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Damage Detections in Nonlinear Vibrating
Thermally Loaded Plates

E. Manoach and I. Trendafilova

1 Introduction

The main objective of structural health monitoring (SHM) is to ascertain whether
damage is present or not in a structure. Most vibration-based structural health mon-
itoring methods (VSHM) are based on the fact that damage will alter the stiffness,
mass or energy dissipation properties of a structure which in turn will alter its
measured vibration response.

These methods are widely used for structural health monitoring and damage
assessment purposes. Their application is somewhat limited by the need of a pre-
cise enough model of the structural vibration response. If some nonlinearities or
environmental conditions (like the elevated temperature, for example) are not taken
into account in the model, then a model-based VSHM method could give a false
alarm due to a discrepancy between the measured and the modelled response.
Temperature changes can and do affect substantially the vibration response of a
structure. Thermal loads introduce stresses due to thermal expansion, which lead to
changes in the modal properties. Thermal loads can also cause buckling and in some
cases even lead to chaotic behaviour [1–5].

Thus, on a lot of occasions the presence of a temperature field can either mask
the effect of damage or increase it, which will render a VSHM method ineffective –
it might give no alarm when a fault is present or give a false alarm. This is why
it is vital to be able to take into account the temperature changes when developing
VSHM procedures.

Most of the previous efforts of researchers in the area of VSHM were directed
towards methods based on linear modal analysis [6–10]. One of the main prob-
lems with these methods comes from the fact that in general damage starts as a
local phenomenon and does not necessarily affect significantly the modal charac-
teristics of the structure. In many cases the lower order resonance frequencies and
mode shapes are not very sensitive to damage, except in cases of very large damage
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[6, 11]. Thus in reality it may be difficult to distinguish if damage is indeed the
reason behind, e.g., a decrease in frequency or it is caused by environmental or
operational conditions changes.

Many VSHM methods are inherently limited to linear systems – they use, for
example, the superposition principle in the analysis – and cannot account for the
effects of non-linearities. Another problem with a number of VSHM methods is
that they rely on a linear model of the structure. As the theoretical model itself can
only approximate the actual behaviour of the vibrating structure, it will introduce
computational errors [6]. These errors will be greater if the non-linearities of the
system are substantial. Since they are not taken into account in the model such
methods might give false alarms due to a discrepancy between the measured and the
modelled/expected response.

To address some of the above mentioned problems, new concepts in vibration-
based monitoring have been emerging recently. These employ measured time series
of the structural vibration response, or, often concomitantly, non-linear systems the-
ory. Most of the studies in this field are devoted to the extraction of features from
the structural vibration response, which can indicate the presence of damage and
its location. In [12] the authors use the beating phenomenon for damage detection
purposes. In [13] and [14] new attractor-based metrics are introduced as damage
sensitive features. The results are promising. In [15] a panel forced by aerodynamic
loads and undergoing limit-cycle oscillations and chaos is investigated. The von
Kármán strain displacement relation is employed and a model of the system consti-
tuted by ordinary differential equations of motion is achieved by employing finite
differences. The upstream endpoint of the panel has been considered supported by a
spring of variable stiffness. Changes in the stiffness of a spring have been detected
by exploring the chaotic dynamics of the panel.

In [16] a possibility for representing, interpreting and visualising the vibration
response of vibrating panels using time domain measurements is investigated. The
panels are thin orthotropic plates and are modelled by finite elements. It was found
that the first ten resonant frequencies show low sensitivity to damage. Then the sim-
ulated vibration response of the panel is transformed and expanded in a new phase
space. Preliminary results suggest that it should be possible to use the distribution
of points on the attractor to extract damage sensitive features.

In our previous works [11] and [17] a numerical approach to study the geo-
metrically non-linear vibrations of rectangular plates with and without damage is
developed. A damage index and a method for damage detection and location, based
on the Poincaré map of the response, have been proposed. The suggested damage
assessment method shows good capability to detect and localize damage in plates.

Although the approach seems to hold a lot of potential, there is limited research
addressing VSHM methods based on time series analysis and non-linear dynamics.

The main objectives of this study are twofold: (i) to study the influence of defects,
elevated temperatures and their combination on the dynamic characteristics of the
plate and on its geometrically nonlinear dynamic response; (ii) to test the criteria for
identification of irregularities (defects) in structures proposed in [11, 17] taking into
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account the elevated temperature by analyzing the Poincaré map of the structural
vibration response.

The application of the proposed approach is demonstrated on rectangular plates
with defects at elevated temperatures. The temperature is assumed uniformly dis-
tributed over the plate surface and thickness. The plates are subjected to a harmonic
loading which leads to large amplitude vibrations. The influence of damage on the
time-history diagrams of the plate, as well as on the geometry of its phase-space
is studied. A VSHM method is developed which applies a criterion based on fea-
tures sensitive to temperature changes and damage in the same time. These features
use the Poincaré maps of the structural vibration response. Taking into account the
temperature influence on the extracted features allows the detection of damage and
shows its location for structures subjected to temperature changes. The proposed
study demonstrates the importance of taking into account the correct/exploitation
temperature in a damage detection process. It is shown that in some cases of elevated
temperature the Poincaré maps based criterion may be unsuitable.

2 Theoretical Model

The object of the investigation is a rectangular plate with sides a and b and thickness
h, subjected to temperature changes and a dynamic loading p(x,y,t) perpendicular
to the plate (Fig. 1a). The geometrically nonlinear version of the Mindlin plate
theory is used to model the plate behaviour, so that the shear deformation and
rotatory inertia are taken into account. At each point of the middle surface of the
plate, the displacements in the x, y, z directions are denoted by u, v, w, respectively,
ψx (x, y, t) and ψy (x, y, t) are the angles of the rotation of the normal of the cross
section to the plate mid-plane (see Fig. 1b).

a

b

h x

y

p(x, y, t)

O(x, y, z)

z,w

a

b

x,u 

 y,v

w

ψx
ψy

x

y

Fig. 1 Plate geometry and coordinate system. (a) Plate dimensions and loading. (b) Mid-plane of
the plate and the components of the generalized displacement vector
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The presence of a defect can be modelled as a reduction of the plate thickness or
a stiffness reduction and therefore a variation of the flexural rigidity in the governing
equations is used. The basic equations of the plate motion are described below.

2.1 Geometrical Relationships

The strain and curvature-displacements relationships associated with the mid-plane
of the plate for large displacements and shear can be expressed as:

AQ1 ε0
x = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

, ε0
y = ∂v

∂y
+ 1

2

(
∂w

∂y

)2

, ε0
xy = ∂u

∂y
+ ∂v

∂x
+ ∂w

∂x

∂w

∂y
, (1a, h)

ε0
xz = ψx + ∂w

∂x
, ε0

yz = ψy + ∂w

∂y
,

k0
x = ∂ψx

∂x
, k0

y = ∂ψy

∂y
, k0

xy = ∂ψx

∂y
+ ∂ψy

∂x

and the strain vector is given by:

ε =
{
ε0

x + zk0
x , ε0

y + zk0
y , ε0

xy + zk0
xy, f (z)ε0

xz, f (z)ε0
yz

}T
(2)

where f (z) is a function describing the distribution of the shear strain along the plate
thickness.

2.2 Constitutive Equations

Assuming that the material of the plate is linear elastic and isotropic the relations
for the stress and strain components are given by:

σx = E(x, y)
1 − ν2

[
εx + νεy

] − E(x, y)
1 − ν

αT�T,

σy = E(x, y)
1 − ν2

[
εy + νεx

] − E(x, y)
1 − ν

αT�T,

(3a–d)

σxz = n2Gεxz, σyz = n2Gεyz

In terms of generalized stresses the above equations take the form:

Nx = A(ε0
x + νε0

y ) − AαTγ
T , Ny = A(ε0

y + νε0
x ) − AαTγ

T , Nxy = 1 − v

2
Aε0

xy
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Mx = D(κo
x + νκo

y) − AαTκT , My = D(κ0
y + νκ0

x) − AαTκT , Mxy = 1

2
(1 − ν)Dκ0

xy,

Qx = 1

2
(1 − ν)n2Aε0

xz, Qy = 1

2
(1 − ν)n2Aε0

yz.

(4a–h)
where

γ T (x, y) =
h/2∫

−h/2

�T(x, y, z)dz, κT (x, y) =
h/2∫

−h/2

�T(x, y, z)zdz,

A(x, y) = E(x, y)h(x, y)

1 − v2
, D(x, y) = A(x, y)h(x, y)2

12

(5a–d)

In Eqs. (3), (4) and (5) E is the Young modulus, ν is the Poison ratio, Nx, Ny

and Nxy are the stress resultants in the mid-plane of the plate, Mx, My and Mxy are
the stress couples and Qx and Qy are the transverse shear stress resultants, αT is the
coefficient of thermal expansion and �T (Kelvin) is the temperature variation (in
general it can be assumed non-uniform along the plate length and thickness) with
respect to a reference temperature. n2 is a shear correction factor which is assumed
equal to 5/6 throughout the paper.

2.3 Equations of Motion

The equilibrium equations may be deducted by considering the conditions for trans-
lational equilibrium in the x, y and z directions and for rotational equilibrium about
x and y. They are as follows:

∂Nx

∂x
+ ∂Nxy

∂y
+ ρhüx = 0

∂Ny

∂y
+ ∂Nxy

∂x
+ ρhüy = 0

∂Mx

∂x
+ ∂Mxy

∂y
− Qx + c2

∂ψx

∂ t
+ ρh3

12
ψ̈x = 0

∂My

∂y
+ ∂Mxy

∂x
− Qy + c2

∂ψy

∂ t
+ ρh3

12
ψ̈y = 0

(6a–e)

∂Qx

∂x
+ ∂Qy

∂y
+ Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y
+ c1

∂w

∂ t
+ ρhẅ = −p

Here and throughout in the paper dots over variables represents derivation with
respect to time, c1 and c2 denote the damping coefficients, and ρ is the density of
the plate material.
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2.4 Boundary and Initial Conditions

In the present work fully clamped plates, i.e. plates for which all their four edges are
clamped and in-plane fixed, are considered. This means that all displacements u, v
and w and angular rotations ψx andψy are zero along the boundaries. The influence
of the temperature variation is more essential for such plates due to the thermal
expansion.

The initial conditions are accepted in the following general form:

w (x, y, 0) = w0(x, y), ẇ (x, y, 0) = ẇ0(x, y),

ψx (x, y, 0) =ψ0
x (x, y), ψ̇y (x, y, 0) = ψ̇0

y (x, y, ), x ∈ [0, a] , y ∈ [0, b]
(7a–d)

3 Solution of the Problem

3.1 Reorganizing the Equations of the Plate Motion

The equation of motions (6) can be rewritten in the following form:

∂

∂x

[
A

(
∂u

∂x
+ ν

∂v

∂y

)]
+ ∂

∂y

[
(1 − ν)A

2

(
∂u

∂y
+ ∂v

∂x

)]
+ ρhü = Gu + GT

u

∂

∂y

[
A

(
∂v

∂y
+ ν

∂u

∂x

)]
+ ∂

∂x

[
A (1 − v)

2

(
∂v

∂x
+ ∂u

∂y

)]
+ ρhv̈ = Gv + GT

v (8a–e)

∂

∂x

(
D

[
∂ψx

∂x
+ ν

∂ψy

∂y

])
+ (1 − ν)

2

∂

∂y

(
D

[
∂ψx

∂y
+ ν

∂ψy

∂x

])

− (1 − ν2)n2A

2

(
ψx + ∂w

∂x

)
+ c2ψ̇x + ρh3

12
ψ̈x = GT

1

∂

∂y

(
D

[
∂ψy

∂y
+ ν

∂ψx

∂x

])
+ (1 − ν)

2

∂

∂x

(
D

[
∂ψy

∂x
+ ν

∂ψx

∂y

])

− (1 − ν2)n2A

2

(
ψy + ∂w

∂y

)
+ c2ψ̇y + ρh3

12
ψ̈y = GT

2

(1 − v)n2

2

{
∂

∂x

(
A

[
ψx + ∂w

∂x

])
+ ∂

∂y

(
A

[
ψy + ∂w

∂y

])}
+ c1

∂w

∂ t
+ ρhẅ

= −p + GL + GT
3

where

Gu = −0.5
∂

∂x

{
A

[(
∂w

∂x

)2

+
(
∂w

∂y

)2
]}

− 0.5
∂

∂y

{
A(1 − ν)

(
∂w

∂x

∂w

∂y

)}
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Gv = −0.5
∂

∂y

{
A

[(
∂w

∂x

)2

+
(
∂w

∂y

)2
]}

− 0.5
∂

∂x

{
A(1 − ν)

(
∂w

∂x

∂w

∂y

)}

(9a–d)

GT
1 = A(1 + ν)αT

∂κT

∂x
, GT

2 = A(1 + ν)αT
∂κT

∂y
, GT

3 = AαTγT

(
∂2w

∂x2
+ ∂2w

∂y2

)

GL (x, y, t) = −
(

Nx
∂2w

∂x2
+ Ny

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y

)

In this work, only a uniformly distributed temperature field along the plate length
and thickness will be considered. Also, it is assumed that the plate gets the elevated
temperature instantly. This assumptions leads to settings GT

1 = 0, GT
2 = 0.

3.2 Numerical Approach

The pseudo-load mode superposition method (PLMS) [2, 11, 18–21] is applied to
solve the problem for nonlinear vibration of plates. It will be only briefly presented
here.

The widely accepted assumption for transversally loaded clamped plates that
mid-plane inertia effects are negligible is assumed, i.e. ρhüx = ρhüy = 0. The finite
element method is used to discretize the plate equations with respect to the space
variables and by using the PLMS they are transformed in the frequency domain.
Then an iterative procedure with respect to time is applied for the solution of the
obtained system of ordinary differential equations. It is out of the scope of this
paper to concentrate on the details of the solution method and the reader is referred
to the above mentioned papers [2, 18–21] where the method is applied for undam-
aged plates and in [11] – for damaged ones. Thus the solution procedure will be
presented only in brief:

Assuming Gu and Gv are known functions, Eq. (8a–b) form a linear system of
PDEs which can be solved numerically. The left hand sides of Eq. (8c–e) contain
only linear terms and therefore the mode superposition method can be used for their
solution. Thus, the generalized displacements vector U = {

βψx,βψy, w
}T (β =

h2/12) is expanded as a sum of the product of the vectors of the pseudo-normal
modes Un and the time dependent functions qn(t) as follows:

U =
Nf∑

n=1

Un(x, y)qn(t). (10)

Substituting Eq. (10) into Eq. (8c–e), multiplying by Um(x, y), integrating the
product over the plate surface, invoking the orthogonallity condition, and assuming
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“proportional damping” in the sense
∫∫ (

c2

(
ψ2

xn + ψ2
yn

)
+ c1w2

n

)
dxdy = 2ξnωn,

the equations for qn(t) will be “uncoupled” in the form:

q̈n(t) + 2ξnωnq̇n + ω2
nqn(t) = Fn(t), (11)

where ωn are the natural frequencies of the linear elastic (undamped) Mindlin plate,
ξn are the modal damping parameters and

Fn(t) =
∫∫

UT
n [P(x, y, t) + GL(x, y, t) + GT (x, y, t)]dxdy, (12a–b)

P(x, y, t) = (0, 0, −p)T , GL(x, y, t) = (0, 0, GL
3)T , GT (x, y, t) = (0, 0, GT

3 )T .

The initial conditions defined by Eq. (7) are transformed also in terms of qn(0)
and q̇n(0):

qn(0) = q0
n, q̇n(0) = q̇0

n, (13a–d)

q0
n =

∫∫ (
w0wn + βψ0

xψxn + βψ0
yψyn

)
dxdy,

q̇0
n =

∫∫ (
ẇ0ẇn + βψ̇0

x ψ̇xn + βψ̇0
y ψ̇yn

)
dxdy

Using the methodology developed by Kukreti and Issa [18] the pseudo-load
vector {P+G} is interpolated by a quadratic time dependent polynomial, i.e.

P(x, y, τ ) + G(x, y, τ ) = A(x, y) + B(x, y)τ + C(x, y)τ 2, 0 ≤ τ ≤ Lt (14)

Where Lt = ti+1 − ti represents the time increment, and τ which is defined as
τ = t − ti, identifies a new time origin for each time increment.

Denoting

P0(x, y) = P(x, y, 0), P1(x, y) = P(x, y, mLt), P2(x, y) = P(x, y, Lt),

G0(x, y) = G(x, y, 0), G1(x, y) = G(x, y, mLt), G2(x, y) = G(x, y, Lt),
0 < m < 1, 0 < x < a, 0 < y < b

(15)

the expressions for the constant vectors A, B and C are derived in terms of Pi and
Gi (I = 1 to 3). The general solution of Eq. (11) is given by:

qn(τ ) = E1nq0
n + E2nq̇0

n + F1nan + F2nbn + F3ncn (16)

where E1n, E2n, F1n, F2n, F3n denote complicated mathematical expressions
containing ωn, ξn and τ (see [19]) and

an =
∫∫

UT
n Andxdy , bn =

∫∫
UT

n Bndxdy, cn =
∫∫

UT
n Cndxdy (17)
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The iteration procedure applied to solve the above Eq. (11) is identical to the
ones for circular plates and beams given in [21].

4 Damage Identification Technique

There are a lot of techniques to treat the nonlinear structural vibration response in
the time domain. The state (phase)-space representation of the structural vibration
response is a suitable and powerful tool for studying the dynamic behaviour of a
structure. A standard technique for dealing with phase space (w, ẇ, t) of periodi-
cally driven oscillators is to study the projection of (w, ẇ) at moments in time t,
where t is a multiple of the period T = 2π /ω. Here ω can be the frequency of the
excitation of the mechanical system, an eigen frequency of the structure, or its mul-
tiple, and T is a period of the forcing function, an eigen period of the system, or its
multiple. The result of inspecting the phase projection (w, ẇ) only at specific times
t = kT is a sequence of dots, representing the so-called Poincaré map. The steady-
state converging trajectories, which represent the attractor, are usually formed in the
phase space and in many cases of nonlinear systems they are very sensitive to any
changes in the system.

In papers [11, 17] the following damage index based on the analysis of the
Poincaré map was introduced:

Id
i = Su

i − Sd
i

Su
i

, (18)

where

Su
i =

Np−1∑
j=1

√(
wu

i, j+1 − wu
i, j

)2 +
(

ẇu
i, j+1 − ẇu

i, j

)2

Sd
i =

Np−1∑
j=1

√(
wd

i, j+1 − wd
i, j

)2 +
(

ẇd
i, j+1 − ẇd

i, j

)2

(19a,b)

In these equations I = 1,2. . .Nnodes, Nnode is the number of nodes, Np is the

number of points in the Poincaré map and
(

wu
ij, ẇu

ij

)
and

(
wd

ij, ẇd
ij

)
denote the jth

point on the Poincaré maps of the undamaged and the damaged states, respectively.
A small (close to 0) damage index will indicate no damage, while a big damage

index will indicate the presence of a fault at the corresponding location. The above
damage index depends on the location of the point on the plate, and consequently it
is a function of the plate coordinates x and y. One can expect that the maxima of the
surface Id(xd, yd) (18a) will represent the locations of the damage, i.e. Id

max(xd, yd) =
max

i

{
Id
i

}
.
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The damage criterion based on this index presumes setting a threshold value Td

for the damage index and if

Id(x, y) > Td (20)

then one can conclude that the plate is damaged and the areas of points (x,y) for
which Eq. (20) is fulfilled, form the damaged area (areas).

In the present work we shall use the same damage index and damage criterion but
taking into account the temperature changes as well, Id = Id(x, y,�T). This sug-
gestion presumes that the damage index defined by Eqs. (18) and (19) is calculated
for equal values of �T for the healthy and damaged plate.

5 Results and Discussions

Numerical calculation of the vibrational displacements of the healthy and the
damaged rectangular plates subjected to mechanical and thermal loading were
performed.

The damage was modelled as a reduction (up to 50%) of the plate thickness in
small parts of the plate.

The first example concerns the same plate as the one considered in [1]. The plate
has the following dimensions and material properties: a = 0.25 m, b = 0.24 m,
h = 0.00027 m, E = 198.109 Pa, ρ = 7,850 kg/m3, ν = 0.3 and αT = 17.3×10–6K–1.
This very thin plate is subjected to harmonic loading with frequency of excitation
ωh = 172 rad/s (0.7ω1,1) and amplitude p = 0.3 N The time domain response of the
plate center is shown in Fig. 2. The amplitudes of oscillations are very close to the
ones shown in Fig. 9 in [1], so the verification of the present results is satisfactory.

0.0 1.5
t, sec.

–0.00043

0.00000

0.00043

w
,m

Fig. 2 Vibration response at the plate centre (ωh = 172 rad/s, p =0.3 N)
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Damage

Fig. 3 Finite element discretization and damaged area (white colour) of the plate

Then the same plate but with increased thickness h = 0.0005 m (case B from
[1]) was subjected to thermal and dynamic loading. For this plate two cases were
considered: (1) undamaged plate and (2) plate with reduced thickness in a small part
of the plate – the white area from the plate shown in Fig. 3.

It was shown in [1] that the buckling temperature for this plate is�T = 0.9 K . It
is clear that the attempt to inspect such a plate for damage without considering the
temperature changes is condemned to fail.

In Fig. 4 the time-history diagrams of the healthy and the damaged plate sub-
jected to a harmonic loading p = 0.9 N applied in the plate centre with frequency of
excitation ωh = 319 rad/s. (ω1,1 = 455.6 rad/s) are shown. Inspecting the time his-
tory it is visible that at the beginning the introduced small defect doesn’t influence
essentially the response of the plate but small changes in the eigen frequencies and
modes lead to phase shift and the differences between the two responses increase
with time. The phase shift can be clearly seen on the small figure in Fig. 4 where
a short interval from the response is shown. The Poincaré maps of the responses
of the healthy and the damaged plate in the plate centre (Fig. 5a) and in the cen-
tre of the defect are shown in (Fig. 5b), respectively. The Poincaré plots shown
are obtained as a projection of (w, ẇ) at moments t, where t is a multiple of the
period T = 2π /ωh . The damage doesn’t change essentially the form of the Poincaré
plot. As can be expected the difference between the two responses is larger at the
points with reduced thickness. A contour plot of the damage index obtained by using
Eq. (18) is plotted in Fig. 6 where a threshold value Td = 0.06 is used. The contour
plot is a graphical technique for representing a 3-dimensional surface by plotting
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Fig. 4 Time history diagram
of the plate centre response.
ωh = 319 rad/s, p = 0.9 N.
Undamaged plate (black
line); damaged plate (red
line)
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Fig. 5 (a) Poincaré map at the plate centre. Undamaged plate (black dots); damaged plate (red
dots). (b) Poincaré map at the centre of the defect. Undamaged plate (black dots); damaged plate
(red dots)
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constant z slices, called contours, on a 2-dimensional plane. That is, for a given
value of z, lines are drawn that connect the (x,y) coordinates which correspond to
this particular value of z. The contour plot is compared to the FE model of the plate
where the damaged area is coloured in white. As can be seen the damage criterion in
this case works quite well and predicts rather precisely the damage location despite
of the fact that the damage indexes have low values.

AQ2

Then the same plates were considered at elevated temperature namely �T =
0.7 K. This temperature leads to increased amplitudes of vibrations of the plates
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Fig. 6 Contour map of the damage index (unheated plate) and comparison with the damage
location

(see Fig. 7). Again, the differences in the plate history diagrams are visible but they
are not very large in the beginning of the time histories. However the Poincaré plots
for the damaged and the undamaged plate have very different shapes, as can be seen
from Fig. 8. This phenomenon may indicate that for these loading parameters the
dynamic system changes its position in the basin of attractions moving from one
region to another. This observation agrees with the fact that the plate buckles at
�T = 0.9 K [1]. The shapes of the Poincaré plots at the damaged nodes are similar.
Obviously, in such case the damage criterion (20) is not appropriate and doesn’t give
satisfactory results for the damage location (not shown here). As can be expected
neglecting the temperature influence is impossible for the damage detection purpose
and leads to wrong results.

The second numerical example concerns a thicker rectangular plate with the fol-
lowing geometrical and material properties: a = 10 m, b = 2.5 m, h = 0.05 m,
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Fig. 7 Time history of the thermally loaded plate. Undamaged plate (black line); damaged plate
(red line). �T = 0.7 K
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Fig. 8 Poincaré map of the response of the plate centre of heated undamaged (black dots) and
damaged (red dots) plates. �T = 0.7 K
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Young modulus E = 7.1010 N/m2, Poison ratio ν = 0.34, density ρ = 2,778 kg/m3.
The damping coefficient c1 = c2

12
h2 in Eq. (8) was chosen to be 0.00075 N s

m3 . The
finite element discretization and the damage area are shown in Fig. 9. Again, the
damaged area has a thickness hdamaged = h/2. The plate is fully clamped and the
applied harmonic load p = 500 N is uniformly distributed over the whole plate
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Fig. 9 Finite element mesh of the plate with defect

surface. The time history diagrams of the plate centre of the plate with a defect
and without defect are shown in Fig. 10. The same time history diagrams but in
the case of elevated temperatures of the plates are shown in Fig. 11. The excita-
tion frequency is 260 rad/s, which is only 7% less than the first eigen frequency of
the healthy plate. A strong beating can be observed in the responses of the healthy
and damaged plates. The phase of the response of the damaged plate shifts and
the difference between the responses increases with the time. The same conclusion
applies in the case of the rectangular plate at elevated temperature. The elevated
temperature leads to larger values of the vibration amplitude. Again, the differ-
ences between the Poincaré plots of the heated and unheated plates are largest
for the points from the damaged areas (see Fig. 12a–c). Accordingly, the damage
indexes corresponding to the damaged area have the biggest values, which gives
the possibility to locate the damage. The contour plots of Id

i corresponding to three
different temperatures are shown in Fig. 13. It can be seen that the damage loca-
tion is predicted very precisely in the case of the unheated plate as well as in the
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Fig. 10 Time history
diagram of the plate centre ,
p = 500 N, ωh = 260 rad/s
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Fig. 11 Time history
diagram of the plate center of
heated plate, p = 500 N,
ωh = 260 rad/s, �T = 50 K
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Fig. 12 Poincaré map at the centre of the defect for: (a) unheated plate, (b) heated plate �T. =
50 K, (c) heated plate −�T = 100K. Undamaged plate (black dots); damaged plate (red dots)
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Fig. 13 Contour maps of the damage index for unheated and heated rectangular plate with damage

cases of the heated plate with two different temperatures ΔT = 50 K and �T =
100 K. The threshold value Td is set to 0.28 for all cases and the maximal value
of Id is almost the same (Id = 0.4 for ΔT = 0, �T = 50 K and Id = 0.42 for
ΔT = 100 K).

If, however one calculates, for example the damage index of the healthy unheated
plate and the one for the damaged but heated plate then the damage location cannot
be predicted precisely. This is due to the temperature change which is not taken
into account for the healthy plate. The vibration responses of the healthy and the
damaged plates should be compared for the same temperatures.

6 Conclusions

In this paper the computed time domain vibration responses are used to analyse the
dynamic behaviour of plates in the intact condition and in the case when defects are
present taking into account the temperature changes. A damage assessment method
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is suggested which is based on the phase space representation of the time domain
nonlinear vibration response of the plate and uses the analysis of its Poincaré map.
It has been demonstrated that damage as well as elevated temperatures can influ-
ence substantially the time domain response of the plate and its Poincaré maps.
It can be concluded that: 1) The influence of the temperature changes is essential
and can change substantially the nonlinear dynamic response of the plate and this
is why temperature changes should be taken into account when developing a dam-
age assessment procedure; 2) Temperature loadings which lead to either buckling
or chaotic behaviour of the plate, might render the damage criterion suggested by
Eqs. (18), (19) and (20) inappropriate. This is because even small damage, resulting
in stiffness reduction of the plate, could lead to dramatic changes in the Poincaré
maps of the response and consequently to unreliable results.

The potential, the sensitivity and the applicability of the developed method still
have to be tested for real measurements and for more structures, defects and loading
conditions.
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