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ABSTRACT. 

The absorbance and circular dichroism (CD) of suspensions is lower than if the same amount 

of chromophore were uniformly distributed throughout the medium. Several mathematical 

treatments of this absorption flattening phenomenon have been presented, using various 

assumptions and approximations. This paper demonstrates an alternative simulation approach, 

which allows relaxation of assumptions. On current desk-top computers the algorithm runs 

quickly with enough particles and light paths considered to get answers usually accurate to 

better than 3%. Results from the simulation agree with the most popular analytical model for 

0.01 volume fraction of particles, showing that the extent of flattening depends mainly on the 

absorbance through a particle diameter. Unlike previous models, the simulation can show that 

flattening is significantly lower when volume fraction increases to 0.1, but higher if the 

particles have a size distribution. The simulation can predict the slope of the nearly linear 

relationship between flattening of CD and the absorbance of the suspension. This provides a 

method to correct experimental CD data, where volume fraction and particle size are known. 

 

Keywords: protein particles, particle size, software 

 

INTRODUCTION. 

Measurements of light absorption or circular dichroism on suspended particles may differ 

compared with the same amount of chromophore uniformly distributed in solution. A key 

contribution is the phenomenon of absorption flattening, which has in the past also been 

termed “shadowing”, “obscuring” and the “sieve effect” [1-14]. (The instrument signal may 

also be affected by light scattering, which will not be considered further in this paper.)  There 

are several different pictures of the origin of the flattening effect, but all of them relate to the 

same fundamental cause. Perhaps the easiest is to imagine the appearance of a projection of 

the suspension in a plane perpendicular to the light path (i.e. as seen by the light entering the 

suspension). Now, if the particles are sufficiently dilute, there will be parts of this projection 

that contain no particles at all (i.e. light paths through the suspension that pass entirely 

through the transparent suspending medium). Fig. 1 below shows examples. Now it should be 

clear that the suspension will have a minimum transmittance, even if the particles completely 
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absorb light meeting them. Hence the suspension will have a maximum absorbance, however 

large the chromophore concentration within the particles or its absorbance coefficient. A 

slightly different picture considers that because of the random distribution of particles, 

different light paths through the suspension will pass through particles for different fractions 

of their length. The average of the absorbance over these various paths will equal that if the 

some amount of chromophore were uniformly distributed. But the spectrophotometer will 

average not absorbances but intensities (which are exponential functions of the former). The 

smaller absorbance (larger intensity) paths will make a disproportionately large contribution 

to this mean intensity. Hence the final absorbance calculated from the mean intensity will be 

smaller than the mean absorbance, unless the absorbances through each light path are exactly 

equal.  

If all absorbances are relatively small, it is fairly easy to see that the absorbance reducing 

effects of the high transmittance light paths (meeting few or no particles) will be weaker. 

Hence the effect most strongly reduces measured absorbance in regions of the spectrum where 

the absorbance coefficient is high, flattening the tops of the peaks (the origin of the name).  

The same phenomenon also affects circular dichroism (CD) spectra, because these show the 

difference in absorbance for right and left circularly polarised light. Indeed, there has been 

more interest recently in flattening effects in CD than for simple absorbance. In part this is 

because in CD light scattering from suspensions has a smaller impact - simple light scattering 

(of equal magnitude for both polarisations) does not affect the CD signal, provided sufficient 

light still reaches the detector for it to be measured. Measurements of circular dichroism on 

suspensions have been widely used in the study of membrane proteins. These must normally 

be kept in place in membrane fragments in order to retain their native structures. Flattening 

effects can be significant when measurements are made on the resulting suspensions [5,7,15]. 

CD measurements are also of interest on other types of small particles in suspension (e.g. 

[16,17]).  

It has recently been shown possible to collect good circular dichroism data on suspensions of 

particles of hundreds of um in size [11]. This opens the possibility of examining protein 

conformation in a wide variety of particulate preparations of practical interest, including 

immobilised enzymes [18], various dried storage forms [19], and the results of unwanted 

aggregation in solution [20]. 
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The size of the flattening effect was first analysed in a classic paper by Duysens [1]. Since 

then there have been a series of approaches to modelling the effect [2-14], which are 

discussed in more detail in the Theory section. The literature approaches have used analytical 

treatments to derive equations that describe the effect, with the use of various simplifying or 

approximating assumptions. The final equations may be solved analytically or numerically, 

and their predictions are shown below for comparison. In this paper I will describe and 

present results from a simulation approach to describe the phenomenon. This would have 

been computationally extremely expensive or impossible at the time of most of the previous 

treatments. However, as will be shown, the speed of current computers makes it an attractive 

option. A simulation approach also makes it relatively easy to relax one or more of the 

approximations made in relation to the real system. 

 

THEORY 

Simulation approach 

The basic idea is to simulate the passage of light along the full pathlength through a portion of 

the sample volume. The appropriate number of particles are placed randomly within the 

volume, and then an array of possible light paths are examined. For each light path, calculate 

the fraction of its length that passes through one or more particles, and hence determine the 

intensity of light that would emerge from that path. From the summed intensities the expected 

measured absorbance or CD signal of the suspension can be calculated. This may be 

compared with the values that would be found if the chromophores were distributed 

uniformly through the medium (or, equivalently, when every light path had an identical 

fraction of its length within the particles, equal to their volume fraction).  

The appearance of the suspension in a projection perpendicular to the light path does not 

depend on the absolute pathlength, but rather on its ratio to the particle diameter (see 

examples in Fig. 1). Hence it is convenient to use a dimensionless parameter (L), the 

pathlength divided by the particle diameter, to characterise the system. The volume fraction of 

the particles in the suspension (φ), also dimensionless, is another input to the simulation. The 

absorption within the particles will depend on the concentration of chromophore within them 

multiplied by its absorption coefficient. Again it is convenient, and parallels previous 
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Fig. 1. Simulated appearance of suspension as viewed along light path. Left panel, for φ = 

0.01 and L = 20; right panel, for φ = 0.1 and L = 2 with a 20% standard deviation in particle 

diameters. It is evident that many light rays will not meet any particle at all. The calculated 

maximum absorbances of the suspension are about 0.13 and 0.15, however large Apart 

becomes.  

 
analytical treatments, to make this dimensionless by multiplying by the particle diameter. The 

result, which is equal to the absorbance measured through a diameter of the particle, is 

denoted by Apart. To simulate the effect on CD measurements, we use the corresponding CD 

signal for a light ray that passes through the diameter of one particle, CDpart. This is by 

definition equal to Apart,L – Apart,R, the difference in absorbances for left and right circularly 

polarised light. To find the individual terms, we make use of the fact that the average intensity 

transmitted by the particle (as appearing in the definition of Apart) is equal to the mean of 

transmitted intensities of the two polarisations. This allows us to derive: 
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Because all four inputs to the simulation are dimensionless, all lengths considered in the 

simulation will also be dimensionless multiples of the particle diameter.  

The simulation then proceeds as follows:  
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1. Set up a simulated volume, with pathlength L, which will be taken as the z-axis 

direction. The total volume (V) is chosen to contain the number of particles to be 

included in the simulation (N, e.g. 1000), by V = N.π/(6.φ). Note that the value of N 

does not affect the nature of the system being simulated (which depends only on φ and 

L), but just the size of the portion that is included in the simulation. N must be large 

enough that this portion is representative of the system as a whole.  Note also that V 

will also be dimensionless, based on division by the cube of the particle diameter.  To 

achieve the required volume, equal widths of the simulation region are then set in the 

x and y directions (=√(V/L). 

2. Place the required number of spherical particle centres randomly throughout the 

simulated volume, not allowing a new particle to overlap a previous one, or to overlap 

the ends of the volume in the z direction (assumed to be sample container walls). 

Overlap of the simulation volume edges in the x and y directions are allowed, as these 

are merely arbitrarily chosen limits to the simulation volume. 

3. Consider an array of light ray paths along the z direction, uniformly distributed in the 

x-y plane (e.g. 32 X 32 raster, giving a total of 1024). For each light ray, calculate the 

total length of its path through particles. The algorithm does this by simply 

considering each simulated particle in turn, seeing if it intersects that ray. For a light 

ray that has coordinates xr and yr such that it passes through a particle of radius R, at a 

distance r from the particle centre (= √[(xr-xp)2+(yr-yp)2]), the light path length through 

the particle is 2√(R2-r2). (This neglects refraction at the particle-medium surface.)  All 

such contributions to the given light ray are summed. Light paths are placed at least 

one particle radius from the x and y edges, so they could not meet any particles 

centred outside the simulated volume. 

4. For each light ray, and a list of possible values of Apart, calculate an absorbance as Apart 

times the total path length through particles (remembering that this path length is 

calculated as a multiple of particle diameter). Then calculate the transmitted fractions 

of light intensity for that light ray as 10 raised to the negative power of absorbance. 

The transmittance of right and left polarised light are calculated similarly using Apart,L  

and Apart, R (calculated from input values of Apart and CDpart).  
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5. Calculate the average transmitted intensity from all these light paths, for each possible 

combination of Apart and CDpart values, and hence the (flattened) absorbances of the 

suspension (Asus). Calculate the CD signal of the suspension (CDsus) as the difference 

in Asus values for left and right polarised light. 

6. Calculate the reference absorbance (Asol) or CD signal (CDsol) if the absorbing 

material were uniformly distributed (no flattening). First calculate the average across 

all light paths of the path length through particles. This should be very close to the 

product φ.L, and is found to be so, although the random element in the simulation 

means they differ slightly. Then multiply by the various possible Apart or CDpart values. 

7. For the estimation of the flattening coefficient (QA) as Asus/Asol, the Asol values might 

be calculated as Apart multiplied either by φ.L, or by the average path length through 

particles (as under step 6). The QA values from replicate simulations were found to be 

rather closer to each other using the latter approach. The same applied to QCD values, 

calculated as CDsus/CDsol. Hence the latter approach has been used to give the results 

shown here. The random element in the simulation results in a set of light ray paths 

that have a slightly larger or smaller average length in particles. Essentially this means 

they are characteristic of a slightly different value of φ, compared with that input.  

 

A number of assumptions and approximations are made in this treatment, but it should be 

possible to relax these, at the expense of a more complicated calculation.  

• The current simulation treats light passage through the suspension in terms of classical 

geometric optics. As such it will not be valid in cases where the particles sizes are not 

significantly larger than the wavelengths of the light used [4, 8]. 

• Light paths are treated as straight lines all though the suspension, neglecting possible 

refraction at the particle surfaces. 

• It is assumed the chromophore is equally distributed between the particles, and evenly 

distributed within each. 

The algorithm would also need altering to handle particles of different shape (e.g. cylinders or 

hollow spheres), or to deal with a range of particle sizes. As an illustration of the possibilities, 
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the last of these is demonstrated below. Other extensions are under development. To get 

reliable results for the more complicated cases it may be necessary to include more particles 

and/or light paths in the simulation, with a corresponding increase in calculation time. 

 

Re-arrangement and re-parameterisation of literature equations for comparison 

In order to compare the results of the simulation approach with those from literature 

equations, it is necessary to convert these to use the same dimensionless input variables (i.e. 

Apart, φ and L). One useful relationship here is that Asol = Apart.φ.L, since other treatments 

show the relationship of Asol to their input values.  

A series of papers derive essentially the same equation by different routes and arguments [1-4, 

10]. Using the symbols of Naqvi et al [10], the procedure is to calculate first the parameter α, 

by 

10ln... dnεα =        (1) 

where ε is the extinction (absorbance) coefficient of the chromophore, n is its concentration 

within the particle and d is the particle diameter. It is clear that α equals Apart as defined above 

multiplied by ln10.  The factor of ln10 appears because the treatment essentially specified 

absorbance as ln(Io/I), which is indeed used as its definition in the earlier papers, rather than 

log(Io/I) as standard nowadays. From α, calculate β, the “average transmission of a particle”, 

as 

( )[ ]
2

112
α
αβ

α−+−
=

e        (2) 

Finally, calculate QA (AD/AC in their symbols) by  
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Hence the model predicts that QA depends only on Apart, and is independent of φ and L. Some 

of the derivations explicitly assume that φ << 1. 

Wittung et al [9] show a derivation with the final equation printed as: 
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However, examination of their derivation shows that the expression actually gives Isus/Io, so 

Asus should be calculated as the negative log of this value. In this equation: 

Np is the total number of particles in the sample cell 

Nch is the number of light “channels” through the sample – these are to be chosen so 

they have “a cross-section corresponding to the size of the absorbing particles”. 

εp is the “molar absorptivity of the particles”  

cp is the “molar concentration of the particles” 

l is the sample pathlength 

One stated limit on validity is that Np/Nch > 2. 

To relate this equation to the input values used in the simulation, we introduce (and later 

cancel) the area A of the suspension in the x-y plane, facing the light beam. Now we can 

interpret the rule stated above for choosing channel size as meaning Nch = A/d2, where d is the 

particle diameter. (An alternative interpretation would be Nch = 4A/πd2, giving slightly 

different relationships.)  We can also write Np = np.A.l, where np is the number of particles per 

unit volume in the suspension. But np can also be related to φ by φ = np.πd3/6.  Hence we 

obtain Np/Nch = (6/π).φ.L. Wittung et al [9] also present the relationship Asol = εp.cp.l, so we 

can replace the entire group (Nch/Np).εp.cp.l by π.Apart/6. Hence we calculate QA by 
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Thus QA is predicted to depend on Apart, φ.L, and Nch. The stated limit on validity becomes 

φ.L > 1. For the Apart and φ.L ranges studied, the influence of Nch was found to be small when 

it is greater than 20. 

Bustamante and Maestre [8] derive the following equations (their 12, and the following 

expression for q, using their 11 to expand Vf): 
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 where 

a is the absorption cross section of the chromophore, with dimensions of length squared 

q is “the probability of finding a particle in the volume defined by a light pencil” 

k is a “proportionality constant whose exact value is of no consequence”, which they take as 1 

λ is the wavelength of the light used 

W is the total weight of the absorbing material in the solution 

Na is Avogadro’s number 

l is the pathlength 

Mw is the molecular weight of the absorbing particles 

VT is the total volume of the solution 

The identification of q as a probability implies a maximum value of 1, and hence a limit on 

the validity of the expression that gives it. We can also simplify this expression by replacing 

W.Na/(Mw.VT) with c, the number of particles per unit volume (as used earlier in their 

derivation). We also have Asol = a.c.l (as used in their derivation), but also Asol = Apart.φ.L, 

from above. Hence we obtain 
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Thus QA is predicted to depend on the two dimensionless groups Apart.φ.L and k.λ2.l.c, where 

one limit to validity is that the latter must be less than 1. 

There are fewer equations in the literature for flattening of CD spectra of spherical particles. 

Gordon & Holzwarth [2] present 
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where q is the volume fraction of particles (i.e. φ), m = (3 X pathlength)/(4 X particle radius) 

(i.e. 3L/2), and Tp is an alternative symbol for β calculated as in equation 2 above. 

Substitution leads to 

( )[ αβ
α

−−= exp3
CDQ ]      (9) 

Urry [3] presents an algorithm for the calculation of QCD, by successive use of equations 44 

and 45, 46, 47 and 42 (as numbered in that paper). For comparison with the present treatment, 

the scattering terms in equation 42 are set to zero. The input values to the algorithm are Apart, 

CDsol and Asol (using my symbols). However, a test using a range of realistic values indicates 

that the latter two have almost no effect on the calculated QCD. Furthermore, the QCD values 

obtained are found to agree within 0.1% with those calculated using equation 9 above. Hence 

they are not treated separately below. 

Bustamante and Maestre [8] derive the relationship: 

QCD = 2(QA – 0.5)        (10) 

where QA is obtained from their equation 6 (or 7) as given above. 
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RESULTS AND DISCUSSION 

The simulation has been implemented as a Visual Basic macro attached to an Excel 

spreadsheet. The latest version of this will be supplied without restriction on request to the 

author. Running a simulation with 1000 particles and 1024 light paths takes about 3 s on a 

standard PC. Replicate simulations with these values usually agree with standard deviations in 

QA and QCD values of <3%, often much smaller. Larger deviations are observed in some 

cases, especially where the values of Asus are very large, or QCD is very small. Standard 

deviations are shown as error bars on the graphs presented (often smaller than the points). 

Increasing the number of particles to 5000 seemed to have little effect on the standard 

deviations obtained, whereas an increase to 4098 (64 X 64) light paths typically reduced the 

standard deviation to about half. 

Simulations have been run for input values in the following ranges: Apart. 0.001 to 5; φ 0.01 to 

0.1; L 2 to 2000; CDpart 0.00001 to 0.1 (and no more than 10% of Apart). The effects of φ; L 

and CDpart on QA and QCD are found to be relatively small, with Apart having the major 

influence. Fig. 2 shows the dependency of QA, with simulation results indicated by points. For 

comparison, lines show the predictions of the 3 literature models above. As can be seen, the 

simulation points for φ = 0.01 agree well with equation 3, as might be expected in the low φ 

limit. For φ = 0.1 the values of QA obtained by simulation are slightly but significantly larger 

(i.e. less flattening). One contributing effect here is the greater restriction on particle locations 

by others present in the suspension (i.e. an excluded volume effect). This makes the 

distribution of particles across light paths rather more uniform as φ increases. It may be 

helpful to think of behaviour at very high φ, approaching the close packed limit, when the 

particle centres must be arranged ever closer to a regular lattice.  

The model of equations 4 and 5 is only applicable for the φ = 0.1 case here, because of the 

requirement that φ.L > 1. The line shows reasonable agreement with the points at high Apart, 

but is significantly higher at lower values. It is likely that one of the approximations used in 

the derivation breaks down, particularly as the equations give physically impossible values of 

QA > 1 at the lowest Apart values. The model of equations 6-7 gives an almost linear 

dependence of QA on Apart. By appropriate choice of the parameter k.λ2.l.c, this line can be 

made to agree with the simulation points and the model of equations 1-3 over the low Apart 

range. However, it would seem that the model of equations 6 and 7 cannot hold throughout 
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the range of input values studied here. One relevant factor may be that the derivations of both 

these alternative models seem to assume that the numbers of particles encountered by a light 

ray can be approximated by the normal distribution. This will only be correct where the mean 

numbers are large – in many cases low numbers and a Poisson distribution will hold.  
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Fig. 2. Predicted QA vales from simulation and literature equations.  

Simulations for L = 20, with φ of 0.01 (triangles) and 0.1 (squares). Most error bars are 

smaller than the size of the points, but they are just visible for the square points at medium 

Apart values. Lines show results from equations 1-3 (solid); 4 and 5, with φ.L = 2 and Nch = 

100 (dotted); 6 and 7, with φ.L = 0.2 and k.λ2.l.c = 0.25 (dashed). The latter value was 

adjusted so that the line agrees with the simulation points and equations 1-3 at the low Apart 

limit. 

No significant effects on the simulation results were found on increasing L, until φ.L values 

were greater than 2. After that, QA values seemed to become larger for the higher Apart values, 

although the standard deviations also increased substantially. In this range Asol and Asus 

reached values beyond the normally measurable range. Hence this behaviour has not been 

investigated further. 
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Turning to QCD, the simulation results indicate that the major influence is again Apart, as 

shown in Fig 3. Just as with QA, there is a small but significant increase in QCD on raising φ 

from 0.01 to 0.1. No significant effect of CDpart on QCD was detected anywhere in the region 

studied. Similarly there was no effect of L until φ.L became greater than 2. At larger values 

there was an indication of higher QCD for larger Apart values, although with the same increased 

standard deviations and excessive Asus values as for QA. The literature model of equations 1, 2 

and 9 agrees well with the simulation results for φ = 0.01, indicating again that it holds for the 

low φ limit. The model of equations 6, 7 and 10 can be adjusted to fit in the initial region of 

more or less linear decline in QCD, but cannot describe the curvature at higher Apart values. 
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Fig. 3. Predicted QCD values from simulation and literature equations.  

Simulations for L = 2, with φ of 0.01 (triangles) and 0.1 (squares). CDpart values were 0.0001 

for Apart up to 0.3, and 0.02 for Apart of 0.2 and above (the two common points overlap). Error 

bars are visible for the triangle points at medium Apart values, but otherwise are smaller than 

the symbols. Lines show results from equations 1, 2 and 9 (solid); 6, 7 and 10, with φ.L = 0.2 

and k.λ2.l.c = 0.3 (dotted). The latter value was adjusted so that the line agrees with the 

simulation points at the low Apart limit. 
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In our previous treatment of CD measurements on suspensions of immobilised enzyme 

particles [11], we used a semi-empirical model based on the assumption that QCD was linearly 

related to the measured absorbance of the suspension. (In this paper we defined the “flattening 

coefficient” in the same way as Wallace and Mao [5], that is equal to (1-QCD) as used in the 

current paper and much of the rest of the literature.)  Fig. 4 shows that this approximation is 

quite good for a range of input values, with QCD falling linearly from 1 for Asus = 0. The slope 

of the line (the adjustable parameter in our previous treatment) is strongly dependent on the 

values of φ and L. There may be some deviation from linearity as QCD approaches zero, which 

also corresponds to a predicted maximum possible value of Asus (because absorption 

flattening prevents this value being exceeded).  
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Fig. 4. Relationship between QCD and Asus from simulations.  

Points are for the series of Apart values up to 5, and the corresponding CDpart values, as for Fig. 

3. The series are for: φ = 0.01, L = 2 (filled squares); φ = 0.01, L = 20 (open squares); φ = 0.1, 

L = 2 (filled circles); φ = 0.05, L = 10 (open circles); φ = 0.1, L = 10 (filled triangles); φ = 

0.01, L = 200 (open triangles). Both x and y error bars are shown, where larger than the size 

of the points. 

 
To demonstrate the relative ease of relaxing assumptions when using the simulation approach, 

a particle size range was considered. Instead of all particles being identical in size, they were 
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given diameters with deviations about the mean, taken randomly from a normal distribution 

with an appropriate variance. Table 1 compares the QA and QCD values found for uniform 

particle sizes and for a standard deviation of 20% of the mean. As can be seen both QA and 

QCD are significantly smaller when the particles are not equal in size. 

Table 1. Effect of particle size distribution on QA and QCD. 

φ L QA QCD 

  Monodisperse Size range Monodisperse Size range 

0.01 2 0.499 ± 0.013 0.458 ± 0.010 0.213 ± 0.014 0.174 ± 0.010 

0.01 200 0.494 ± 0.008 0.471 ± 0.009 0.200 ± 0.009 0.186 ± 0.007 

0.1 2 0.549 ± 0.003 0.501 ± 0.004 0.253 ± 0.004 0.207 ± 0.004 

 

Values of QA and QCD for Apart = 1, for case with either: a)  all particles of identical size, or b) 

with diameters having a normal distribution with the same mean and a standard deviation of 

20% of the mean. Results are shown as mean ± standard deviation from 5 replicate runs. All 

simulations were performed using 64 X 64 light paths, for greater accuracy. All differences 

between monodisperse particles and those with a size range are statistically significant at 

levels ranging from 1.2% down to 10-6%. 

 

The relationship between QCD and Asus suggests an approach to use the simulation to handle 

experimental data. It will usually be possible to estimate φ and L from other measurements on 

the particle suspension. That should allow construction of a plot of QCD vs. Asus like that of 

Fig. 4. Then the measured Asus of the suspension (e.g. obtained from the HT signal on a CD 

spectropolarimeter) can be used to estimate QCD from the plot. Finally this can be used to 

correct the measured CD signal. In this approach the parameter Apart, as used in the 

simulation, is effectively determined from the experimentally measured Asus. Note that it will 

also be necessary to allow for scattering contributions to measured absorbance, where these 

are significant, in order to get true Asus values. Eliminating scattering contributions can be 

challenging, but there are theoretical and experimental approaches that are useful (e.g. [10]).  

16 



To illustrate how the simulation method can be used with experimental data, I have taken a 

data set from our previously published measurements [11]. The conditions of measurement 

were used as inputs to a simulation giving the plot of Fig. 5. The HT data from the 

spectropolarimeter was used to estimate Asus values, which were then used to obtain 

corresponding QCD values, using a smooth interpolation line on Fig. 5. These QCD values are 

in turn used to correct the CD spectrum, as shown on Fig. 6. The resulting spectrum should be 

a sounder basis for evaluating the secondary structure in the protein, and other analysis. 
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Fig. 5. Relationship between QCD and Asus used to correct experimental data.  

This plot has been produced by a simulation using input values derived from the conditions of 

an experimental measurement. A data set from our previously published measurements [11] 

had been obtained with a pathlength of 0.2 mm, and a silica-subtilisin concentration of 36.7 

mg mL-1. From the particle concentration and an estimate of 0.55 g dry weight per cm3 for the 

porous (0.75 cm3 g-1) silica particles used, φ is calculated as 0.067. From the stated size range 

of the silica I estimate an L value of 4, and a fractional standard deviation of 0.2 in particle 

size.  
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Fig. 6. Correction of circular dichroism spectrum using simulation results. 

Measurements were for a suspension of silica-subtilisin in aqueous buffer, and had been 

converted to the usual CD units using the measured protein concentration in the cell (solid 

line) [11]. The output for the applied high tension (HT) voltage from the spectropolarimeter 

was used to estimate the spectrum of Asus values for this sample (with some allowance for 

scattering using the HT data for a suspension of the same silica particles without enzyme 

immobilised on them). These Asus values were then used to obtain corresponding QCD values, 

using Fig. 5. Finally the table of QCD values was used to produce the corrected CD spectrum 

(dotted line), calculated as the measured CD divided by QCD. The “corrected” line is not 

shown at the shortest wavelengths, as here the estimated values of QCD become very small, so 

that small absolute errors in them will have major effects on the size of the correction, and the 

results are probably not reliable. 

 

CONCLUSION 

A simulation approach is an effective method to estimate the extent of flattening when 

making absorption or CD measurements on particle suspensions. 
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