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Singularities of optimal attitude motions

James D. Biggs ∗

∗Advanced Space Concepts Laboratory, Department of Mechanical
Engineering, University of Strathclyde, Glasgow. (e-mail:

james.biggs@strath.ac.uk).

Abstract: This paper considers the problem of planning optimal attitude motions for spacecraft. The
extremal solutions that result from this optimization problem are characterized and their singularities
identified. Following this these singularities are solved analytically inferring the form of particular
optimal velocities. These particular solutions are then integrated and their corresponding motions derived
independently of a local coordinate chart. These motions have the potential to be used as smooth, optimal
reference trajectories for performing certain re-orientations for spacecraft.
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1. INTRODUCTION

Methodologies for planning and controlling attitude maneuvers
of spacecraft based on geometric techniques has a rich history
and includes the application of quaternion algebra, Lie group
theory and geometric control theory, see Wie (1998); Spindler
(1996); Jurdjevic (1997); Leonard et. al. (1995) for a few
examples. In this paper we consider the optimal attitude control
problem posed in Spindler (1996) from the perspective of using
these methods to plan optimal, smooth and practical motions
for spacecraft.

Spindler (1996) defines a fixed end point optimal control prob-
lem for the attitude control of a rigid body with the angular
velocities as the control inputs, where the cost function to
be minimized is a quadratic function of the angular velocity
components. In particular minimizing such a cost function is
desirable during a spacecraft maneuver to keep angular velocity
low because high spin rates can cause undesirable tumbling
motions. In addition high spin rates make it hard to receive
good tracking data to monitor the spacecraft’s motion. Spindler
(1996) then applies the Maximum Principle (see Jurdjevic
(1997); Sussmann (1997)) to this optimal control problem to
yield the appropriate Hamiltonian. Following this the corre-
sponding Hamiltonian vector fields are derived to yield the
necessary conditions for optimality.

In Spindler (1996) a special case of this optimal control prob-
lem is considered where the weights of the cost function are all
equal and is representative of the mean square angular velocity.
In this case the extremal curves are constant and their projec-
tions onto SO(3) can be solved in closed-form. Following this
trivial case Spindler (1996) gives a numerical example for the
general case (the weights are not equal) and the correspond-
ing extremal curves are solved numerically. In this paper we
provide a detailed treatment of singularities that appear in the
general solution of the extremal curves and proceed to solve
them analytically. This investigation yields an additional set
of analytically defined reference trajectories which alongside
the constant extremal reference trajectories in Spindler (1996)
could potentially be used in practical attitude interpolation
problems for spacecraft.

Following the derivation of the extremals at these singulari-
ties, techniques based on Lie group theory are used to project
them down to SO(3) (see for example Jurdjevic (1997); Biggs
(2010)). This procedure enables the derivation of globally de-
fined solutions at the singularities of the extremal functions.
These singular motions provide analytic expressions for rota-
tional interpolation in a convenient simplistic form. Further-
more, these rotational motions could be used as practical ref-
erence trajectories for a spacecraft to track in order to perform
particular manoeuvres.

2. ATTITUDE MOTION PLANNING PROBLEM

The orientation of a spacecraft is represented here by curves in
the Special Orthogonal Group SO(3) where R(t) ∈ SO(3) and
where the kinematics are described by the differential equation:

dR(t)
dt

= R(t)(Ω1A1 +Ω2A2 +Ω3A3) (1)

where Ω1,Ω2,Ω3 are the angular velocities and where A1,A2,A3
form a basis for the Lie algebra of SO(3):

A1 =

( 0 0 0
0 0 −1
0 1 0

)
,A2 =

( 0 0 1
0 0 0
−1 0 0

)
,

A3 =

( 0 −1 0
1 0 0
0 0 0

) (2)

with the Lie bracket defined by [X ,Y ] = XY −Y X with X ,Y ∈
so(3). Therefore, we have [A1,A2] = A3, [A2,A3] = A1 and
[A1,A3] = −A2. A1,A2,A3 describe the infinitesimal motion of
the spacecraft in the yaw, pitch, roll directions respectively.

The problem addressed by Spindler (1996) is formalized in the
following problem statement:

Motion Planning Problem

Compute the optimal velocities and the corresponding rigid
body motions R(t) ∈ SO(3) defined by the kinematic equations
(1) that minimizes the cost function:

J =
1
2

∫ T

0
c1Ω2

1 + c2Ω2
2 + c3Ω2

3dt (3)



with the given boundary conditions R(0) = R0 and R(T ) = RT ,
where c1,c2,c3 are constant weights and T is the final time.

In an optimal control problem where we desire to motion
between two fixed orientations, the weights c1,c2,c3 can be
manipulated to achieve the final desired configuration. This
problem can be viewed as an optimal control problem where
the angular velocities are the control inputs. The tool used to
tackle this Motion planning problem is the coordinate free
Maximum Principle of optimal control as described in Spindler
(1996); Jurdjevic (1997); Sussmann (1997). The Maximum
Principle of optimal control identifies the appropriate left-
invariant Hamiltonian H on the dual of the Lie algebra so(3)∗.
The Hamiltonian corresponding to (1) and (3) is written as (see
for example Jurdjevic (1997)):

H(p,u) =
3

∑
i=1

Ωi p(R(t)Ai)− p0(
1
2
(

3

∑
i=1

ciΩ2
i )) (4)

where p(·) : TR(t)SO(3) 7→ R such that p(R(t)Bi), p(R(t)Ai)
are scalar components of an element in T ∗R(t)SO(3), where
p0 > 0 is a fixed positive constant. The curves which satisfy
the Hamiltonian (4) with p0 = 1 are called regular extremals
and with p0 = 0 abnormal extremals. However, it has been
shown in Spindler (1996) that for this optimal control problem
no abnormal extremals exist. Following from the Maximum
Principle and the fact that (4) is a concave function in Ωi the
optimal velocity inputs are given by dH

dΩi
= 0 it follows that:

Ωi =
1
ci

p(R(t)Ai) (5)

As the configuration of the spacecraft is the Lie group SO(3),
the cotangent bundle T ∗SO(3) can be realized as the direct
product SO(3)× so(3)∗ where so(3)∗ is the dual of the Lie
algebra Jurdjevic (1997). Therefore, the original Hamiltonian
defined on T ∗SO(3) can be expressed as a reduced Hamiltonian
on the dual of the Lie algebra so(3)∗. We define the linear
functions Mi = p(R(t)Ai) = p̂(Ai) for i = 1,2,3, see Jurdjevic
(1997). Therefore, from (16) it follows that the maximizing
inputs are:

Ωi =
1
ci

Mi (6)

Substituting (6) into (4) gives the optimal Hamiltonian

H =
1
2

(
M2

1
c1

+
M2

2
c2

+
M2

3
c3

)
(7)

The necessary conditions for optimality are then computed by
making use of the Poisson bracket defined in terms of the Lie
bracket { p̂(·), p̂(·)}=−p̂([·, ·]) which yields:

Ṁ1 =
c2− c3

c2c3
M2M3

Ṁ2 =
c3− c1

c1c3
M1M3

Ṁ3 =
c1− c2

c1c2
M1M2

(8)

where M1,M2,M3 ∈ so∗(3) are the extremal curves. It is inter-
esting to note that if the weights (that would be set according
to the final desired configuration) are set to correspond to the
moments of inertia then the equations are exactly the Euler
equations for a free-rigid body (see Whittaker (1999)). How-
ever, we note that these are a generalisation of these equations
as the weights of the cost function are arbitrary. In order to
characterize the extremal curves described by the equations
(17) we conveniently express them in the form:

Ṁi =
c j− ck

c jck
M jMk (9)

where i = 1,2,3, j = 2,3,1 and k = 3,1,2 respectively. In
the next section we observe that by exploiting an additional
constant of motion inherent in all left-invariant Hamiltonian
systems on SO(3) the evolution of the extremal curves can be
reduced to the analysis of a 1 dimensional ordinary differential
equation and solved in terms of Jacobi elliptic functions. In
Spindler (1996) only a numerical example of the general case
is given.

3. REDUCTION AND SOLUTION OF THE EXTREMAL
CURVES

The initial stage of the procedure is to derive analytic expres-
sions for the optimal angular velocity history and the corre-
sponding rotation matrix. Note that when i = 1 then j = 2,k = 3
when i = 2 then j = 3,k = 1 and when i = 3, then j = 1,k = 2:
Theorem 1. The optimal angular velocities Ω∗

i that minimize
the cost function (3) can be expressed in the form:

Ω∗
i =

√
si

ci
sn

(√αs j +Ci,
si

s j

)
(10)

where sn(·, ·) is a Jacobi elliptic function and where the con-
stants Ci are defined by

Ci = sn−1
(

ciΩi(0)√
si

,
si

s j

)
(11)

with

si =
−β +

√
β 2−4αχ

2α
s j =

−β −
√

β 2−4αχ
2α

(12)

and

α =− (ci− c j)(ci− ck)
c2

i c jck

β =
4c jckH−2ci(c j + ck)H +2ciK2− (c j + ck)K2

cic jck

χ =−
(
2c jH−K2

)(
2ckH−K2

)

c jck

(13)

with the conserved quantities H and K defined in terms of the
initial angular velocities:

H =
1
2

(
c1Ω2

1(0)+ c2Ω2
2(0)+ c3Ω2

3(0)
)

K2 = c2
1Ω2

1(0)+ c2
2Ω2

2(0)+ c2
3Ω2

3(0)
(14)

Proof.
the optimal Hamiltonian is given by:

H =
1
2

(
M2

1
c1

+
M2

2
c2

+
M2

3
c3

)
(15)

where the extremal curves M1,M2,M3 ∈ so∗(3) are defined in
terms of the weights ci of the cost function and the optimal
angular velocities:

Mi = ciΩ∗
i (16)

the corresponding Hamiltonian vector fields are then given by
the Poisson bracket (see Jurdjevic (1997) for details):

Ṁi =
(

c j− ck

c jck

)
M jMk (17)

it is easily shown that the Casimir function:

K2 = M2
1 +M2

2 +M2
3 (18)



is constant along the Hamiltonian flow. Illustrating the solution
for M1 the solutions for M2 and M3 follow analogously. From
(17) we have:

(
Ṁ1

)2 =
(

c2− c3

c2c3

)2

M2
2 M2

3 (19)

then using the Hamiltonian (15) and the Casimir function (18)
write M2 and M3 explicitly in terms of M1 to yield:

M2
2 =

c2
(
2c3H−K2 +M2

1 − (c3M2
1)/c1

)

c3− c2

M2
3 =

c3
(
2c2H−K2 +M2

1 − (c2M2
1)/c1

)

c2− c3

(20)

then substituting (20) into (19) and simplifying yields:
(
Ṁ1

)2 = αM4
1 +βM2

1 + χ (21)
where the constants α,β and χ are defined by equation (13)
with i = 1, j = 2,k = 3. Defining the constants:

s1 =
−β +

√
β 2−4αχ

2α
s2 =

−β −
√

β 2−4αχ
2α

(22)

then equation (21) can be expressed as:

Ṁ1 =
(
s1−M2

1
)(

s2−M2
1
)

(23)
and therefore∫ t

0
dt =

1√
α

∫ M1(t)

M1(0)

dM1√(
s1−M2

1

)(
s2−M2

1

) (24)

then with a change of variable M1 =
√

s1sn(u,m) and setting
m = s1

s2
the equation (24) becomes:

t =
1√
αs2

∫ sn−1(M1(t)/
√

s1,
s1
s2

)

sn−1(M1(0)/
√

s1,
s1
s2

)
du (25)

and therefore:

M1 =
√

s1sn(
√

αs2t +C1,
s1

s2
) (26)

where C1 is defined in (11) and therefore from (16) the angular
velocity is (10) ¤.
Note that this analytic solution has been verified against numer-
ical integration.

4. SINGULARITIES OF THE EXTREMAL CURVES

The differential equation (21) can be expressed as an Elliptic
integral of the first kind:

t =
∫ Mi(T )

Mi(0)

1√
αM4

i +βM2
i + χ

dMi (27)

In this paper we investigate the case at the singularities of this
elliptic integral, that is where

αM4
i +βM2

i + χ = 0 (28)
from (28) it can be seen that the singularities of the elliptic
integral correspond to Ṁi = 0 in equation (21) and this fact
is used to derive analytic expressions for this particular case.
In this section we investigate the singularities of the extremal
curves, that is where the elliptic integral (27) is not well defined.
These singularities correspond to fixed points of the differential
equation (21) and we define a root of this by the constant
Mi = s1. At this singularity we can solve the extremal curves
M j and Mk using the Casimir function such that:

K2− s2
1 = M2

j +M2
k (29)

as the left hand side of (29) is constant this suggests using polar
coordinates for M j and Mk:

M j = r sinθ , Mk = r cosθ (30)
r is given by substituting (48) into (29):

r =
(
K2− s2

1
)1/2

(31)
and θ is given as follows:

θ = arctan
(

M j

Mk

)
(32)

θ̇ =
MkṀ j−M jṀk

M2
j +M2

k
(33)

substituting in the values for Ṁ j and Ṁk from (17) and simpli-
fying gives:

θ̇ = s1

(
K2− c1H

c1
(
K2− s2

1

)
)

(34)

therefore θ̇ is constant and it is convenient to write θ̇ =
C. Assuming a particular solution such that the constant of
integration is zero we have θ = Ct. Therefore, we can express
the singular extremal curves explicitly as:

Mi = s1 M j = r sinCt, Mk = r cosCt (35)
where s1,r,C are constants. Therefore, at the singularities the
extremal Mi is constant and M j and Mk are sinusoids. In the
following section we illustrate a method for projecting the
extremal curves onto SO(3).

5. INTEGRATION PROCEDURE

To obtain the most convenient form for the rotation matrix the
differential equations are expressed in Lax Pair form:

L̇(t) = [L(t),∇H]
dR(t)

dt
= R(t)∇H

(36)

where R(t) ∈ SO(3) with
L(t) = M1A1 +M2A2 +M3A3

∇H =
M1

c1
A1 +

M2

c2
A2 +

M3

c3
A3

(37)

this allows us to state the following theorem:
Theorem 2. The projection of the extremal curves M1,M2,M3
(that satisfy the condition M2

2 + M2
3 > 0 for all t) onto SO(3)

are of the form:

R(t) =

( b ac ad
ae d f −bce −bde− f c
−a f de+bc f bd f − ec

)
(38)

where:

a =

√
M2

2 +M2
3

K
, b =

M1

K
,

c =
M2√

M2
2 +M2

3

, d =
M3√

M2
2 +M2

3

e = sinφ1 f = cosφ1

(39)

where
dφ1

dt
= K

H− (
M2

1/c1
)

K2−M2
1

(40)

Proof.
For details, similar proofs can be found in Jurdjevic (1997);



Biggs (2010) where it is shown that for a particular R(0) ∈
SO(3) that:

L(t) = KR(t)−1A1R(t) (41)
Noting that the stabilizer of KA1 under the adjoint action
of SO(3) is the one parameter group G = exp(φ1A1), which
describes rotations about the yaw axis, it is convenient to write:

R(t) = exp(φ1A1)exp(φ2A2)exp(φ3A1) (42)
with the appropriate ranges of the angles defined by φ1,φ3 ∈
(−π,π] and φ2 ∈ [0,π]. Then substituting (42) into (41) and
equating the left and right hand side of equation (41) it is shown
that:

L(t) = K

( 0 −cosφ3 sinφ2 sinφ2 sinφ3
cosφ3 sinφ2 0 −cosφ2
−sinφ2 sinφ3 cosφ2 0

)
(43)

which gives
M1 = K cosφ2 (44)

furthermore
M2 = K sinφ2 sinφ3

M3 = K sinφ2 cosφ3
(45)

dividing M2 by M3 in (45) gives φ3 in terms of the extremal
solutions:

M2

M3
= tanφ3 (46)

then for the Euler angle φ3 ∈ (−π,π] it follows that

sinφ3 =
M2√

M2
2 +M2

3

,cosφ3 =
M3√

M2
2 +M2

3
(47)

to obtain the expression for φ1 substitute (42) into R(t)−1 dR(t)
dt =

∇H and equate the right and left hand side of this equation to
yield (38). ¤
The rotation matrix (38) is expressed in terms of the extremal
curves and the Euler parameter φ1. In addition the derivative of
φ1 is expressed in terms of the extremal curves. However, as φ1
itself is not expressed analytically the problem is not in a form
suitable for parametric optimization. However, we proceed to
use these expressions to derive an analytic expression for the
rotation matrix corresponding to the optimal angular velocities
at the singularity. A singular solution of the extremal curves has
been shown to be:

M1 = s1 M2 = r sinCt, M3 = r cosCt (48)
substituting (48) into (40) yields:

dφ1

dt
= K

H− (
s2

1/c1
)

K2− s2
1

(49)

as the right hand side is constant this yields:
φ1 = Γt + γ (50)

where Γ = K
H−(s2

1/c1)
K2−s2

1
and γ is a constant of integration. Then

substituting (50) and (48) into (39) yields:

a =
r
K

, b =
s1

K
, c = sinCt, d = r cosCt

e = sin(Γt + γ) f = cos(Γt + γ)
(51)

which defines the attitude motion at the singularity of the
extremal curves completely analytically.

6. CONCLUSION

This paper has derived the analytic form of an optimal attitude
motion at a singularity. This provides an analytic expression
for an optimal motion in terms of the angular velocity history

and the corresponding rotation matrix. This expression can
then be used in a parametric optimization problem, where by
the available parameters (the initial angular velocities) can be
optimized to match boundary conditions such as initial and final
pointing directions.
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