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Abstract 

We provide a physical interpretation of the Kirchhoff index of any molecules as well as of the 

Wiener index of acyclic ones. For the purpose, we use a local vertex invariant that is obtained 

from first principles and describes the atomic displacements due to small vibrations/oscillations of 

atoms from their equilibrium positions. In addition, we show that the topological atomic 

displacements correlate with the temperature factors (B-factors) of atoms obtained by X-ray 

crystallography for both organic molecules and biological macromolecules.  
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1. Introduction 

Many topological ideas have been introduced in chemistry in an ad hoc way [1]. A classical 

example is provided by the oldest topological index, which is nowadays known as the Wiener 

index, W  [2]. It is defined as the sum of all shortest-path distances between (non-hydrogen) 

atoms in a molecule. This index correlates very well with many physico-chemical properties of 

organic molecules [3]. Several attempts to provide a physico-chemical interpretation of W  have 

been conducted. In one of them, W  has been shown to represent a rough measure of the 

molecular surface area [4]. More recently, Gutman and Zenkevich [5] have shown that this index 

is related to the internal energy of organic molecules, with a special role played by the vibrational 

energy.  

In general, very few approaches to defining topological invariants in chemistry start from 

first-principle physical concepts, deriving indices which are physically sound and chemically 

useful. An attempt to define a topological index along the line of this strategy was developed by 

Klein and Randić, who defined the so-called Kirchhoff index, Kf  [6]. The Kirchhoff index is 

defined in an analogous way to the Wiener index but by using the concept of resistance distance 

ijr  between pairs of nodes instead of the shortest-path distance. Despite that the index uses well-

known concepts from physics such as Ohm‟s and Kirchhoff‟s laws [6], it is not straightforward to 

realise what the “electrical resistance” means for a chemical bond. These difficulties have urged 

us to search for a first-principle approach to defining topological invariants with a clear physico-

chemical interpretation and that solve existing chemico-structural problems. 

Here we derive a local vertex invariant from first principles which describes the atomic 

displacements due to small vibrations/oscillations of atoms from their equilibrium positions. 

Using this approach we provide a clear and unambiguous physical interpretation of the Kirchhoff 

index of any molecule in terms of atomic displacements. We show here that the Kirchhoff index is 

the sum of the squared atomic displacements produced by small molecular vibrations or 
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oscillations of atoms from their equilibrium positions. For acyclic molecules as the ones studied 

by Gutman and Zenkevich [5], our results explain the relationship between the Wiener index and 

vibrational molecular energy. The topological atomic displacements are shown here to correlate 

with the temperature factors (B-factors) of atoms obtained by X-ray crystallography. We illustrate 

our results for both organic molecules and proteins.  

2. Background 

Here we represent molecules as graphs  EVG , , where nodes represent united atoms and edges 

represent physical interactions between such united atoms. In the simplest case of an alkane 

molecule the nodes represent the united atoms nCH , where 3,2,1,0n , and the edges are the 

covalent C-C bonds; in other words, the graph corresponds to the hydrogen-depleted molecular 

graph. However, we are not constrained here to such representation. For instance, a protein can be 

represented through its residue interaction graph/network [7]. In this approach the nodes are 

united-atom representations of the amino acids, centred at their C  atoms, with the exception of 

glycine for which C  is used. Two nodes are then connected if the distance ijr  between both C  

atoms of the residues i and j  is not longer than a certain cutoff value Cr . The elements of the 

adjacency matrix of the residue network are obtained by  

 

 









ji

jirrH
A ijC

ij                 0

   

,

 

where   10 xH  and   00 xH . We use 0.7Cr  Å [7] hereafter. 

The Wiener index W  is defined as [2] 





ji

ijdW , (1) 
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where ijd  is the shortest-path distance between atoms i  and j  in the molecular graph. In the case 

of a molecular network like a residue network the Wiener index divided by the number of nodes 

has been used as a criterion for defining „small-world‟ networks. 

The Kirchhoff index is defined as [6] 





ji

ijrKf , (2) 

where the resistance distance ijr
 
between nodes i  and j  in a graph is obtained through the 

Moore-Penrose generalised inverse of the Laplacian matrix 
L  [8], as 

     ijijiiijr   LLL 2 . (3) 

The Laplacian matrix is defined as ADL  , where D  is the diagonal matrix of node degrees 

and A  is the adjacency matrix. It is well-known that for acyclic molecules the Wiener and the 

Kirchhoff indices coincide. 

3. Topological Atomic Displacements 

We now consider the classical analogy in which the atoms are represented by balls and bonds are 

identified with springs with a common spring constant k  [9]. We would like to consider a 

vibrational excitation energy from the static position of the molecule. Let ix  denote the 

displacement of an atom i  from its static position. Then the vibrational potential energy of the 

molecule can be expressed as 

  xx
k

xV T 
L

2
 ,          (4) 

where x


 is the vector whose i th entry ix
 
is the displacement of the atom i .  
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Now we are going to suppose that the molecule is immersed into a thermal bath of inverse 

temperature 
TkB

1
 , where Bk  is the Boltzmann constant. Then the probability distribution of 

the displacement of the nodes is given by the Boltzmann distribution 

 
 

,
2

exp
1













xx
k

ZZ

e
xP T

xV 


L


        (5) 

where the normalization factor Z  is the partition function of the molecule 

Z  dx exp 
k

2
xTLx






 .         (6) 

The mean displacement of an atom i  can be expressed by 

  xdxPxxx iii

22
.        

 (7) 

We can calculate this quantity once we can diagonalise the Laplacian matrix L . Let us 

denote by U  the matrix whose columns are the orthonormal eigenvectors 


 
and   the diagonal 

matrix of eigenvalues   of the Laplacian matrix. Note here that the eigenvalues of the Laplacian 

of a molecular graph are positive except for one zero eigenvalue. Then, we write the Laplacian 

spectrum as n  210 . An important observation here is that the zero eigenvalue does 

not contribute to the vibrational energy. This is because the mode 1  is the mode where all the 

atoms (balls) move coherently in the same direction and thereby the whole molecule moves in one 

direction. In other words, this is the motion of the centre of mass, not a vibration. 

In calculating Eqs. (5) and (6), the integration measure is transformed as 

yddyUdxxd
i

i

n

i

i


 

 11

det         (8) 

because the determinant of the orthogonal matrix, Udet , is either 1 . Then we have 
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.
2

exp

2
exp

2

1


































 




y
k

dy

yy
k

ydZ

n

T 

.

        (9) 

Note again that because 01   the contribution from this eigenvalue obviously diverges. This is 

because nothing stops the whole molecule from moving coherently in one direction. When we are 

interested in the vibrational excitation energy within the network, we should offset the motion of 

the centre of mass and focus on the relative motion of the nodes. We therefore redefine the 

partition function by removing the first component 1  from the last product. We thereby have 

.
2

2
exp

~

2

2

2

























n

n

k

y
k

dyZ

 














 (10) 

Next we calculate the mean displacement ix  defined by Eq. (7). We first compute the numerator 

of the right-hand side of Eq. (7) as follows: 

Ii  dxxi
2 exp 

k

2
xTLx








 dy Uy  i

2

exp 
k

2
yTy








 dy Uiy
 1

n








2

exp 
k

2
yTy








 dy Ui
 1

n

 Ui yy
 1

n










 exp 

k

2
y

2





1

n

 .
,

      (11) 

On the right-hand side, any terms with    will vanish after integration because the integrand is 

an odd function with respect to y  and y . The only possibility of a finite result is due to terms 

with   . We therefore have 
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Ii  dy Uiy 
2

 1

n










 exp 

k

2
y

2





1

n



 dy1




 Ui1y1 
2
 dy





 exp
2

n

 
k

2
y

2







dy





 2

n

 Uiy 
2
exp 

k

2
y

2





 dy





 exp
1


n

 
k

2
y

2





,

             (12) 

where we separated the contribution from the zero eigenvalue and those from the other ones. Due 

to the divergence introduced by the zero eigenvalue we proceed the calculation by redefining the 

quantity iI  with the zero mode removed: 

 

 

.
~

28

2

2
exp

2
exp

~

2

2

22
3

2

2

2

22

2















































n
i

nn
i

n

i

n

i

k

U
Z

kk

U

y
k

dyy
k

yUdyI

 




  






























             (13) 

We therefore arrive at the following expression for the mean displacement of an atom: 

.~

~

2

2

2





n

ii

ii
k

U

Z

I
xx

 




 (14) 

If we designate by 
L  the Moore-Penrose generalised inverse of the graph Laplacian [8], which 

has been proved to exist for any molecular graph, then it is straightforward to realise that 

xi 
2

1

k
L
 
ii
. (15) 

4. Kirchhoff and Wiener indices revisited 

From now on we are going to consider the case k  1  for the sake of simplicity. Then, it is easy 

to see that due to the orthonormality of the eigenvectors of the inverse Laplacian, we have 
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     GKf
n

trx
n

j j

n

i

i

11

21

2











L , (16) 

That is, the Kirchhoff index of a molecular graph is simply the sum of the squared atomic 

displacements produced by small molecular vibrations multiplied by the number of atoms in the 

molecule. Since it is well-known that for acyclic molecules, i.e., molecular trees, the Kirchhoff 

and Wiener indices coincide, we also have 

   



n

i

ixnTW
1

2
. (17) 

Then the potential energy (4) can be expressed as 

      



Eji

ji

n

i

ii xxxkxV
,1

2

2

1
.  

Let 



n

j

iji rR
1

 be the sum of all resistance distances from atom i  to any atom in the molecule, i.e., 

the sum of the i th row (or column) of the resistance distance matrix. That is, 

 


 
n

j

ijjjiii LLLR
1

2 . It is known that 


 
n

j

ijL
1

0 . Then, 

     


 
n

i

iiiii xxnLtrnLR
1

22
, (18) 

 This relation indicates that  2ix  and iR  are linearly related for the atoms of a given molecule. 

Using Eq. (18) we can express the potential energy (4) in terms of the resistance distance of the 

atoms in the molecular graph  

    k
n

Kf
Kf

n
RR

n

Kf
RR

n
Rk

n
xV

Eji

jiji

n

i

ii
2

11

2

1
2/1

,
22

1









 




. (19) 

where k  is the average degree of the molecular graph. The first term in the right-hand side of 

Eq. (19) was already introduced by Estrada et al. [10] as a topological index obtained from the 



9 
 

quadratic form uDv , where v  is a vector of node degrees, D  is the distance matrix and u  is 

an all-one vector. 

In summary, the normalised Kirchhoff index of a molecular graph represents the sum of 

squared displacements of atoms due to molecular vibrations and the sum of resistance distances 

for a given atom depends linearly on the square of the displacement of the corresponding atom. 

The term  2ix  has a very clear physical interpretation. It represents the atomic displacement due 

to molecular vibrations. Small values of  2ix  indicate that those atoms are very rigid in the 

molecule. For instance, in 2,2,3-trimethylbutane the smallest displacement is obtained for the 

carbon atom connected to three methyl groups 534.0 Cx , followed by the one bounded to two 

CH3 groups, 655.0 CHx . Then, the methyl groups display the largest displacements, 

000.1
3
 CHx  for those at position 2 and 069.1

3
 CHx  for those at position 3.  

5. Topological Displacements and Temperature Factors 

We guess that the atomic displacement ix  should display some linear correlation with an 

experimental measure of how much an atom oscillates or vibrates around its equilibrium position. 

Such experimental measure is provided by X-ray experiments as the so-called B-factor or 

temperature factor, and represents the reduction of coherent scattering of X-rays due to the 

thermal motion of the atoms. For instance, in the molecule of naphthalene the atomic 

displacements of carbon atoms correlate very well with the experimental B-factors (in 

parenthesis) [11]: 0.898 (4.6 Å
2
), 0.815 (4.0 Å

2
) and 0.615 (3.4 Å

2
), which gives a correlation 

coefficient 963.0r . The following correlation coefficients are obtained for: anthracene [12] (

996.0r ); phenanthrene [13] ( 955.0r ); pyrene [14] ( 997.0r ); and triphenylene [15] (

997.0r ). In these cases we averaged the values of B-factors for equivalent carbon atoms. In 
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Fig. 1 we plot the values of ix  versus the B-factors for the carbon atoms of anthracene and 

pyrene.  

Insert Fig. 1 about here. 

The B-factors are quite relevant for the study of protein structures as they contain valuable 

information about the dynamical behaviour of proteins and several methods have been designed 

for their prediction [16]. It is known that regions with large B-factors are usually more flexible 

and functionally important. The atomic displacements have been used previously by Bahar et al. 

[17] to describe thermal fluctuations in proteins. We note in passing that we use here a residue 

network representation of the protein based on  -carbons instead of the  -carbons used by 

Bahar et al. 

For the sake of illustration we have selected here the lipase b from Candida antarctica 

(1tca) [18]. In this case we obtain a correlation coefficient 7 4.0r  between the experimental B-

factors and the topological atomic displacements. For this protein Yuan et al. [19] reported 

6 3.0r  for predicting the experimental B-factors. In Fig. 2 (top) we illustrate the profiles for the 

normalised B-factors and the topological atomic displacements of residues for this protein. We 

also represent in Fig. 2 (bottom) the 20 residues with the highest values of ix  in the molecular 

structure of the protein. We recall that the residues with the largest values of the atomic 

displacements are those displaying the highest flexibility in the protein. Here we have represented 

these residues by using blue colour for the atoms in these residues. We also represent the 20 

residues with the lowest values of ix , which correspond to those displaying the highest rigidity 

in the protein. They are coloured in red in the molecular structure of the protein. As can be seen 

the most flexible amino acids are those which are on the surface of the protein, while the most 

rigid ones are concentrated around the protein core. 

Insert Fig. 2 about here. 
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The new relationship obtained here between the topological atomic displacements and the 

sum of the resistance distances for a given atom, i.e., the expression (17), opens up new 

possibilities for interpreting ix  in a given molecule. According to Eq. (17) the topological 

displacements for the atoms in a molecule depend only on the sum of the resistance distances for 

the corresponding atom, e.g.,   
j

iji r
n

x
1

~
2

 [6]. It is known that if there is more than one path 

connecting two atoms in a molecule, i.e., there are cycles, the resistance distance is smaller than in 

the case when there is only a single path. Then, if there is one oscillation/vibration in one atom 

which is transmitted to all the other atoms through the different paths connecting them, the 

vibration is attenuated along every path. Consequently, a small value of ix  is due to the fact that 

the atom i  is part of a large number of paths connecting it to other atoms. This implies that when 

the other atoms oscillate/vibrate their effect is very much attenuated before arriving to i . 

6. Conclusions 

We have developed a theoretical approach based on classical molecular mechanics to 

accounting for small displacements of atoms from their equilibrium positions due to oscillations 

or vibrations. The topological atomic displacements are expressed in terms of the eigenvalues and 

eigenvectors of the discrete Laplacian matrix of the molecular graph. Using this approach we have 

given a clear and unambiguous physical interpretation of the Kirchhoff index as well as of the 

Wiener index of acyclic molecules. It explains previous empirical results clearly, showing that 

these indices are related to vibrational energy of alkanes and dithioderivative compounds. More 

importantly, the topological atomic displacements are well correlated with the B-factors obtained 

by X-ray crystallography.  
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Figure Captions 

 

Fig. 1. Linear correlation between the topological atomic displacements and experimental B-

factors for carbon atoms of anthracene (empty circles) and pyrene (empty squares). The 

temperature factors of equivalent atoms were averaged. 

 

Fig. 2. Profiles of the topological atomic displacements (solid line) and the B-factors (dotted line) 

for lipase b from Candida antarctica, 1tca (top), and illustration of the amino acids having the 20 

largest (blue) and 20 smallest (red) values of the topological atomic displacements (bottom). 
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Fig. 1 
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Fig. 2 

 

 

 


