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Smooth inductively coupled ring trap for atoms
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�Received 6 March 2008; published 13 May 2008�

We propose and numerically investigate a scalable ring trap for cold atoms that surmounts problems of
roughness of the potential and end effects of trap wires. A stable trapping potential is formed about an
electrically isolated, conducting loop in an ac magnetic field by time averaging the superposition of the external
and induced magnetic fields. We investigate the use of additional fields to eliminate Majorana spin-flip losses
and to create a stable trapping geometry. The possibility of microfabrication of these ring traps offers the
prospect of developing Sagnac atom interferometry in atom-chip devices.
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There is significant interest among the cold-atom commu-
nity to build devices utilizing the sensitivity of matter-wave
optics. This research is driven not only by the desire to ex-
plore new regimes of atomic physics, but also by the possi-
bility of building sensors based on matter-wave interferom-
etry �1,2�. An extremely promising method of achieving
these goals is through microfabricated structures for trapping
and manipulating atoms on atom chips �3,4�. While trapping
and manipulation of atoms near permanent magnetic struc-
tures has been an active research topic for a number of years
�5�, much current work is focused on electromagnetic trap-
ping as this allows for dynamic control of the trapping po-
tentials. With modest currents, on the order of 1 A, large
magnetic field gradients and curvatures can be obtained in
close proximity to the wires creating the magnetic potentials.
Furthermore, due to the use of modern semiconductor fabri-
cation techniques, complex structures can be constructed �6�.
One example of this was the demonstration of the controlled
transport of atomic clouds along an atom chip “conveyor
belt” �7�.

A leading motivation behind atom chip experiments is the
desire to explore reduced dimensional quantum gasses �8�.
However, fragmentation of atomic clouds close to trapping
wires has been observed by many groups �9–12�, which pre-
sents a significant problem for single-mode waveguiding of
atoms and coherent matter-wave optics. In �9,11�, this rough-
ness of the trapping potential was shown to be due to longi-
tudinal magnetic fields arising from deviations of the current
flow from the desired path. By recognizing that the rough-
ness of the potential is proportional to the current through the
trap wires, these defects were recently circumvented through
the use of ac currents to generate the magnetic fields �13�.
With this method, the corrugation of the trapping potential
averages to zero while still maintaining the desired trap
depths and frequencies.

A complementary approach to explore reduced dimen-
sional quantum gases is ring traps. Even in the largest aspect
ratio one-dimensional �1D� traps, there is finite confinement
and extension along the “weak” trapping direction. In a ring
trap, the weak direction has infinite extent with periodic
boundary conditions. This opens the way for investigation of
superfluid phenomena in quantum gases �14,15�. For sensor
development, a symmetric ring potential is ideal for a Sagnac
atom interferometer �16,17� as the shared paths of opposing
arms of the interferometer provide common mode rejection

of noise due to path-length differences. To date, magnetic
ring traps have involved the use of magnetic or electromag-
netic elements to create a multiply connected magnetic field
minimum in circular �16–19� and stadium �20� geometries.
In these cases, electrical connectivity of the coils to an ex-
ternal power supply leads to a perturbation of the ideal sym-
metric field. When the traps are scaled down and the ring
trap forms close to the current-carrying coils, these effects
become increasingly significant.

Here we propose a scalable, smooth ring trap for ultracold
atoms. No external electrical connection is required, elimi-
nating undesirable end effects of wires and maintaining the
symmetry of the waveguide. Instead, modest ac magnetic
fields are applied to the system. We consider the simple sys-
tem of a single, closed conducting loop formed from a con-
ductor of circular cross section immersed in a magnetic field,
the amplitude of which varies sinusoidally in time. The ac
field is aligned perpendicular to the plane of the coil and is
assumed spatially uniform across the area of the coil. From
Faraday’s law, we find that the time-varying B field induces
current in the conducting loop, creating an induced magnetic
field about the loop. The external and induced fields cancel
symmetrically in a ring, Fig. 1, the radius of which varies in
time. If the potential varies at a frequency much greater than
the atomic motional frequencies, then a single trapping ra-
dius is found by averaging the field over one cycle �18,21�.
As the induced currents are inherently alternating, the poten-
tials obtained will benefit from the suppression of roughness
demonstrated in �13�. The ring trap forms in the plane of the

FIG. 1. �Color online� Schematic of the instantaneous vector
fields for the system described in the text. The external bias field,
increasing in magnitude, points upwards, while the induced current
in the loop, indicated by the arrow, creates a field about the loop.
The fields cancel at a radius inside the loop, indicated by the red,
dashed circle. The gray scale in the field slice indicates field mag-
nitude and arrows show the field direction.
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conducting loop and thus the zero of the instantaneous B
field travels through this trapping radius during each cycle,
which may result in Majorana spin-flip losses of trapped at-
oms.

Elliptical integrals must be evaluated to obtain the field
from a circular loop �22�. Initial investigations examined a
full spatial integral across the wire for a uniform current
density �23�. It was found that modeling the current as pass-
ing through an infinitesimal region centered on the wire
yielded trapping parameters that agreed to better than 0.5%
with the full model. For the simulations in this Rapid Com-
munication, unless stated otherwise, we examine a loop of
radius rring=1 cm formed from gold wire of circular cross
section, with a radius rwire=0.5 mm.

The induced electromotive force, E, in a loop is propor-
tional to the rate of change of the magnetic flux, �, through
the loop,

E = −
d�

dt
= L

dI

dt
+ IR . �1�

For a magnetic field of the form B�t�=B0 cos��t�, the in-
duced current, I�t�, may be expressed as

I�t� =
− Imax

�1 + �−2
cos��t + �0� , �2�

where we have introduced the terms Imax=�rring
2 B0 /L, �

=�L /R, and �0=tan−1�1 /��. The resistance and inductance
of the ring are denoted by R and L, respectively. Equation �2�
applies once turn-on effects, such as overshooting of the cur-
rent, have stabilized. The inductance of the loop is dependent
on the loop radius, as well as the shape of the conductor
forming the loop �24�,

L � �0rring�ln�8rring/rwire� − 1.75� . �3�

The resistance is found from the familiar formula incorporat-
ing the resistivity, 	, of the conductor,

R = 2	rring/rwire
2 . �4�

Due to the resistance and inductance of the conducting loop,
the phase and amplitude of the induced current are dependent
on the frequency of the driving field, Fig. 2.

The trapping potential is obtained by time-averaging over
one cycle of the varying fields. In Fig. 3�a�, a contour

plot shows the potential in the radial-axial plane, with
B0=100 G and �=4. However, the zeros of the time-varying
field pass through the trapping radius once per cycle, which
is undesirable for a magnetic atom trap. If we apply a dc
quadrupole B field, Bdcq�z ,−r /2�, centered on the conducting
loop, we obtain the trapping potential shown in Fig. 3�b�.
The instantaneous zeros of the total B field follow a trajec-
tory that lies symmetrically about the plane of the ring, re-
moving potential spin-flip losses. Furthermore, the form of
the time-averaged potential is not significantly perturbed by
the quadrupole field. The application of a quadrupole field
with axial gradient 25 G cm−1 forms a stable ring trap
1.76 mm from the surface of the wire in the plane of the
loop. For rubidium, trapping frequencies of 60 and 49 Hz
radially and orthogonal to the plane of the loop, respectively,
are obtained and a minimum trap depth of 1.9 mK, limited
by gravity. For atom temperatures above 1.2 mK, the ring
trap is no longer confined toward the center of the ring. Spin
flip losses due to the orbiting trajectory of zero magnetic
field yield an equilibrium temperature of 60 �K in the trap,
though this may be raised to 
200 �K by increasing the
amplitude of the quadrupole field. This feature may be used
for evaporative cooling into the ring. However, the efficiency
may be reduced due to the form of the trajectory of the field
zeros. The average magnetic field at the trap radius is
18.8 G, and the minimum field at that point over one cycle is
9.7 G. As a result of the significant B field at all times, the
trap’s Larmor frequency is typically two orders of magnitude
larger than the rate of change of the magnetic field direction.
Trapped atoms will thus adiabatically follow the magnetic
field at all times, further preventing Majorana spin changes
of trapped atoms �25�.

The ring trap is conservative and as such must be loaded
with cold atomic samples �26�. The use of a magnetic quad-
rupole field suggests that a mirror magneto-optical trap
�mirror-MOT� �27� may be formed above the center of the
loop, which may then be relaxed to load the ring trap. Pre-
cooled atoms may be transferred into the ring trap by spa-
tially overlapping a separate atom trap, such as an optical
tweezers �10�. Mode-matching of these potentials is likely to
prove difficult and instead we propose a method of deform-
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FIG. 2. The phase between current in the conducting loop and
the driving field �left� and the induced current �right� as a function
of the frequency of the driving field. Note that at low frequencies,
the phase-induced current lags � /2 behind the driving field. For the
simulations in Fig. 3, �=4.

FIG. 3. �Color online� The magnetic potential about the con-
ducting loop showing the effect of the control parameters. The po-
sitions of the time-averaged trap minima are marked by the gray
crosses, and the instantaneous zeros of the B field are denoted by
the black dots. The trajectory that the minima follow is indicated by
the numbered, black arrows. For these results, �= �2��30 kHz,
B0=100 G. �a� No additional fields. �b� A dc quadrupole field,
Bdcq=25 G cm−1, is added.
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ing the ring potential to provide a 3D magnetic trap. For
large B-field gradients, the quadrupole field is the dominant
term, forming a trap at the center of the ring. A bias B field
parallel to the ac driving field shifts the central quadratic trap
out of the plane of the loop, providing improved optical ac-
cess for initial loading of the potential with precooled atoms.
An additional homogeneous bias field, Bdcr, in the plane of
the ring shifts the quadrupole trap toward the ring trap posi-
tion. To localize atoms along the ring, and to minimize losses
during the transfer, the quadrupole field is reduced and a bias
field is gradually applied. The adiabatic nature of the transfer
may be seen in Fig. 4 together with the applied fields. The
time-averaging of the ac fields ensures that the instantaneous
trap position is maintained at a nonzero B field during the
transfer except when the trap is at the ring center. Spin-flip
losses at this point may be reduced by minimizing the dura-
tion the trap spends at this position or with additional time-
averaging fields. The weak bias B field along the plane of the
loop has the effect of tilting the ring and breaks the symme-
try of the ring and may be used to localize atoms within the
ring �19�.

A maximum current density of j=9300 A cm−2 is found
for the parameters discussed, with corresponding Ohmic
losses of 5.2 W. The heating losses in the ring scale as �B0�2,
whereas the trap frequencies scale as �B0, allowing a signifi-
cant reduction in the power dissipated, if required. These
values offer promise for scaling the ring down, with the con-
sideration of some additional parameters. First, a smaller
loop necessarily has a smaller area, and thus couples less
magnetic flux for the same B field. Second, while the resis-
tance varies as rring /rwire

2 , the inductance has a more complex
scaling, Eq. �3�. As an example, for a 2-mm-diam gold ring
formed of wire with a diameter of 100 �m, in a 10 G field at
1 MHz, we predict trapping frequencies of �113,210� Hz.
Notably, the current density in this case is the same as for the

larger ring, but the total dissipated power is three orders of
magnitude lower. These parameters may be examined in con-
junction by considering the frequency scaling �0=R /L,
which gives an order-of-magnitude frequency for the exter-
nal ac field required to drive the system. Shown in Fig. 5, for
ring radii below 	100 �m, frequencies on the order of
100 MHz are required to drive the system. The trap frequen-
cies scale approximately inversely with the ring diameter for
constant B0, although a full simulation including all param-
eters discussed is required for accurate values. At the atom
chip scale, the required quadrupole fields can be applied lo-
cally �28�, allowing for parallelism of the device construc-
tion.

A further geometry considered is the extension to two
concentric, coplanar conducting loops. The induced currents
through each loop are related by their mutual inductance and
Eq. �2� is extended to two coupled equations for these cur-
rents. For this system, the frequency of the external B field
should be chosen ��R /L so that the separate coil currents
run out of phase with the external field. In the limit of zero
drive frequency, the currents through each coil are approxi-
mately in phase and reach a peak value when the external
field is at a minimum, forming a tight trapping potential be-
tween the loops. About the maximum of the external B field,
the current in the loops will have an infinitesimal positive
�negative� current amplitude and the trapping radius forms at
the outer �inner� ring. Averaging over a cycle of the ac field,
the time-averaged trapping potential forms a ring at approxi-
mately the mean radius of the loops. Such a ring waveguide
can have large trapping frequencies due to the proximity of
the trapping radius to both wires.

rf-dressed potentials for atom traps have been a topic of
some interest since a proposal by Zobay and Garraway in
2001 �29�. In this Rapid Communication, we have deliber-
ately chosen parameters to remain in a regime where the
atomic magnetic moment follows adiabatically the total mag-
netic field and remains in an undressed mF state. In this pa-
rameter space, the modulation frequency of the B field is
much less than the Larmor frequency and both are signifi-
cantly larger than the spatial trapping frequencies, as is the

FIG. 4. �Color online� The transfer from the single quadrupole
potential to a ring trap. The quadrupole field is reduced while a
transverse bias field is applied to shift the zero of the quadrupole
toward the ring radius. The top figure shows the potential along a
radius parallel to the bias field as the applied fields vary in time,
shown in the lower figure.

FIG. 5. �Color online� The scaling of drive frequency, �drive

	�=R /L, as a function of rring and rwire. The y axis is presented as
the ratio of the length scales in the range of experimental interest.
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case in the time-orbiting potential �TOP� trap �21�. The ex-
tension to rf-dressed potentials is readily achievable, al-
though it does require higher drive frequencies than those
presented here.

Many applications present themselves for the ring traps
proposed here. A circular waveguide is ideal for use in Sag-
nac interferometry �17�, the study of sonic black holes �30�,
superfluid circulation in quantum fluids �14,15�, and soliton
propagation �31,32�.

We have proposed and numerically investigated magnetic
ring traps that require no external wiring. The scheme cir-
cumvents problems with roughness of the trapping potential

by creating a time-averaged field that is inherently smooth
with respect to deviations of the current in the conductors.
We have identified a mechanism for eliminating Majorana
losses by applying a quadrupole B field centered on the ring.
Large radius 	1 cm traps have been described that will al-
low for sensitive interferometric tests, due to the macro-
scopic area of the rings. Smaller traps on the micrometer
scale are also proposed that are amenable to microfabrication
and use in atom-chip devices.

The authors thank the University of Strathclyde for finan-
cial support and Alastair Sinclair, Ifan Hughes, and Charles
Adams for discussions.
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