 Asterisks	 next	 to	 gene	 names	 indicate	 no	 coverage	 in	 ExAC	
individuals.	
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This	 RVAS	 analysis	 examines	 the	 number	 of	 cases	 vs.	 controls	 harboring	

mutations	in	a	given	gene.	However,	the	ExAC	database	is	organized	on	a	variant	basis,	

thus	it	is	not	possible	to	determine	if	individuals	contain	multiple	variants	in	the	same	

gene.	Using	the	raw	number	of	variants	present	may	lead	to	an	over-estimation	of	the	

number	of	individuals	harboring	variants	(e.g.	two	variants	in	one	individual	would	be	

counted	a	two	individuals).	Thus,	the	ExAC	database	was	used	as	a	secondary	analysis,	

despite	its	larger	sample	size.	Of	the	21	unique	genes	that	were	found	to	be	significantly	

associated	 in	 the	RVAS	analysis	using	 the	CoLaus	database,	6	genes	 (COL6A5,	WDFY4,	

OTOG,	CCDC168,	ZNF469,	and	PIEZO1)	were	 found	 to	have	 low	coverage	 (<10x)	 in	 the	

ExAC	database	and	could	not	be	evaluated.	FGFR1	was	the	only	gene	reaching	genome-

wide	 significance	 in	 the	 two	 controls	 datasets,	 while	 USP43	 achieved	 the	 closest	

significance	to	genome-wide	threshold	(Table	8).	
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Table	8.	Coverage	and	RVAS	results	of	genome-
wide	significant	genes	vs.	ExAC	NFE	controls.	

Gene	 ExAC	median	coverage	 RVAS	P	value	

FGFR1	 55	 1.4E-12	

USP43	 32	 6.0E-04	
DNAH14	 25	 0.0014	
MYBPC2	 31	 0.0055	
RECQL4	 30	 0.0134	
CHD7	 42	 0.0187	
IFRD2	 22	 0.0191	
FRMD4B	 43	 0.0403	
DIP2A	 43	 0.0453	
PIK3C2G	 35	 0.046	
CSMD1	 35	 NS	
SEC16A	 40	 NS	
MGAM	 47	 NS	

CACNA1H	 26	 NS	
MYO18B	 38	 NS	
COL6A5	 9	 -	
WDFY4	 0.003	 -	
OTOG	 0.03	 -	

CCDC168	 0	 -	
ZNF469	 0.02	 -	
PIEZO1	 0.2	 -	

.	

	

Despite	 not	 being	 able	 to	 evaluate	 the	 complete	 set	 of	 significantly	 associated	

genes	from	the	CoLaus	analysis	in	the	ExAC	cohort	due	to	low	coverage,	there	are	still	

compelling	 results	 that	warrant	 additional	 follow-up.	 It	will	 be	 a	natural	 extension	of	

this	 project	 to	 couple	 additional	 sample-centered	 control	 databases	 (when	 available)	

with	an	expanded	CHH	cohort	to	re-evaluate	this	promising	analysis.	
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Discussion	

	

Since	the	advent	of	HTS,	hundreds	of	disease-causing	genes	have	been	identified	

in	rare	diseases232.	In	most	cases,	unbiased	family-based	analyses	showed	high	success	

rates	 in	 identifying	mutations	underlying	disease	phenotypes.	Disease	gene	discovery	

for	disorders	related	to	puberty	have	benefited	from	using	WES.	Using	stringent	criteria	

(MAF<0.01%	 in	 public	 controls	 databases),	 family-based	 analysis	 of	 probands	 with	

central	 precocious	 puberty	 identified	 causative	mutations	 in	MKRN3233.	 Family-based	

recessive	 analyses	 using	 WES	 data	 also	 identified	 SEMA3E234,	 POLR3B218,	 FEZF156,	

RNF216	and	OTUD471	as	novel	genes	implicated	in	CHH.	

	 For	 the	 family-based	 analysis	 performed	 in	 this	 thesis,	 putatively	 pathogenic	

variants	were	selected	by	applying	a	stringent	MAF	cutoff	(<0.1%	for	recessive,	<0.01%	

for	de	novo).	In	fact,	a	recent	retrospective	analysis	using	well-characterized	pathogenic	

mutations	in	the	ClinVar	and	HGMD	(Human	Gene	Mutation	Database)	databases	from	

60,706	 individuals	 showed	 that	 the	 majority	 of	 mutations	 were	 indeed	 private	 or	

present	in	only	one	additional	individual112.	Additionally,	none	of	these	mutations	were	

present	at	MAF>0.1%	in	the	ExAC	population.	Therefore,	the	classic	cutoff	to	define	rare	

variants	(MAF<1%)	is	outdated.		

	 The	 family-based	 analysis	 in	 23	 families	 led	 to	 the	 identification	 of	 new	

candidate	genes	underlying	CHH.	A	homozygous	mutation	in	SLIT2	has	been	identified	

in	 a	KS	 patient	 using	 an	 autosomal	 recessive	 analysis.	SLIT2	 is	 a	 critical	 gene	 for	 the	

migration	 of	 neurons	 including	 GnRH	 neurons,	 retinal	 ganglion	 cells,	 and	 cerebellar	

granule	neurons215,235,236.	SLIT2	also	interacts	with	the	newly	identified	CHH	genes	DCC	
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and	NTN1	 (Section	 3)	 to	 directly	 control	 the	migration	 of	 the	 neurons	 of	 the	 corpus	

callosum237.	

Slit2	 knockout	 mice	 show	 abnormal	 morphology	 of	 Purkinje	 cells	 dendrites	 in	 the	

cerebellum238,	 while	 Slit1/Slit2	 double	 knockouts	 show	 abnormal	 olfactory	 tract	

morphology	—	 a	 structure	 critical	 for	migrating	 of	 GnRH	 neurons	 during	 embryonic	

development239.	

In	 addition	 to	 regulating	 neuronal	 migration,	 SLIT2	 has	 additional	 non-

neurological	 functions.	 A	 recent	 study	 showed	 beige	 fat	 cells	 from	 adipose	 tissue	

secrete	a	cleaved	fragment	of	SLIT2	(SLIT-C)	which	regulates	metabolic	 functions	and	

glucose	 homeostasis240.	 Interestingly,	 the	 patient	 harboring	 a	 SLIT2	 homozygous	

variant	 has	 a	 syndromic	 phenotype	 (i.e.,	 metabolic	 defects,	 Dandy-Walker	

malformation,	cerebellar	ataxia,	myopia	and	KS)	which	supports	the	known	biology	of	

SLIT2.	This	 gene	 has	 been	 identified	 using	 an	 unbiased	method	 such	 as	 family-based	

analysis.	 Additionally,	 a	 heterozygous	 de	 novo	 MGAT1	 variant	 was	 observed	 in	 a	

sporadic	 KS	 patient.	 MGAT1	 is	 involved	 in	 the	 homeostasis	 of	 gonadotropins	 by	

transferring	 and	 modifying		

N-acetylglucosamine	residues	onto	glycoproteins	such	as	FSH,	LH,	and	hCG	(reviewed	

in	 Bousfield	 and	 Dias241).	 No	 human	 disease	 has	 been	 associated	 with	 MGAT1	

mutations,	however	mouse	studies	provide	additional	insight	into	the	potential	role	of	

this	 gene	 in	 reproductive	 biology.	 Although	 Mgat1-/-	 embryos	 die	 during	 early	

development	(E10)	and	show	critical	defects	in	neural	tube	morphology,242	studies	on	

heterozygous	knockout	mice	are	particularly	 interesting.	Mgat1+/-	male	mice	are	poor	

breeders,	while	Mgat1+/-	female	mice	have	reduced	fertility	due	to	a	reduced	number	of	
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mature	oocytes243,	suggestive	of	a	peripheral	role	in	regulating	fertility.	Therefore,	it	is	

possible	that	MGAT1	might	exert	both	central	and	peripheral	effects.	Interestingly,	the	

KS	patient	harboring	a	heterozygous	de	novo	MGAT1	variant	was	found	to	be	resistant	

to	 FSH/hCG	 treatment	 which	 suggests	 a	 peripheral	 component	 to	 his	 reproductive	

phenotype.		

A	de	novo	SMC3	missense	variant	was	identified	in	a	KS	patient	with	a	mild	form	

of	 CdLS,	 a	 neurodevelopmental	 disorder	 characterized	 by	 mental	 and	 growth	

retardation,	craniofacial	defects	and	limb	malformations.	Indeed,	SMC3	mutations	have	

been	 recently	 implicated	 with	 a,	 milder	 form	 of	 CdLS223.	 Notably,	 CHH-associated	

reproductive	 abnormalities	 (e.g.,	 cryptorchidism,	 micropenis,	 absent	 menarche)	 and	

non-reproductive	abnormalities	(e.g.,	hearing	loss,	clinodactyly,	cleft	lip/palate)	are	also	

seen	 in	 CdLS	 patients.	 However,	 a	 precise	 diagnosis	 of	 hypogonadotropic	

hypogonadism	is	often	not	assessed	in	these	patients	given	the	severity	of	the	primary	

neurological	 defects	 and	 the	 fact	 that	 puberty/fertility	 is	 inconsequential	 to	 both	

physician	and	CdLS	patient	families.		

Expression	 patterns	 of	Smc3	 in	mouse	 are	 consistent	with	 a	 role	 in	 regulating	

GnRH	neuron	ontogeny	and	migration.	Smc3+/-	mice	display	developmental	delay	and	

craniofacial	 abnormalities244,	 the	 latter	 often	 associated	 with	 defects	 in	 the	

development	of	the	olfactory	placode,	the	origin	of	GnRH	neurons245.	A	new	project	in	

our	 group	 has	 been	 recently	 established.	 The	 CRISPR/Cas9	 technology	 is	 being	

employed	with	zebrafish	having	GFP-positive	GnRH	neurons	 to	evaluate	 the	effects	of	

the	SMC3	p.Cys549Tyr	on	its	orthologous	gene	counterpart.		
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In	 vitro	 studies	 have	 been	 performed	 to	 evaluate	 the	 functional	 effect	 of	 the	

p.Cys549Tyr	variant	on	SMC3/SMC1	hinge	binding.	We	showed	the	binding	of	mutated	

SMC3	hinge	occurs	and	is	more	stable	than	wild-type,	suggestive	of	a	gain-of-function.	

Although	counterintuitive,	 this	gain	may	actually	result	 in	an	 impaired	 function	of	 the	

cohesin	 complex.	 After	 the	 binding	 of	 the	 two	 SMC3	 and	 SMC1	 hinge	 domains	 to	

surround	 DNA	 fibers	 during	 gene	 transcription,	 the	 detachment	 of	 the	 complex	 is	

critical.	 The	 gain-of-function	 may	 result	 in	 the	 inability	 for	 the	 detachment	 of	 the	

cohesion	 complex,	 thus	 impacting	 the	 timing	 and/or	 coordination	 of	 additional	

regulatory	functions.	

Cohesin	 is	 ubiquitous,	 and	 has	 several	 other	 critical	 functions	 in	 the	 cell	

including	 1)	 the	maintenance	 of	 cohesive	 sister	 chromatids	 before	 cell	 divisions	 (i.e.,	

chromosome	 biorientation)246,	 2)	 genome	 compartmentalization	 through	 the	

organization	 of	 topologically-associated	 domains	 (TADs),247	 and	 3)	 regulation	 of	

transcription	 through	 physical	 interactions	 between	 transcription	 factors	 and	 distant	

promoters/enhancers248.		

Human	 diseases	 caused	 by	 mutations	 in	 cohesin	 complex	 genes	 are	 usually	

defined	as	“cohesinopathies”,	however	given	its	growing	importance	in	transcriptional	

regulation	it	has	been	suggested	to	change	the	terminology	to	“transcriptomopathies”.	

249	Interestingly,	other	known	CHH	genes	identified	within	overlapping	syndromes	(e.g.,	

CHD7	 in	 CHARGE	 syndrome66,	 SOX10	 in	 Waardenburg	 syndrome69)	 have	 also	 key	

functions	in	the	transcriptional	regulation	during	early	development.	After	reaching	out	

to	 the	 European	 network	 of	 GnRH	 deficiency	 investigators,	 we	 identified	 three	

additional	 CdLS	 patients	 with	 overlapping	 phenotypes.	 One	 CdLS	 patient	 was	
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additionally	 diagnosed	 with	 KS,	 and	 two	 with	 panhypopituitarism	 —	 a	 syndromic	

deficiency	of	pituitary	hormones	due	 to	malformations	 in	 the	hypothalamus,	pituitary	

or	their	surrounding	structures.	WES	in	the	second	KS/CdLS	patient	revealed	a	putative	

de	novo	 frameshift	 variant	 in	 the	NIPBL	 gene.	 Heterozygous	 mutations	 in	NIPBL	 are	

found	in	60%	of	CdLS	patients,	and	are	often	severe	truncating	de	novo	mutations	which	

are	subjected	to	nonsense	mediated	decay	(NMD).	As	such,	they	are	typically	associated	

with	the	severe	form	of	the	disorder250,251.	However,	our	patient	exhibited	a	mild	form	

of	CdLS,	possibly	due	to	the	position	of	the	frameshift	variant	in	the	last	exon	of	NIPBL.	

Truncating	 mutations	 occurring	 in	 the	 last	 exon	 of	 genes	 usually	 escape	 NMD149,150,	

therefore	 the	 patient	 may	 have	 the	 milder	 phenotype	 due	 to	 the	 production	 of	 a	

truncated	(43	amino	acid	shorter)	protein	with	attenuated	function.	

Combining	 information	 from	 the	 SMC3	 and	 NIPBL	 patients,	 it	 can	 be	

hypothesized	 that	 genes	 within	 cohesin	 complex	 play	 a	 role	 in	 the	 transcriptional	

regulation	 of	 key	 genes	 for	 GnRH	 biology.	 Several	 lines	 of	 evidences	 support	 this	

hypothesis.	 Human	 cell	 lines	 overexpressing	 SMC3	 show	 an	 upregulation	 of	 the	

transcription	of	many	genes,	including	GNRH1	and	GDF9252,	an	autocrine	inducer	of	FSH	

production	 directly	 regulated	 by	 GnRH253.	 Zebrafish	 nipblb	 knockouts	 show	 neural	

defects	 and	 downregulation	 of	 the	 Wnt	 pathway254,	 crucial	 for	 the	 development	 of	

olfactory	 and	 forebrain	 regions	 supporting	 GnRH	 neuron	 migration255.	 Mutations	 in	

SMC1A	 also	 cause	CdLS.	Transcriptomic	 studies	 in	 cells	 derived	 from	SMC1A-mutated	

CdLS	patients	showed	dysregulation	of	the	Notch	pathway	which	is	important	for	GnRH	

neuron	maturation,	migration,	and	transcriptional	regulation256,257.		
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Combined,	these	results	suggest	a	phenotypic	and	genetic	overlap	between	CdLS	

and	 CHH.	 However,	 to	 confirm	 an	 association	 of	 SMC3	 or	 other	 cohesin	 genes	 with	

isolated	 CHH,	 additional	 patients	 with	 mutations	 in	 this	 pathway	 will	 need	 to	 be	

uncovered.		

	 Array-CGH	was	 performed	 to	 identify	 putative	 pathogenic	 CNVs	 in	 a	 subset	 of	

CHH	trios.	We	did	not	identify	any	compelling	variants	in	the	probands	tested.	A	larger	

aCGH	 study	 previously	 conducted	 by	 Prof.	 Pitteloud	 did	 not	 observe	 any	 putative	

disease-causing	CNVs	in	>70	CHH	probands	(data	not	published).	Taken	together,	these	

data	suggest	at	most	a	marginal	role	of	large	CNVs	in	CHH	pathogenesis.	However,	a	role	

of	other	structural	variants	cannot	be	excluded,	as	aCGH	does	not	detect	smaller	CNVs	

(<20	kb),	translocations,	inversions,	or	other	complex	chromosomal	aberrations.	Other	

methods	with	higher	resolution	(depth-of-coverage	from	WES	reads,	WGS)	are	desired	

to	better	assess	the	mutational	landscape	of	structural	variation	in	CHH.	

	 I	 performed	 an	 unbiased	 population-based	 rare-variant	 association	 study	

(RVAS)	 in	 CHH	 patients	 vs.	 controls.	 While	 GWAS	 are	 typically	 used	 to	 detect	

associations	with	common	traits,	RVAS	recently	emerged	to	identify	associations	of	rare	

variants	 with	 rare	 diseases.	 This	 method	 also	 gains	 additional	 power	 by	 collapsing	

variants	 within	 distinct	 loci	 such	 as	 genes,	 regulatory	 regions,	 or	 pathways200.	 I	

identified	 several	 genes	 with	 significant	 genome-wide	 associations	 which	 will	 be	

further	characterized.	Genome-wide	significance	was	achieved	in	only	2/34	known	CHH	

genes	 —	 FGFR1	 and	 CHD7.	 As	 shown	 in	 Section	 2,	 these	 are	 the	 most	 frequently	

mutated	 genes	 in	 CHH,	 with	 a	 prevalence	 of	 15%	 and	 13%,	 respectively.	 Nominal	

significance	 was	 observed	 for	 SOX10.	 Other	 CHH	 genes,	 including	 those	 with	 high	
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prevalence	 in	 CHH	 subgroups	 (e.g.,	 PROKR2	 mutated	 in	 8%	 of	 KS	 patients,	 GNRHR	

mutated	in	7%	of	nCHH	patients)	did	not	yield	significant	associations.	This	may	be	due	

to	a	variety	of	reasons:	1)	the	sample	size	of	cases/controls	cohort	is	too	small	to	detect	

additional	 associations,	 2)	 confounding	 factors	 such	 as	 the	 presence	 of	 founder	

mutations	 in	 controls	 (e.g.,	 PROKR2	p.Leu173Arg,	 TACR3	p.Trp275X)	 or	 carriers	 for	

recessive	genes	(e.g.,	GNRHR,	KISS1R),	or	3)	some	genes	have	a	low	prevalence	even	in	

CHH	patients,	 indicating	RVAS	 is	not	 suitable	 for	 the	 identification	of	new	genes	with	

small	 or	 modest	 effects	 in	 the	 CHH	 population.	 Genes	 showing	 genome-wide	

significance	 and	 which	 were	 well-covered	 will	 be	 further	 characterized	 including	

evaluating	variant	effects,	segregation	in	affected	relatives,	expression	in	GnRH-related	

tissues.	

Additionally,	a	unidirectional	RVAS	burden	analysis	was	performed,	meaning	the	

algorithm	considers	all	 collapsed	variants	 for	 the	gene	 to	result	 in	deleterious	effects.	

This	test	has	been	shown	to	be	successful	 for	gene	discovery	 in	diseases	known	to	be	

primarily	 caused	 by	 loss-of-function	 mutations258,259.	 However,	 this	 test	 can	

underperform	 when	 complex	 mechanisms	 such	 as	 varying	 magnitudes	 of	 loss-of-

function	 mutations,	 gain-of-function	 mutations,	 or	 oligogenicity	 underlie	 the	

phenotype260.	Other	RVAS	methods	such	as	variance-component	tests	(e.g.,	SKAT261,	C-

alpha262,	 SSU263)	 evaluate	 potential	 enrichment	 of	 rare	 variants	 in	 cases	 vs.	 controls,	

regardless	of	protective	or	deleterious	effects.	Such	tests	take	 into	account	the	overall	

distribution	of	rare	variants	in	cases	vs.	controls,	aggregating	the	single	variant	scores	

into	a	unique	signal.	For	this	reason,	variance-component	tests	are	suited	for	complex	

diseases,	 where	 phenotype	 traits	 are	 dependent	 on	 the	 magnitude	 of	 variant	
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deleterious	 effects,	 or	 where	 both	 loss-of-function	 and	 gain-of-function	 rare	 variants	

result	 in	 disease	 phenotype.264,265	 Further,	 to	 overcome	 the	 limitations	 of	 both	 linear	

and	mixed	models,	combined	tests	such	as	SKAT-O266	and	MiST267	have	been	developed.	

Such	 alternative	 tests	 could	 be	 used	 in	 CHH	 cases	 vs.	 controls	 to	 overcome	 the	

limitations	seen	in	the	burden	tests	used	in	this	thesis.	

In	 summary,	 both	 the	 family-based	 and	 population-based	 analyses	 generated	

promising	candidate	genes	associated	with	CHH,	and	underscore	the	need	for	a	multi-

faceted	 approach	 to	 identify	 genes	 related	 to	 diseases	 with	 complex	 genotypes	 and	

phenotypes.
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Thesis	Conclusions	and	Future	perspective	
	

	

HTS	has	dramatically	 increased	the	success	rates	 in	 identifying	disease-causing	

mutations	 in	 human	 disorders,	 especially	 those	 which	 are	 rare	 in	 the	 population268.	

I	 applied	HTS	and	bioinformatics	 to	 clarify	 the	genetic	architecture	and	discover	new	

genes	 associated	 with	 CHH,	 a	 rare	 disease	 characterized	 by	 absent	 puberty	 and	

infertility	 due	 to	 GnRH	 deficiency.	 In	 Section	 1,	 a	 bioinformatics	 pipeline	 was	

implemented	 to	 process	 >1,000	 exomes,	 generating	 high	 quality,	 reliable	 data	 for	

further	genetic	studies.	This	pipeline	is	now	routinely	used	in	the	Pitteloud	laboratory,	

and	 can	 be	 considered	 an	 important	 deliverable	 of	 this	 thesis	 project	 and	 for	 future	

projects	 within	 the	 department.	 This	 pipeline	will	 be	 further	 improved	 in	 the	 future	

based	upon	the	availability	of	new	bioinformatics	tools	to	guarantee	faster	analyses	and	

accurate	data.		

One	limitation	of	this	thesis	study	design	is	that	the	putative	pathogenic	effects	

of	 the	 identified	 variants	 –	 especially	 in	 the	 upstream	 filtering	 processes	 –	 are	 not	

assessed	experimentally	(i.e.,	in	vitro	or	in	vivo).	In	fact,	the	two	major	factors	to	define	a	

putative	pathogenic	variant	were	1)	allele	frequency	in	the	general	population	and	2)	in	

silico	 predictions	 of	 its	 effects	 on	 protein	 functionality.	 As	 described	 earlier,	 the	MAF	

cutoff	 used	 for	 new	 gene	 discovery	 was	 defined	 using	 a	 retrospective	 study	 in	

thousands	of	individuals.	In	fact,	all	well-characterized	pathogenic	variants	reported	in	

Mendelian	disorders	had	 an	MAF<0.1%112.	However,	 one	 cannot	 exclude	a	priori	 that	

one	 or	more	 variants	with	 an	MAF	 above	 the	 define	 threshold	would	 still	 cause	 –	 or	
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participate	–	in	the	manifestation	of	the	disease	phenotype(s).	The	potential	deleterious	

effects	 of	 variants	 –	 especially	 the	 frequently	 observed	 missense	 ones	 –	 have	 been	

assessed	 using	 the	 two	 most	 commonly	 used	 and	 popular	 algorithms,	 SIFT145	 and	

PolyPhen-2146.	 The	 combination	 of	 these	 two	 programs	was	 intended	 to	 complement	

their	 algorithms,	 as	 SIFT	 predicts	 variants	 deleteriousness	 based	 on	 sequence	

homology	 among	 several	 species,	 while	 PolyPhen-2	 mainly	 predicts	 deleterious	

variants	using	protein	structure	information.	Despite	their	well-known	sensitivity	(i.e.,	

correct	identification	of	true	positives),	all	algorithms	–	including	SIFT	and	PolyPhen-2	

–	suffer	of	low	specificity269,270.	Although	the		

	

	

	

	 Before	embarking	on	a	new	gene	discovery,	it	was	imperative	to	characterize	the	

known	genetic	architecture	of	CHH	and	to	identify	probands	harboring	mutations	which	

already	explain	their	phenotype.	Section	2	describes	a	comprehensive	screening	of	the	

known	CHH	genes.	CHH	is	a	heterogeneous	disease	both	clinically	and	genetically,	and	

oligogenicity	 in	CHH	patients	has	been	already	reported.	With	 this	 thesis,	 I	 show	that	

oligogenic	inheritance	in	CHH	patients	is	more	common	than	previously	thought.	Thus,	

CHH	 displays	 a	 dual	 genetic	 pattern	—	 a	Mendelian,	 monogenic	 inheritance	 (e.g.,	 de	

novo	variants	in	FGFR1,	homozygous	variants	in	TACR3,	hemizygous	variants	in	ANOS1),	

as	well	as	a	non-Mendelian,	oligogenic	inheritance.	WES	demonstrated	that	half	of	CHH	

patients	harbor	at	least	one	putatively	pathogenic	variant	in	a	known	gene	—	a	higher	

frequency	than	observed	in	previous	studies.	I	analyzed	for	the	first	time	the	full	set	of	
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known	 genes	 underlying	 both	 CHH	 and	 CDGP.	 No	 genetic	 overlap	 –	 screening	 the	

known	 implicated	 genes	 so	 far	 –	 between	 the	 two	 forms	 of	 GnRH	 deficiency	 was	

observed.	 However,	 this	 result	 is	 of	 critical	 importance	 for	 future	 studies	 aiming	 to	

develop	 targeted	 genetic	 testing	 to	 correctly	 diagnose	 CHH	 in	 adolescent	 patients	

presenting	with	delayed	puberty.	

	 To	identify	new	genes	implicated	in	CHH,	differing	strategies	were	employed	to	

tackle	 the	 main	 scientific	 question.	 First,	 the	 known	 information	 regarding	 GnRH	

biology	and	CHH	pathogenesis	was	exploited	to	target	proteins	with	domains	that	are	

recurrently	present	 in	known	CHH	genes	and	participate	 in	neuronal	migration.	Loss-

of-function	mutations	 in	DCC	and	 its	 ligand	NTN1	were	detected	 in	CHH	patients.	 In	a	

collaborative	 effort	 within	 the	 Pitteloud	 lab	 and	 external	 collaborators,	 we	

demonstrated	 the	 critical	 role	 of	 DCC	 and	 Netrin-1	 in	 GnRH	 migration	 during	 early	

development,	 implicating	 these	 two	 genes	 in	 CHH	 pathogenesis.	 Similar	 parallel	

projects	 are	 ongoing	within	 the	 Pitteloud	 group	 using	 the	 strategy	 of	 targeting	 other	

recurrent	protein	domains	encoded	by	known	CHH	genes.	

Unbiased	 strategies	were	 performed	 to	 identify	 new	 genes	 implicated	 in	 CHH.	

Family-based	 analysis	 targeting	 de	novo,	 autosomal	 recessive	 and	 X-linked	 recessive	

inherited	variants	in	CHH	probands	identified	several	promising	candidates.	These	will	

now	 be	 further	 characterized	 using	 in	 vivo	 and	 in	 vitro	 studies	 collaboratively	

conducted	by	other	members	of	Pitteloud	group.	Specifically,	I	report	a	patient	with	the	

dual	 diagnosis	 of	 CdLS	 and	 CHH	 harboring	 a	 de	 novo	 variant	 in	 the	 SMC3	 gene,	 a	

member	 of	 the	 cohesin	 complex.	 In	 silico	 and	 in	 vitro	 experiments	 demonstrated	

impaired	 function	 of	 mutant	 SMC3.	 A	 second	 patient	 with	 CHH	 and	 CdLS	 has	 been	
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identified	 harboring	mutation	 in	NIPBL,	 another	 CdLS	 gene.	 Several	 lines	 of	 evidence	

suggest	a	clinical	overlap	between	CdLS	and	CHH,	thus	suggesting	a	role	for	CdLS	genes	

in	the	pathophysiology	of	CHH	through	the	disruption	of	critical	pathways	in	key	organs	

for	GnRH	biology	during	early	development.		

Phenotypic	overlap	is	common	among	neurodevelopmental	disorders,	especially	

in	 syndromic	 forms.	 However,	 the	 results	 shown	 in	 this	 thesis	 suggest	 that	 the	

phenotypic	overlap	between	CHH	and	CdLS	might	be	also	mirrored	by	partially	shared	

genetic	patterns.	Genetic	overlap	between	syndromes	has	been	reported	previously271,	

and	 a	 recent	 study	 showed	 that	 10%	 of	 patients	 with	 Smith-Magenis	 syndrome	

harbored	 pathogenic	 mutations	 in	 genes	 known	 to	 implicate	 other	 syndromes	 with	

overlapping	 phenotypes	 (e.g.,	 Kabuki	 syndrome,	 autism	 spectrum	 disorder)272.	 Such	

overlap	can	be	explained	by	many	factors,	acting	alone	or	in	combination.	Mutations	in	

these	 genes	 participate	 in	 same	 or	 similar	 pathways	 that	 –	 if	 perturbed	 –	 result	 in	 a	

disease	phenotype.	In	the	specific	case	of	this	thesis	work,	transcriptional	regulation	is	

the	most	 plausible	 pathway	 to	 be	 disrupted	 in	 CHH	 and	CdLS	 patients.	 Although	 one	

cannot	exclude	the	presence	of	false	positives	due	to	misdiagnosis,	it	is	highly	unlikely	

to	 be	 the	 case	 for	 all	 instances	 of	 overlapping	phenotypes	 among	different	 disorders.	

One	possible	explanation	is	that	–	depending	on	the	type	of	mutation	–	each	gene	can	be	

implicated	 in	 more	 than	 one	 disorder.	 Two	 striking	 examples	 are	 CHD7	 and	 SOX10,	

where	 usually	 PTVs	 underlie	 more	 severe	 phenotypes	 such	 as	 CHARGE	 and	

Waardenburg	 syndromes,	 while	 missense	 variants	 are	 present	 in	 CHH	 patients69,101.	

Depending	 by	 other	 intervening	 factors	 (i.e.	 additional	 mutations	 in	 other	 genes,	
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environmental	 factors,	 different	 epigenetic	 signatures)	 similar	mutations	 in	 the	 same	

gene	can	result	in	highly	variable	phenotypes.	

A	second	unbiased	strategy	employed	a	statistical	analysis	(RVAS)	to	observe	a	

cumulative,	significant	enrichment	of	rare	variants	in	cases	compared	to	controls.	As	a	

proof-of-principle	 of	 the	 validity	 of	 gene-collapsed	 RVAS,	 genome-wide	 significant	

associations	were	achieved	by	the	two	most	frequently	mutated	genes	in	CHH	patients.	

However,	given	the	small	sample	size	of	our	cases	and	controls	cohorts,	 the	statistical	

power	of	this	analysis	was	not	sufficient	to	generate	genome-wide	significance	for	other	

CHH	 genes.	 The	 release	 of	 larger	 sample-centered	 datasets	 of	 controls	with	 available	

genotype	 data,	 together	 with	 an	 expanded	 CHH	 cohort	 will	 increase	 the	 statistical	

power	of	 the	RVAS	analysis.	A	pathway-collapsed	RVAS	 strategy	 is	 already	part	of	 an	

ongoing	 collaboration	 with	 Zoltán	 Kutalik,	 PhD	 (Institute	 of	 Social	 and	 Preventive	

Medicine,	CHUV).		

	 We	 are	 witnessing	 an	 unprecedented	 era	 for	 human	 genetics.	 The	 rapid	

advancement	 of	 sequencing	 technologies,	 together	 with	 the	 development	 of	 fast,	

reliable	 and	 accurate	 bioinformatics	 tools	 is	 permitting	 to	 finally	 shed	 light	 on	 the	

complex	molecular	 links	 between	 genotypes	 and	phenotypes.	 The	 advent	 of	HTS	 and	

WES	in	particular	expanded	our	knowledge	on	human	variation,	increasing	the	number	

of	individuals	in	control	datasets	by	almost	two	orders	of	magnitude	in	few	years.	This	

thesis	work	started	 in	2012,	when	 the	reference	dataset	 for	human	variation	was	 the	

1000	Genomes	Project,	providing	low-coverage,	whole-genome	genetic	information	on	

1,092	controls	from	different	populations115.	Later,	the	number	of	sequenced	controls	in	

the	 1000	 Genomes	 Project	 raised	 to	 2,504273.	 Other	 parallel	 projects	 using	 WES	 in	
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thousands	 of	 individuals	 became	 available	 to	 the	 public,	 such	 as	 the	 NHLBI	 Exome	

Sequencing	Project	(ESP)	with	6,500	exomes	(http://evs.gs.washington.edu/EVS/)	and	

the	 Exome	 Aggregation	 Consortium	 (ExAC),	 with	 66,076	 exomes	 112.	 At	 the	 present	

time,	 the	 largest	 public	 database	 of	 human	 variation	 is	 the	 Genome	 Aggregation	

Database	 (gnomAD),	 with	 ~120,000	 exomes	 and	 ~14,000	 genomes	 sequenced	

(http://gnomad.broadinstitute.org).	 Given	 the	 increasing	 availability	 of	 sequencing	

methods	and	the	ongoing	efforts	of	private	and	public	entities	to	sequence	as	many	as	

possible	 persons,	 it	 is	 estimated	 that	 up	 to	 2	 billion	 of	 human	 genomes	 could	 be	

sequenced	by	2025274.		

Thus,	the	growing	availability	of	genetic	tests	raises	the	need	for	collaboration	of	

many	 stakeholders	 and	 professionals:	 1)	 computer	 scientists	 and	 services	 for	 data	

storage	and	computational	analyses,	2)	bioinformaticians	and	geneticists	to	process	and	

interpret	 the	 information	deriving	 from	such	data,	and	3)	clinicians	 to	deliver	genetic	

results	 to	patients	–	 in	 collaboration	with	genetic	 counsellors.	 Such	multi-disciplinary	

effort	is	desired	in	a	society	where	the	“uberization”	of	medicine275	is	spreading	in	the	

population,	 in	 order	 to	 tackle	 any	 dangerous	 outcome	 (i.e.,	 self-diagnosis	 or	 self-

medication	in	patients	receiving	a	genetic	testing).	

With	 this	 thesis,	 I	 demonstrate	 the	 exceptional	 power	 of	 WES	 coupled	 with	

bioinformatics	 to	 increase	 our	 knowledge	 on	 the	 genetic	 architecture	 of	 CHH,	 and	 to	

identify	with	a	faster	pace	new	genes	associated	with	the	disease.	However,	we	are	only	

scratching	 the	 surface.	 In	 the	 last	 years,	WES	has	 been	 the	 technology	 of	 choice	 over	

whole-genome	sequencing	(WGS)	for	several	reasons:	1)	it	was	3-4	times	cheaper	than	

WGS,	2)	it	generated	a	higher	throughput	of	reads	compared	to	WGS,	and	3)	it	covered	
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the	 exons	 of	 protein-coding	 genes,	where	 85%	of	 disease-causing	 variants	 have	 been	

reported	 to	date29,30.	 The	dream	of	 the	$1,000	genome	has	 lately	become	 reality,	 and	

recent	claims	from	sequencing	machine	companies	promise	to	bring	the	price	of	a	full	

genome	 sequence	 to	 $100		

after	 2018	 (https://www.illumina.com/company/news-center/press-releases/press-

release-details.html?newsid=2236383).	With	 these	premises,	 the	 “democratization”	of	

genome	analysis276	and	of	healthcare	in	general277	is	not	far	off.	WGS	will	soon	replace	

WES	to	investigate	genomic	variation—a	change	we	are	already	beginning	to	see	today.	

In	 this	 thesis,	WES	 and	 aCGH	were	 performed	 to	 identify	 putative	 pathogenic	

SNVs,	 InDels	 and	CNVs	 in	CHH	patients.	However,	 the	 future	 implementation	of	WGS	

will	 enable	 researchers	 to	 more	 comprehensively	 investigate	 the	 genetic	 etiology	 of	

CHH.	This	will	include	the	ability	to	evaluate	additional	types	of	variation	in	non-coding	

regions,	 regions	 regulating	 the	 structural	 organization	 of	 the	 genome,	 and	 complex	

chromosomal	 abnormalities	 not	 currently	 detected	 by	 traditional	 WES.	 The	 roles	 of	

such	 variation	 in	 disease	 pathogenesis	 has	 only	 recently	 been	 highlighted,	 and	 the	

interest	 in	 these	 fields	 is	 growing278-281.	 WGS	 will	 be	 the	 all-in-one	 experiment	 to	

evaluate	the	full	picture	of	genomic	variation	in	CHH	patients,	and	will	result	in	a	better	

knowledge	of	the	genetic	etiology	of	a	spectrum	of	GnRH	deficiency	disorders.	
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Figure	S1.	ExAC	European	individuals	show	marginal	mutation	prevalence	in	CHH	genes.	
Histograms	showing	CHH	genes	mutational	estimated	prevalence	in	ExAC	non-Finnish	European	
(n=33,370).	 Each	 bar	 contains	 the	 frequency	 of	 nonsynonymous	 (orange),	 splicing	 (blue)	 and	
nonsense	(purple)	variants	accounting	for	each	gene	prevalence.	Estimation	of	prevalence	was	
calculated	from	the	number	of	heterozygous	and	homozygous	variants	found	in	each	gene.	
	
	

	
Figure	 S2.	 Familial	 and	 sporadic	 cases	display	different	burden	of	 rare	 variants	 in	 CHH	
genes.	
Frequencies	 of	 familial	 (A)	 and	 sporadic	 (B)	 CHH,	 KS	 and	 nCHH	 probands	with	 no	mutations	
(grey)	and	with	at	least	one	mutation	in	CHH	genes.	
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Figure	S3.	Different	strategies	in	variants	filtering.	Mutation	prevalence	of	known	CHH	genes	in	(A)	CHH,	(B)	CDGP,	(C)	CoLaus	and	(D)	ExAC	NFE	
individuals	using	three	different	filtering	strategies:	(1)	MAF<1%	in	ExAC	NFE	and	at	 least	one	deleterious	prediction	in	SIFT	and/or	PolyPhen-2	for	
missense	variants	(blue	bars);	(2)	MAF<1%	in	ExAC	NFE	and	two	deleterious	predictions	in	SIFT	and	PolyPhen-2	for	missense	variants	(yellow	bars);	
(3)	MAF<0.1%	in	ExAC	NFE	and	at	least	one	deleterious	prediction	in	SIFT	and/or	PolyPhen-2	for	missense	variants	(red	bars).	
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Figure	S4.	Sanger	sequencing	chromatogram	showing	FGFR1	de	novo,	putative	mosaic	
variant.	
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Figure	S5.	Examples	of	a	true	positive	and	false	positive	de	novo	calls	by	TrioDeNovo	on	
IGV.	
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Table	S1.	OMIM	entries	with	“hypogonadotropic	hypogonadism”	in	clinical	synopses.	
MIM	
Number	

Title	

#101800	 ACRODYSOSTOSIS	1	WITH	OR	WITHOUT	HORMONE	RESISTANCE;	ACRDYS1	
#609441	 ACROMESOMELIC	DYSPLASIA,	DEMIRHAN	TYPE;	AMDD	
#612079	 ALOPECIA,	NEUROLOGIC	DEFECTS,	AND	ENDOCRINOPATHY	SYNDROME;	ANES	
#614307	 ALPHA-METHYLACYL-CoA	RACEMASE	DEFICIENCY;	AMACRD	
#203800	 ALSTROM	SYNDROME;	ALMS	
#312300	 ANDROGEN	INSENSITIVITY,	PARTIAL;	PAIS	
#615234	 ANEMIA,	HYPOCHROMIC	MICROCYTIC,	WITH	IRON	OVERLOAD	2;	AHMIO2	
#208900	 ATAXIA-TELANGIECTASIA;	AT	
#240300	 AUTOIMMUNE	POLYENDOCRINE	SYNDROME,	TYPE	I,	WITH	OR	WITHOUT	REVERSIBLE	

METAPHYSEAL	DYSPLASIA;	APS1	
#209900	 BARDET-BIEDL	SYNDROME	1;	BBS1	
#615987	 BARDET-BIEDL	SYNDROME	10;	BBS10	
#615988	 BARDET-BIEDL	SYNDROME	11;	BBS11	
#615989	 BARDET-BIEDL	SYNDROME	12;	BBS12	
#615993	 BARDET-BIEDL	SYNDROME	16;	BBS16	
#615994	 BARDET-BIEDL	SYNDROME	17;	BBS17	
#615996	 BARDET-BIEDL	SYNDROME	19;	BBS19	
#615981	 BARDET-BIEDL	SYNDROME	2;	BBS2	
#615982	 BARDET-BIEDL	SYNDROME	4;	BBS4	
#615983	 BARDET-BIEDL	SYNDROME	5;	BBS5	
#615985	 BARDET-BIEDL	SYNDROME	8;	BBS8	
#215470	 BOUCHER-NEUHAUSER	SYNDROME;	BNHS	
#212112	 CARDIOMYOPATHY,	DILATED,	WITH	HYPERGONADOTROPIC	HYPOGONADISM	
#214800	 CHARGE	SYNDROME	
#302950	 CHONDRODYSPLASIA	PUNCTATA	1,	X-LINKED	RECESSIVE;	CDPX1	
#612513	 CHROMOSOME	2p16.1-p15	DELETION	SYNDROME	
#300869	 CHROMOSOME	Xq27.3-q28	DUPLICATION	SYNDROME	
#216400	 COCKAYNE	SYNDROME	A;	CSA	
#604168	 CONGENITAL	CATARACTS,	FACIAL	DYSMORPHISM,	AND	NEUROPATHY;	CCFDN	
#212065	 CONGENITAL	DISORDER	OF	GLYCOSYLATION,	TYPE	Ia;	CDG1A	
#608540	 CONGENITAL	DISORDER	OF	GLYCOSYLATION,	TYPE	Ik;	CDG1K	
#614921	 CONGENITAL	DISORDER	OF	GLYCOSYLATION,	TYPE	It;	CDG1T	
#300882	 CORNELIA	DE	LANGE	SYNDROME	5;	CDLS5	
#615849	 CULLER-JONES	SYNDROME;	CJS	
#604292	 ECTRODACTYLY,	ECTODERMAL	DYSPLASIA,	AND	CLEFT	LIP/PALATE	SYNDROME	3;	EEC3	
#227650	 FANCONI	ANEMIA,	COMPLEMENTATION	GROUP	A;	FANCA	
#227646	 FANCONI	ANEMIA,	COMPLEMENTATION	GROUP	D2;	FANCD2	
#600901	 FANCONI	ANEMIA,	COMPLEMENTATION	GROUP	E;	FANCE	
#230400	 GALACTOSEMIA	
#212840	 GORDON	HOLMES	SYNDROME;	GDHS	
#615465	 HARTSFIELD	SYNDROME;	HRTFDS	
#235200	 HEMOCHROMATOSIS,	TYPE	1;	HFE1	
#602782	 HISTIOCYTOSIS-LYMPHADENOPATHY	PLUS	SYNDROME	
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#606407	 HYPOTONIA-CYSTINURIA	SYNDROME	
#308100	 ICHTHYOSIS,	X-LINKED;	XLI	
#614962	 LEPTIN	DEFICIENCY	OR	DYSFUNCTION;	LEPD	
#607694	 LEUKODYSTROPHY,	HYPOMYELINATING,	7,	WITH	OR	WITHOUT	OLIGODONTIA	AND/OR	

HYPOGONADOTROPIC	HYPOGONADISM;	HLD7	
#614381	 LEUKODYSTROPHY,	HYPOMYELINATING,	8,	WITH	OR	WITHOUT	OLIGODONTIA	AND/OR	

HYPOGONADOTROPIC	HYPOGONADISM;	HLD8	
#613724	 LEUKOENCEPHALOPATHY	WITH	DYSTONIA	AND	MOTOR	NEUROPATHY	
#613075	 MACS	SYNDROME	
#615381	 MANDIBULAR	HYPOPLASIA,	DEAFNESS,	PROGEROID	FEATURES,	AND	LIPODYSTROPHY	

SYNDROME;	MDPL	
#248800	 MARINESCO-SJOGREN	SYNDROME;	MSS	
#212720	 MARTSOLF	SYNDROME	
#309580	 MENTAL	RETARDATION-HYPOTONIC	FACIES	SYNDROME,	X-LINKED,	1;	MRXHF1	
#300987	 MENTAL	RETARDATION,	X-LINKED,	SYNDROMIC,	BORCK	TYPE;	MRXSBRK	
#300354	 MENTAL	RETARDATION,	X-LINKED,	SYNDROMIC,	CABEZAS	TYPE;	MRXSC	
#614231	 MICROCEPHALY,	EPILEPSY,	AND	DIABETES	SYNDROME;	MEDS	
#206900	 MICROPHTHALMIA,	SYNDROMIC	3;	MCOPS3	
#617053	 MIRAGE	SYNDROME;	MIRAGE	
#615084	 MITOCHONDRIAL	DNA	DEPLETION	SYNDROME	11;	MTDPS11	
#271245	 MITOCHONDRIAL	DNA	DEPLETION	SYNDROME	7	(HEPATOCEREBRAL	TYPE);	MTDPS7	
#300845	 MOYAMOYA	DISEASE	4	WITH	SHORT	STATURE,	HYPERGONADOTROPIC	HYPOGONADISM,	AND	

FACIAL	DYSMORPHISM;	MYMY4	
#160900	 MYOTONIC	DYSTROPHY	1;	DM1	
#602668	 MYOTONIC	DYSTROPHY	2;	DM2	
#163950	 NOONAN	SYNDROME	1;	NS1	
#275400	 OLIVER-MCFARLANE	SYNDROME;	OMCS	
#616138	 PERRAULT	SYNDROME	5;	PRLTS5	
#262600	 PITUITARY	HORMONE	DEFICIENCY,	COMBINED,	2;	CPHD2	
#182230	 PITUITARY	HORMONE	DEFICIENCY,	COMBINED,	5,	INCLUDED;	CPHD5	
#616113	 POLYENDOCRINE-POLYNEUROPATHY	SYNDROME;	PEPNS	
#176270	 PRADER-WILLI	SYNDROME;	PWS	
#259050	 PRIMROSE	SYNDROME;	PRIMS	
#157640	 PROGRESSIVE	EXTERNAL	OPHTHALMOPLEGIA	WITH	MITOCHONDRIAL	DNA	DELETIONS,	

AUTOSOMAL	DOMINANT	1;	PEOA1	
#609286	 PROGRESSIVE	EXTERNAL	OPHTHALMOPLEGIA	WITH	MITOCHONDRIAL	DNA	DELETIONS,	

AUTOSOMAL	DOMINANT	3;	PEOA3	
#600955	 PROPROTEIN	CONVERTASE	1/3	DEFICIENCY	
#103580	 PSEUDOHYPOPARATHYROIDISM,	TYPE	IA;	PHP1A	
#612462	 PSEUDOHYPOPARATHYROIDISM,	TYPE	IC;	PHP1C	
#268400	 ROTHMUND-THOMSON	SYNDROME;	RTS	
#615547	 SCHAAF-YANG	SYNDROME;	SHFYNG	
#616629	 SENIOR-LOKEN	SYNDROME	9;	SLSN9	
#617159	 SIFRIM-HITZ-WEISS	SYNDROME;	SIHIWES	
#615768	 SPINOCEREBELLAR	ATAXIA,	AUTOSOMAL	RECESSIVE	16;	SCAR16	
#613266	 WAARDENBURG	SYNDROME,	TYPE	4C;	WS4C	
#277700	 WERNER	SYNDROME;	WRN	
#613406	 WITTEVEEN-KOLK	SYNDROME;	WITKOS	
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#241080	 WOODHOUSE-SAKATI	SYNDROME	
#610651	 XERODERMA	PIGMENTOSUM,	COMPLEMENTATION	GROUP	B;	XPB	
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Table	S2.	Mutation	prevalence	of	CHH	genes	in	screened	cohorts.	

Gene	 CHH	 KS	 nCHH	 CDGP	 CoLaus	
1000	

Genomes	
EUR	

ExAC	NFE	

ANOS1	 1.7%	 3.3%	 0.0%	 0.0%	 0.0%	 1.0%	 0.6%	

SEMA3A	 2.6%	 4.9%	 0.0%	 0.0%	 0.7%	 1.0%	 1.0%	

FGF8	 1.7%	 3.3%	 0.0%	 0.0%	 0.0%	 0.0%	 0.1%	

FGF17	 0.9%	 1.6%	 0.0%	 0.0%	 0.0%	 0.0%	 0.0%	

SOX10	 4.3%	 6.6%	 1.8%	 0.0%	 0.2%	 0.0%	 0.2%	

IL17RD	 2.6%	 3.3%	 1.8%	 0.0%	 0.0%	 1.5%	 1.3%	

AXL	 3.4%	 1.6%	 5.5%	 1.4%	 2.0%	 2.0%	 3.0%	

FGFR1	 15.5%	 19.7%	 10.9%	 1.4%	 1.0%	 0.5%	 1.3%	

CHD7	 13.8%	 18.0%	 9.1%	 0.0%	 0.2%	 2.5%	 3.7%	

HS6ST1	 1.7%	 1.6%	 1.8%	 1.4%	 1.2%	 1.0%	 1.1%	

PROKR2	 5.2%	 8.2%	 1.8%	 1.4%	 3.0%	 2.0%	 1.9%	

WDR11	 1.7%	 1.6%	 1.8%	 0.0%	 3.0%	 1.5%	 2.5%	

PROK2	 0.9%	 0.0%	 1.8%	 0.0%	 0.2%	 0.0%	 0.2%	

GNRH1	 1.7%	 0.0%	 3.6%	 0.0%	 0.2%	 0.0%	 0.5%	

GNRHR	 3.4%	 0.0%	 7.3%	 0.0%	 3.0%	 0.5%	 1.7%	

KISS1	 1.7%	 0.0%	 3.6%	 0.0%	 0.0%	 0.0%	 0.1%	

KISS1R	 0.9%	 0.0%	 1.8%	 0.0%	 0.2%	 0.5%	 0.3%	

TAC3	 0.9%	 0.0%	 1.8%	 1.4%	 0.2%	 0.0%	 0.1%	

TACR3	 2.6%	 0.0%	 5.5%	 0.0%	 1.5%	 1.0%	 0.7%	

FEZF1	 0.0%	 0.0%	 0.0%	 1.4%	 0.2%	 0.5%	 0.2%	
Prevalence	 of	 putative	 mutations	 in	 cases	 and	 controls.	 ExAC	 NFE	 prevalence	 was	 estimated	 by	
dividing	 the	 sum	of	 heterozygous	 and	 homozygous	mutations	 in	 each	 gene	 to	 the	 total	 population	
(n=33,370).	
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Table	S3.	Putative	mutations	identified	in	the	CHH	cohort.	

Sample	 Phenotype	 Gene	 nt	change	 aa	change	 Zyg	 SIFT	 PPH2	 MaxEnt	 In	vitro	 ExAC	 ExAC	NFE	 Previous	report	

1	 KS	 CHD7	 c.3056T>G	 p.Phe1019Cys	 Het	 D	 D	 		 		 	private	 	private	 		

2	 KS	 CHD7	 c.1397C>T	 p.Ser466Leu	 Het	 D	 T	 		 		 0.11%	 0.20%	 Felix	2006,	AJMG	

3	 KS	 CHD7	 c.4914T>G	 p.Asp1638Glu	 Het	 D	 D	 		 		 0.00%	 0.00%	 		

4	 KS	 FGFR1	 c.2058delC	 p.Phe686fs	 Het	 		 		 		 		 	private	 	private	 		

5	 KS	 FGFR1	 c.670G>C	 p.Asp224His	 Het	 D	 D	 		 		 	private	 	private	 		

6	 KS	 SEMA3A	 c.2201G>A	 p.Arg734Gln	 Het	 D	 D	 		 		 0.00%	 0.00%	 		

7	 nCHH	 CHD7	 c.7199G>A	 p.Arg2400Gln	 Het	 T	 D	 		 		 0.00%	 0.00%	 		

8	 nCHH	 PROKR2	
c.1019C>G	 p.Thr340Ser	 Het	 D	 D	 		 		 private	 private	 		

c.332T>G	 p.Met111Arg	 Het	 D	 D	 		 		 private	 private	 		

9	 nCHH	
GNRHR	 c.785G>A	 p.Arg262Gln	 Hom	 D	 D	 		 		 0.20%	 0.24%	 		

CHD7	 c.8950C>T	 p.Leu2984Phe	 Het	 D	 T	 		 		 0.45%	 0.97%	 		

10	 KS	 KAL1	 c.1756C>T	 p.Gln586X	 Hem		 		 		 		 		 	private	 	private	 Miraoui	2013,	AJHG	

11	 KS	 SOX10	 c.267delC	 p.Met90fs	 Het	 		 		 		 		 	private	 	private	 		

12	 KS	 PROKR2	 c.518T>G	 p.Leu173Arg	 Het	 D	 D	 		 	LOF	 0.22%	 0.35%	 Reynaud	2012,	JCEM	

13	 KS	
SEMA3A	 c.196C>T	 p.Arg66Trp	 Het	 D	 D	 		 		 0.05%	 0.08%	 Hanchate	2012,	Plos	Genet	

CHD7	 c.4847A>G	 p.Tyr1616Cys	 Het	 D	 D	 		 		 	private	 	private	 Balasubramanian	2014,	PNAS	

14	 KS	
IL17RD	 c.1690T>G	 p.Phe564Val	 Het	 T	 D	 		 		 0.01%	 0.01%	 		

FGFR1	 c.232C>T	 p.Arg78Cys	 Het	 D	 D	 		 		 	private	 	private	 Pitteloud	2006,	Mol	Cell	Endocrinol	
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15	 KS	 FGF17	 c.287G>A	 p.Arg96Gln	 Het	 T	 D	 		 		 	private	 	private	 		

16	 KS	
FGFR1	 c.1430+1delG	 		 Het	 		 		 -207.8%	 		 	private	 	private	 		

CHD7	 c.1105C>G	 p.Pro369Ala	 Het	 T	 D	 		 		 0.00%	 0.00%	 		

17	 KS	 PROKR2	 c.518T>G	 p.Leu173Arg	 Het	 D	 D	 		 	LOF	 0.22%	 0.35%	 Reynaud	2012,	JCEM	

18	 nCHH	 AXL	 c.1549G>A	 p.Gly517Ser	 Het	 D	 D	 		 		 0.45%	 0.68%	 		

19	 nCHH	 GNRH1	 c.87delA	 p.Leu30fs	 Hom	 		 		 		 		 	private	 	private	 		

20	 nCHH	 TACR3	 c.443A>T	 p.His148Leu	 Hom	 D	 D	 		 	LOF	 	private	 	private	 Guran	2009,	JCEM	

21	 nCHH	 FGFR1	 c.1756_1763dupAACCCCAG	 p.Ser588fs	 Het	 		 		 		 		 	private	 	private	 		

22	 KS	 SEMA3A	 c.1360+2T>G	 		 Het	 		 		 -87.2%	 		 	private	 	private	 		

23	 KS	
IL17RD	 c.1136A>G	 p.Tyr379Cys	 Het	 T	 D	 		 	LOF	 0.01%	 0.01%	 Miraoui	2013,	AJHG	

FGFR1	 c.1042G>A	 p.Gly348Arg	 Het	 D	 D	 		 		 	private	 	private	 		

24	 KS	 WDR11	 c.1342C>T	 p.Arg448Trp	 Het	 D	 D	 		 		 0.01%	 0.00%	 		

25	 nCHH	
GNRHR	

c.31C>A	 p.Gln11Lys	 Het	 T	 T	 		 LOF	 0.02%	 0.03%	 Meysing	2004,	JCEM	

c.30T>A	 p.Asn10Lys	 Het	 T	 T	 		 LOF	 0.02%	 0.03%	 Gianetti	2010,	JCEM	

WDR11	 c.1342C>T	 p.Arg448Trp	 Het	 D	 D	 		 		 0.01%	 0.00%	 		

26	 nCHH	 TACR3	 c.824G>A	 p.Trp275X	 Hom	 		 		 		 		 0.02%	 0.04%	 Gianetti	2010,	JCEM	

27	 nCHH	
KISS1R	 c.772C>T	 p.Arg258Trp	 Het	 D	 D	 		 		 0.00%	 0.00%	 		

SOX10	 c.481C>T	 p.Arg161Cys	 Het	 D	 D	 		 		 	private	 	private	 		
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28	 KS	 FGFR1	 c.1042G>A	 p.Gly348Arg	 Het	 D	 D	 		 		 	private	 	private	 Bailleul-Forestier	2010,	Int	J	Paediatr	Dent	

29	 KS	 AXL	 c.1549G>A	 p.Gly517Ser	 Het	 D	 D	 		 		 0.45%	 0.68%	 		

30	 KS	 PROKR2	 c.518T>G	 p.Leu173Arg	 Het	 D	 D	 		 	LOF	 0.22%	 0.35%	 Reynaud	2012,	JCEM	

31	 nCHH	

GNRHR	
c.350T>G	 p.Leu117Arg	 Het	 D	 D	 		 		 	private	 	private	 Zhu	2015,	JCEM	

c.266T>A	 p.Leu89X	 Het	 		 		 		 		 	private	 	private	 		

FGFR1	 c.1368G>T	 p.Met456Ile	 Het	 D	 T	 		 		 0.04%	 0.07%	 Sykiotis	2010,	PNAS	

AXL	 c.1549G>A	 p.Gly517Ser	 Het	 D	 D	 		 		 0.45%	 0.68%	 		

32	 nCHH	 KISS1	 c.349T>C	 p.Phe117Leu	 Het	 T	 T	 		 LOF	 0.02%	 0.07%	 Chan	2011,	JCEM	

33	 nCHH	 KISS1	 c.154_156dupCCG	 p.Pro52dup	 Het	 		 		 		 		 0.00%	 0.00%	 		

34	 KS	 KAL1	 c.256T>A	 p.Cys86Ser	 Hem		 D	 D	 		 		 	private	 	private	 		

35	 KS	

FGFR1	 c.1961dupA	 p.Tyr654X	 Het	 		 		 		 		 	private	 	private	 		

CHD7	 c.8416C>G	 p.Leu2806Val	 Het	 T	 D	 		 		 0.11%	 0.09%	 Bilan	2012,	J	Mol	Diag	

SOX10	 c.191A>T	 p.Asp64Val	 Het	 D	 T	 		 		 0.00%	 0.00%	 		

36	 nCHH	 PROK2	 c.163delA	 p.Ile55fs	 Hom	 		 		 		 		 0.01%	 0.02%	 Cole	2008,	JCEM	

37	 KS	
FGF8	 c.77C>T	 p.Pro26Leu	 Het	 T	 T	 		 LOF	 0.04%	 0.49%	 Falardeau	2008,	JCI	

SOX10	 c.89C>A	 p.Ser30X	 Het	 		 		 		 		 	private	 	private	 		

38	 KS	 PROKR2	 c.271C>T	 p.Leu91Phe	 Het	 D	 D	 		 		 0.00%	 0.00%	 		

39	 nCHH	
HS6ST1	 c.652C>T	 p.Pro218Ser	 Het	 T	 D	 		 		 0.16%	 0.27%	 		

CHD7	 c.5051-4C>T	 		 Het	 		 		 +20.3%	 		 0.54%	 0.80%	 		

40	 nCHH	
GNRH1	 c.141G>C	 p.Glu47Asp	 Het	 T	 D	 		 		 0.14%	 0.17%	 		

FGFR1	 c.622-1G>T	 		 Het	 		 		 -134.5%	 		 	private	 	private	 		



	 160	

41	 nCHH	 AXL	 c.1549G>A	 p.Gly517Ser	 Het	 D	 D	 		 		 0.45%	 0.68%	 		

42	 KS	 FGFR1	 c.2233C>T	 p.Pro745Ser	 Het	 D	 D	 		 		 	private	 	private	 Sato	2004,	JCEM	

43	 nCHH	 FGFR1	 c.2464C>T	 p.Arg822Cys	 Het	 D	 D	 		 		 0.02%	 0.02%	 		

44	 nCHH	
TACR3	 c.824G>A	 p.Trp275X	 Het	 		 		 		 		 0.02%	 0.04%	 Gianetti	2010,	JCEM	

TAC3	 c.248A>G	 p.His83Arg	 Het	 D	 D	 		 		 0.02%	 0.02%	 		

45	 KS	
FGFR1	 c.1093_1094dupAG	 p.Pro366fs	 Het	 		 		 		 		 	private	 	private	 		

CHD7	 c.8188G>A	 p.Ala2730Thr	 Het	 T	 D	 		 		 0.00%	 0.00%	 		

46	 nCHH	

IL17RD	 c.2068T>A	 p.Ser690Thr	 Het	 D	 D	 		 		 0.00%	 0.01%	 		

GNRHR	
c.784C>T	 p.Arg262Trp	 Het	 D	 D	 		 	LOF	 0.00%	 0.00%	 De	Roux	1997,	NEJM	

c.317A>G	 p.Gln106Arg	 Het	 D	 D	 		 	LOF	 0.25%	 0.40%	 De	Roux	1997,	NEJM	

47	 KS	 FGFR1	 c.1038_1039insTT	 p.Ile347fs	 Het	 		 		 		 		 	private	 	private	 		

48	 KS	 CHD7	 c.7282C>T	 p.Arg2428X	 Het	 		 		 		 		 	private	 	private	 		

49	 KS	 FGFR1	 c.296A>G	 p.Tyr99Cys	 Het	 D	 D	 		 	LOF	 	private	 	private	 Dodè	2003,	Nat	Genet;	Raivio	2009,	JCEM	

50	 KS	 PROKR2	 c.518T>G	 p.Leu173Arg	 Het	 D	 D	 		 	LOF	 0.22%	 0.35%	 Reynaud	2012,	JCEM	

51	 KS	
HS6ST1	 c.652C>T	 p.Pro218Ser	 Het	 T	 D	 		 		 0.16%	 0.27%	 		

CHD7	 c.2966G>A	 p.Cys989Tyr	 Het	 D	 D	 		 		 	private	 	private	 		

52	 KS	 FGFR1	 c.790A>T	 p.Asn264Tyr	 Het	 D	 D	 		 		 	private	 	private	 		

53	 KS	 CHD7	 c.5051-4C>T	 		 Het	 		 		 +20.3%	 		 0.54%	 0.80%	 		

54	 nCHH	
FGFR1	 c.1306_1307dupTC	 p.Met437fs	 Het	 		 		 		 		 	private	 	private	 		

CHD7	 c.2613+5G>A	 		 Het	 		 		 -40.7%	 		 0.00%	 0.00%	 		
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55	 KS	 SOX10	 c.530G>A	 p.Arg177Gln	 Het	 D	 D	 		 		 	private	 	private	 		

56	 KS	 CHD7	 c.3320C>T	 p.Ala1107Val	 Het	 D	 D	 		 		 	private	 	private	 		

57	 nCHH	 CHD7	 c.3973T>C	 p.Tyr1325His	 Het	 D	 D	 		 		 0.00%	 0.01%	 Bergman	2011,	J	Pediatr	

58	 nCHH	 FGFR1	 c.1552+1G>A	 		 Het	 		 		 -96.8%	 		 	private	 	private	 		

59	 KS	 FGF8	 c.77C>T	 p.Pro26Leu	 Het	 T	 T	 		 LOF	 0.04%	 0.49%	 Falardeau	2008,	JCI	

	
Abbreviations	 as	 follows:	 KS,	 Kallmann	 syndrome;	 nCHH,	 normosmic	 congenital	 hypogonadotropic	 hypogonadism;	 Zyg,	 zygosity;	 Het,	 heterozygous;	 Hom,	
homozygous;	Hem,	hemizygous;	D,	deleterious;	T,	 tolerated;	PPH2,	PolyPhen-2.	PolyPhen-2	 “possibly	damaging”	and	 “probably	damaging”	predictions	were	
considered	both	as	“deleterious”,	while	“benign”	were	defined	as	“tolerated”	for	consistency;	LOF,	loss-of-function,	supporting	deleteriousness	of	variant	when	
both	in	silico	algorithms	predicted	a	tolerated	effect.	
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Table	S4.	Number	of	screened	individuals	harboring	mutated	CHH	genes.	

#	of	genes	mutated	
CHH	

%		

CHH	

p-value	
vs.	

CoLaus	

p-value	
vs.	

1000G	

p-value	
vs.	

CDGP	
KS	

%	

KS	

p-
value	
vs.	

CoLaus	

p-value	
vs.	

1000G	

p-value	
vs.	

CDGP	
nCHH	 %	

nCHH	

p-value	
vs.	

CoLaus	

p-
value	
vs.	

1000G	

p-value	
vs.	

CDGP	
CDGP	 %	

CDGP	 CoLaus	 %	
CoLaus	 1000G	

%	

1000G	

0	genes	
57	 50.0%	 5.5E-12	 6.9E-14	 7.7E-11	 25	 42.6%	 6.8E-11	 5.6E-13	 5.4E-11	 32	 58.2%	 1.3E-04	 2.0E-06	 3.0E-06	 67	

93.1%	
333	 82.2%	 174	 88.3%	

1	gene	
42	 35.3%	 5.8E-06	 1.5E-07	 5.8E-07	 28	 44.3%	 4.6E-07	 1.2E-08	 3.7E-08	 14	 25.5%	 ns	 0.008	 0.002	 4	

5.6%	
64	 15.8%	 21	 10.7%	

≥2	genes	
17	 14.7%	 6.4E-07	 1.7E-06	 0.002	 8	 13.1%	 1.4E-05	 2.0E-04	 0.012	 9	 16.4%	 3.0E-05	 2.5E-05	 0.002	 1	

1.4%	
8	 2.0%	 2	 1.0%	

	
Number	and	 frequency	of	cases	and	controls	having	no	rare	variants	 in	CHH	genes,	one	gene	mutated	or	at	 least	 two	genes	mutated	(oligogenicity).	
Differences	between	CHH,	KS,	and	nCHH	vs.	CDGP	probands	and	controls	were	analyzed	via	a	two-sided	Fisher’s	exact	test.	
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Table	S5.	PTVs	identified	in	CHH	genes	in	patients	and	ExAC	controls.		

	 	 	 CHH	(n=116)	 ExAC	NFE	(n=33,370)	

Gene	 Inheritance	 pLi	 #	of	PTVs	 Frequency	 #	of	PTVs	 Frequency	

IL17RD	 AD	 0	 0	 0.0%	 12	 0.036%	
TACR3	 AR	 0	 1	 0.9%	 5	 0.015%	
KISS1R	 AR	 0	 0	 0.0%	 4	 0.012%	
PROKR2	 AR	 0	 0	 0.0%	 3	 0.009%	
GNRHR	 AR	 0.01	 1	 0.9%	 1	 0.003%	
TAC3	 AR	 0.04	 0	 0.0%	 1	 0.003%	
NSMF	 AD	 0.05	 0	 0.0%	 4	 0.012%	
WDR11	 AD	 0.07	 0	 0.0%	 10	 0.030%	
PCSK1	 AR	 0.09	 0	 0.0%	 4	 0.012%	
GNRH1	 AR	 0.1	 1	 0.9%	 3	 0.009%	
PROK2	 AR	 0.27	 1	 0.9%	 2	 0.006%	
FEZF1	 AR	 0.3	 0	 0.0%	 5	 0.015%	
KISS1	 AR	 0.52	 0	 0.0%	 0	 0.0%	
AXL	 AD	 0.77	 0	 0.0%	 6	 0.018%	
FGF17	 AD	 0.87	 0	 0.0%	 1	 0.003%	
HS6ST1	 AD	 0.91	 0	 0.0%	 0	 0.0%	
SOX10	 AD	 0.91	 2	 1.7%	 0	 0.000%	
FGF8	 AD	 0.93	 0	 0.0%	 0	 0.000%	
ANOS1	 XLR	 0.94	 1	 0.9%	 2	 0.006%	
SEMA3A	 AD	 0.99	 1	 0.9%	 4	 0.012%	
FGFR1	 AD	 0.99	 9	 7.8%	 5	 0.015%	
CHD7	 AD	 1	 3	 2.6%	 1	 0.003%	
LEPR	 AR	 1	 0	 0.0%	 5	 0.015%	
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Table	S6.	CNVs	identified	in	CHH	trios	using	array-CGH.	

Pedigree	 Phenotype	 Genomic	coordinates	 CNV	type	 Genes	in	region	 Inheritance	

P313	 KS	 8:3699689-4005548	 Deletion	 CSMD1	 From	mother	

P310	 KS	 1:246174091-246700678	
1:247083777-247416826	

Duplication	
Duplication	

SMYD3	
ZNF695,	ZNF670,	ZNF124	 From	father	

P327	 KS	 2:220185142-220322498	 Duplication	 RESP18,	DNPEP,	DES,	SPEG	 From	mother	

P312	 nCHH	 14:32110536-32257043	 Deletion	 NUPBL	 From	father	
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Table	S7.	Rare	variants	identified	in	family-based	analyses.	

Gene	 Pedigree	 Inheritance	 Variant	

MGAT1	 P00163	 DN	 p.Arg129Trp	
TOP1MT	 P00163	 DN	 p.Gly419Arg	
BMX	 P00163	 XLR	 p.Glu422Ala	
DNAH1	 P00181	 AR	 p.Val1514Met/p.Asn2549Ser	
COL3A1	 P00181	 DN	 p.Gly459Arg	
SMC3	 P00181	 DN	 p.Cys549Tyr	
STS	 P00181	 XLR	 p.Pro517Ser	

CHRNA4	 P00184	 AR	 p.Pro554Leu/p.Glu92Gln	
PIEZO2	 P00184	 AR	 p.Arg1878His/p.Thr51Met	
CPXCR1	 P00184	 XLR	 p.Ala67Val	
FAM122B	 P00184	 XLR	 p.Ser207Pro	
RGAG1	 P00184	 XLR	 p.Ala839Thr	
ATRX	 P00267	 XLR	 p.Arg840Ile	
LCA10	 P00267	 XLR	 p.Gly148Arg	
PLOD2	 P00291	 AR	 p.Arg178His/p.Arg178His	
LRWD1	 P00310	 AR	 p.Val238Ile/p.Ala634Thr	
FAM47B	 P00310	 XLR	 p.Lys643Ile	
SLITRK2	 P00310	 XLR	 p.Ala760Ser	
LAMP2	 P00312	 XLR	 p.Gly221Arg	
PNMA5	 P00312	 XLR	 p.Arg96Cys	
RP2	 P00312	 XLR	 p.Asn19Lys	

CCDC64	 P00327	 AR	 p.Lys461Arg/p.Glu538Gln	
DUSP27	 P00327	 AR	 p.Arg493Trp/p.Phe1042Leu	
MACROD2	 P00327	 AR	 p.Gly314Arg/p.Gly314Arg	
NCOA1	 P00327	 AR	 p.Gly1276Arg/p.Ser1373Pro	
PKD1L2	 P00327	 AR	 p.Thr2145Met/p.Asp2063Glu	
ARSF	 P00327	 XLR	 p.Gly426Asp	

MAGEB1	 P00327	 XLR	 p.Tyr123Asn	
PHKA1	 P00327	 XLR	 p.Ala932Ser	
TFDP3	 P00327	 XLR	 p.Gln374Glu	
USP26	 P00327	 XLR	 p.Glu500Lys	
VMA21	 P00327	 XLR	 p.Arg39His	
BARHL1	 P00439	 DN	 p.Arg182Leu	
ERCC4	 P00439	 DN	 p.Arg740Cys	
RCAN1	 P00439	 DN	 p.Glu135Ala	
GUCY2F	 P00439	 XLR	 p.Gly434Arg	
WNK3	 P00439	 XLR	 p.Ala1305Val	
C11orf35	 P00454	 AR	 p.Glu463Val/p.Glu463Val	
DCHS2	 P00454	 AR	 p.Val1364Ala/p.Ala920fs	
DNHD1	 P00454	 AR	 p.Asn803Tyr/p.Ile4243Thr	
FAM193A	 P00454	 AR	 p.Ala12Val/p.Ala12Val	
GRIN3B	 P00454	 AR	 p.Val500Met/p.Ile706Val	
PKP3	 P00454	 AR	 p.Thr235Ser/p.Thr235Ser	
SLIT2	 P00454	 AR	 p.Asp1087His/p.Asp1087His	

NUP62CL	 P00454	 XLR	 p.Ser93Thr	
PLXNB3	 P00454	 XLR	 p.Val1275Ala	
TCEAL4	 P00454	 XLR	 p.Ala98Thr	
AIFM1	 P00489	 XLR	 p.Pro548Leu	
KLHL4	 P00489	 XLR	 p.Ala202Thr	
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PGRMC1	 P00489	 XLR	 p.Gly174Arg	
TEX11	 P00489	 XLR	 p.Thr359Met	
TLR7	 P00489	 XLR	 p.Leu988Ser	
ARAP2	 P00827	 AR	 p.Glu753Gln/p.Asp743Tyr	
FAT4	 P00921	 AR	 p.Ile728Met/p.Glu4255Lys	
GUF1	 P00921	 AR	 p.Ala353Val/p.Ile478Ser	
ASAP3	 P00921	 DN	 p.Thr97Ala	
APEX2	 P00921	 XLR	 p.His269Tyr	
BCORL1	 P00921	 XLR	 p.Asp94Asn	
TIE1	 P00994	 AR	 p.Arg415His/p.Ser501Asn	

AR:	autosomal	recessive;	DN:	de	novo;	XLR:	X-linked	recessive.	
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Table	S8.	RNA-seq	results	in	candidate	genes	from	family-based	analysis.	

Gene	

Expression	(voom)	

Migrating	

GnRH	neurons	

vs.	nose	

Post-migrating	

GnRH	neurons	

vs.	brain	

Migrating	vs.	

Post-migrating	

GnRH	neurons	

Nose	vs.	brain	

Migrating	

GnRH	neurons	

Post-migratory	

GnRH	neurons	
Nose	 Brain	 logFC	

adj.	

P	value	
logFC	

adj.	

P	value	
logFC	

adj.	

P	value	
logFC	

adj.	

P	value	

ASAP3	 0.00	 0.22	 0.15	 0.06	 -0.94	 0.35	 -1.01	 0.57	 0.49	 0.48	 0.97	 0.66	
BARHL1	 0.00	 0.00	 0.00	 0.00	 -	 -	 -	 -	 -	 -	 -	 -	
C11orf35	 0.00	 0.00	 0.70	 0.00	 0.64	 0.66	 -0.46	 0.72	 0.04	 0.95	 -2.17	 0.22	
ERCC4	 1.53	 1.62	 3.91	 0.88	 0.57	 0.92	 1.78	 0.58	 -0.17	 0.94	 -0.62	 0.90	
GUF1	 30.16	 10.96	 26.32	 17.53	 -0.47	 0.87	 0.46	 0.93	 -2.41	 0.45	 -1.15	 0.57	
MGAT1	 6.51	 3.23	 5.00	 2.03	 0.18	 0.96	 -0.67	 0.84	 0.31	 0.93	 -0.73	 0.74	
POLR3B	 33.08	 9.23	 7.44	 9.90	 -2.51	 0.33	 -0.24	 0.96	 -3.01	 0.13	 -0.22	 0.95	
RCAN1	 2.84	 1.07	 0.73	 0.01	 -0.26	 0.96	 -1.02	 0.54	 -0.54	 0.84	 -1.19	 0.61	
SLIT2	 7.03	 41.27	 31.40	 25.44	 2.96	 0.13	 -1.38	 0.39	 4.30	 0.02	 -0.63	 0.68	
SMC3	 69.91	 49.57	 57.16	 69.36	 -0.70	 0.45	 0.82	 0.40	 -0.90	 0.43	 0.63	 0.20	
TOP1MT	 0.51	 5.38	 0.24	 1.49	 -0.13	 0.97	 -2.00	 0.53	 2.28	 0.27	 0.60	 0.83	
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