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We consider the problem of measuring a single qubit, known to have been prepared in either a randomly selected pure state or a randomly
selected real pure state. We seek the measurements that provide either the best estimate of the state prepared or maximize the accessible
information. Surprisingly, any sensible measurement turns out to be optimal.

1 Introduction

The state of a quantum system is not an observable. Given a large number of copies of the system of interest
we can obtain a good estimation of the state [1], but it is not possible to determine the state given only a
single copy.1 Fundamentally, we can understand this limitation as a manifestation of complementarity, that
is, the existence of incompatible observables. It is this limitation, moreover, that underlies the security of
quantum key distribution [3–6] and gives quantum communications theory its distinctive character [3,6–8].
In a quantum communication system, we typically only have a single copy of each state and the receiving
party is faced with the task of determining, as well as possible, the state originally prepared. This difficult
task is usually made simpler by prior knowledge in the form of a set of possible states and associated
probabilities for each of them. Quantum communications is, of course, is an important motivation for the
study of quantum state discrimination [6, 9, 10].

The quality of the measurement strategy may be measured by reference to a variety of figures of merit.
Amongst those most commonly employed are state discrimination with minimum probability of error or
minimum Bayes cost [11, 12], unambiguous state discrimination [13–15], and maximizing the accessible
information [16–18]. We may also be interested in the measurement that allows us to prepare a state most
likely to pass as the original, which leads us to maximize the fidelity [19], or to maximize our confidence
in the state identified by our measurement [20]. A number of these optimal detection strategies have been
realized in experiments using optical polarization [21–26].

In this paper we consider the problem of measuring a single qubit, or a string of such qubits, about
which we have only a bare minimum of information. We consider, in particular, how best to measure
a qubit prepared in a pure state randomly selected either from all possible states or from all the real
states. These sets of states correspond, respectively, to a uniform probability distribution of states over
the whole surface of the Bloch sphere, and a uniform probability distribution on a single great circle on
the Bloch sphere. The minimum-error figure of merit is not applicable in this case; the set of states is
continuous and therefore the error probability is always unity. Similarly, the maximum confidence, that is
the greatest probability for correctly identifying the state, is necessarily zero, and there is no strategy for
unambiguous discrimination between the states. It is possible, however, to maximize the fidelity and the
accessible information. In each case, we find that any sensible measurement strategy is optimal.

∗Corresponding author. Email: steve@phys.strath.ac.uk
1It is possible, however, to obtain estimates of each of a number of properties, but this gives, at best only some indication of the state [2].
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2 Random states

A random state may be defined as a pure state about which we have no information [27]. For a single
qubit, we can write any pure state in the form

|θ, φ〉 = cos
(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉, (1)

where |0〉 and |1〉 are a conveniently chosen pair of orthonomal states. With this parameterization, we
can associate each of these states with the corresponding point on the surface of the Bloch sphere, with
spherical polar coordinates θ, φ [6]. The a priori density operator for a random qubit-state is the maximally
mixed state

ρ̂ =
1
2

Î, (2)

where Î is the identity operator. This operator allows us to make predictions for the results of any measure-
ment we might perform, but it does not allow us to specify the ensemble of pure states prepared [3,28,29].

We specify, as random states, two possible ensembles; the set of all possible states, which we denote
by the subscript A and the set of all real states, which we denote by the subscript R. The real states,
(sometimes called ‘rebits’ [30]) are the states (1) for which φ = 0 or π, so that they are real in the |0〉, |1〉
basis. Our ensembles may conveniently be expressed as a probability density on the surface of the Bloch
sphere. For the random ensemble of all states we find the uniform probability density1

PA(θ, φ) =
1

4π
, 0 ≤ θ < π 0 ≤ φ < 2π, (3)

so that the density operator is [33]

ρ̂A =
∫ 2π

0
dφ

∫ π

0
sin θ dθ

1
4π
|θ, φ〉〈θ, φ| = 1

2
Î. (4)

For the random ensemble of real states we have the probability density

PR(θ, φ) =
1

2π
, 0 ≤ θ < 2π. (5)

Note that we have extended the range of θ to include a full rotation of 2π radians. The density operator
associated with this probability density is

ρ̂R =
∫ 2π

0
dθ

1
2π
|θ〉〈θ| = 1

2
Î, (6)

where |θ〉 = cos(θ/2)|0〉 + sin(θ/2)|1〉 are the real states. Note that we can identify our set of real states
with those lying on any great circle on the Bloch sphere by suitably redefining our basis states |0〉 and |1〉.

The task that faces us is to determine, on the basis of a measurement, something about the state that
was selected. This means either estimating the state by chosing values for θ and/or φ, or extracting as
much information as possible. In order to find the optimum measurement, we need to consider all possible
measurements and this means including the possibility of generalized measurements.

1It is interesting to note that we can derive this distribution using a Bayesian analysis [31]. The maximum entropy method naturally
gives this isotropic distribution if we define the set of states as the isotropic limit of a suitable discrete set [32].
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3 Generalized measurements

It is well-known that the measurements associated with the orthnormal eigenstates of Hermitian opera-
tors do not represent the most general possible measurement. Indeed, it is often the case that the best
measurement in any given situation will be a generalized measurement. Such measurements are described,
mathematically by a probability operator measure (POM) [6, 11] also called a positive operator valued
measure (POVM) [34]. This associates a probability operator π̂k with each possible measurement outcome
k, in that the probability for this result to occur is the expectation value of π̂k. The probability operators
are constrained only by the conditions that (i) they are Hermitian, (ii) they are positive and (iii) they sum
to the identity [6] ∑

k

π̂k = Î. (7)

Any operators that satisify these conditions will correspond to a realizable measurement and any mea-
surement can be described in this way.

It sufficies, for our purposes, to consider only probability operators that are proportional to pure-state
projectors. Probability operators that are proportional to mixed-state density operators will not provide
optimal measurements and so are not considered. This means that we can write our probability operators
in the form

π̂k = |πk〉〈πk|, (8)

where the |πk〉 are, in general, unnormalized states, which we write in the form

|πk〉 = ak|0〉+ bk|1〉. (9)

Writing the probability operators in this form guarantees the first two required properties (Hermiticity
and positivity). The final condition (7) will be satified if we impose the conditions∑

k

|ak|2 = 1 =
∑
k

|ak|2

∑
k

a∗kbk = 1 =
∑
k

akb
∗
k. (10)

We can find the optimum measurement in any given situtation by varying the probability operators subject
to these constraints.

4 Fidelity and state estimation

Our first figure of merit determines how well our measurement allows us to approximate the state. To
motivate the idea, let us suppose that we are given a qubit and, on the basis of a measurement, asked to
prepare a second qubit in the same state. A quantitative measure of our success in performing this task is
the fidelity [19].

4.1 All states

Let us start by considering the effect of a generalized measurement on a qubit from the random ensemble
of all states. Our measurement will give an answer k associated with one of the probability operators π̂k.
The isotropy of PA(θ, φ) means that the only sensible and unbiased estimate for the premeasurement state
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is the (normalized) state |π̃k〉 = |πk〉/〈πk|πk〉1/2 and this must be our estimate of the single-qubit state.
The probability that our estimated state will pass as the original, if the state prepared was |θ, φ〉, is

P (pass|θ, φ) =
∑
k

|〈π̃k|θ, φ〉|2|〈πk|θ, φ〉|2

=
∑
k

|〈πk|θ, φ〉|4

〈πk|πk〉
. (11)

Averaging this quantity over the initial random distribution of states (3) gives the fidelity for the mea-
surement of the random states coverying all of the Bloch sphere [35,36]:

FA =
∫ 2π

0
dφ

∫ π

0
sin θ dθ

1
4π

∑
k

|〈πk|θ, φ〉|4

〈πk|πk〉

=
2
3
, (12)

where we have used the conditions (10). This value is completely independent of the choice of measurement,
as encoded in the coefficients ak and bk, and hence any measurement will provide an optimal estimation of
the initial state. On average, and for any measurement we might perform, the state that we prepare will
be twice as likely to pass as the orignal state as it is to fail to pass.

4.2 Real states

For the real states it is both reasonable and rigorously optimal to consider only those generalized mea-
surements that correspond to states |πk〉 that are themselves real. This means restricting ourselves to
states of the form (8) for which the coefficients ak and bk are real. The conditions (10) remain in force,
and it necessarily follows that these coeffcients will take both positive and negative values. The isotropy
of the ensemble of real states (on the associated great circle) means that the only sensible estimate for
the premeasurement state is is that associated with the measurement outcome. The probability that this
estimated state will pass as the original, if the state prepared was |θ〉, is

P (pass|θ) =
∑
k

|〈πk|θ〉|4

〈πk|πk〉
. (13)

Averaging this quantity over the initial random distribution (5) gives the fidelity for the real states

FR =
∫ 2π

0
dθ

1
2π

∑
k

|〈πk|θ, φ〉|4

〈πk|πk〉

=
3
4
. (14)

As with the random ensemble of all states, we find a result which is independent of the choice of mea-
surement provided, of course, that we make the sensible choice and restrict ourselves to real measurement
states |πk〉. The fidelity is larger than FA and corresponds to preparing a state that will pass as the orginal
three times as often as it will fail to pass. That a higher fidelity is possible, in this case, is a consequence
of the additional information contained in the statement that the state was real.
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5 Accessible information

The maximum rate at which information can be transmitted through a communication channel is limited,
through Shannon’s noieless coding theory, by the mutual information, the maximum value of which is
the channel capacity [37]. Let us consider communications based on a string of qubits in which each is
independently selected either from our ensemble of all qubits states or all of the real qubit states. We note
that the former has been suggested for use in quantum key distribution [38, 39]. The channel capacity is
found by varying both the detection strategy and the preparation probabilities for each of the possible
states. For us, the preparation probabilities are fixed to be those given in (3) or (5) and we seek to maximize
the mutual information by varying only the choice of measurement. The resulting maximum value is the
accessible information [18].

5.1 All states

The mutual information for our random ensemble of all qubit states is

IA =
∑
k

∫ 2π

0
dφ

∫ π

0
sin θ dθ

1
4π
P (πk|θ, φ) log2

(
P (πk|θ, φ)
P (πk)

)

=
1

ln 2

∑
k

1
4π

∫ 2π

0
dφ

∫ π

0
sin θ dθ |〈πk|θ, φ〉|2 ln

(
|〈πk|θ, φ〉|2

1
2〈πk|πk〉

)
. (15)

The integrals cover the entire surface of the Bloch sphere and therefore lead to values that depend on the
measurement operators only through 〈πk|πk〉. The mutual information is

IA = 1− 1
2 ln 2

≈ 0.279 bits, (16)

which is clearly independent of the choice of measurement (provided, of course, that each probability
operator is proportional to a projector onto a pure state). This value has been noted before, albeit in a
different context [40,41].

5.2 Real states

Calculation of the mutual information for the random ensemble of real states follows the same line as that
for the ensemble of all states. The mutual information in this case is

IR =
∑
k

∫ 2π

0
dθ

1
2π
P (πk|θ) log2

(
P (πk|θ)
P (πk)

)

=
1

ln 2

∑
k

1
2π

∫ 2π

0
dθ |〈πk|θ〉|2 ln

(
|〈πk|θ〉|2
1
2〈πk|πk〉

)
, (17)

where, in this case, the |πk〉 are restricted to be real states. The result is again independent of the choice
of measurement and takes the value

IR =
1

ln 2
− 1 ≈ 0.443 bits. (18)

The fact that IR is greater that IA is a consequence of the additional prior information available in the
statement that the states are real.
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We see that, as with the fidelity, the mutual information is (largely) independent of the choice of
measurement and hence finding the accessible information is, in this sense, a trivial exercise.

5.3 Comparison with known results

Calculating the accessible information is, in most cases, a difficult problem and only a few results are
known. We start with sets of equiprobable states symmetrically arranged around a great circle on the
Bloch sphere. For M such states we can write these as real states in the form

|M,m〉 = cos
(mπ
M

)
|0〉+ sin

(mπ
M

)
|1〉 0 ≤ m ≤M − 1. (19)

For M = 2 the states are simply |0〉 and |1〉 and we can extract 1 bit of information by performing a
convenional measurement in this basis. For M = 3, 5 and 7, we have the trine, quinary and septenary
ensembles [18, 24, 25]. The accessible information in each of these cases is given in Table 1 [42]. As the
number of states increases, we rapidly converge to the result for the random ensemble of real states, which
we can associate with the limit as M tends to infinity.

Real states Accessible Information
M = 2: |0〉 and |1〉 1 bit
M = 3: Trine ensemble 0.585 bits
M = 5: Quinary ensemble 0.472 bits
M = 7: Septenary ensemble 0.453 bits
M →∞: Random real ensemble 0.443 bits

Table 1 The accessible information for real symmetric states.

The accessible information is also known for the tetrad ensemble of states. This is a set of four equiprob-
able states chosen so as to form a regular tetrahedron on the Bloch sphere. One such set is comprised of
the four states [24]

|ψ1〉 = |0〉

|ψ2〉 =
1√
3

(
|0〉 −

√
2|1〉

)
|ψ3〉 =

1√
3

(
|0〉 −

√
2e2πi/3|1〉

)
|ψ4〉 =

1√
3

(
|0〉 −

√
2e−2πi/3|1〉

)
. (20)

Clearly this set of states does not lie on a single great circle of the Bloch sphere and, for whichever basis is
used to write them, at least two of the probability amplitudes will be complex. We can view the two-state
ensemble, the trine ensemble and the tetrad ensemble as the first members of a sequence leading to our
random ensemble of all possible states. The accessible information for this sequence is given in Table 2 [42].

States Accessible Information
|0〉 and |1〉 1 bit
Trine ensemble 0.585 bits
Tetrad ensemble 0.415 bits
Random ensemble 0.279 bits

Table 2 The accessible information for a sequence of states culminating in the random ensemble.
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6 Conclusion

We have addressed the problem of how best to measure a qubit prepared in an unknown pure state. It is
something of a surprise to have found that almost any measurement is optimal. It is a surprise for two
reasons: firstly we might have expected to need a generalized measurement that told us something about
each of the x-, y- and z- directions of spin, and secondly, it has proven to be a difficult problem to find
optimal measurements for all but the simplest ensembles of states.

For both the fidelity measure (or state estimation) and the accessible information we found higher
values for the random real ensemble than for the random ensemble of all states. These differences are
quantitative measures of the difference between the statements either that the state is any unknown pure
state or that it is any real pure state. The fact that the state is known to be real means that we can
perform an optimal measurement with probability operators corresponding only to directions associated
with the corresponding great circle on the Bloch sphere. For state estimation this allows an increase in the
fidelity form 2

3 to 3
4 . For the accessible information we find an increase from 0.279 bits to 0.443 bits. We

can view the difference between these two, that is 0.164 bits or about one sixth of a bit, as the information
associated with specifying that the unknown qubit state is real.
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