

Strathprints Institutional Repository

Smith, S. and Maclean, M. and MacGregor, S.J. and Anderson, J.G. and Grant, M.H. (2009) *Impact of varying intensities of blue-light exposure on 3T3 cells.* European Cells and Materials, 18 (Suppl.). p. 106. ISSN 1473-2262

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http:// strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: mailto:strathprints@strath.ac.uk

Smith, S. and Maclean, M. and MacGregor, S.J. and Anderson, J.G. and Grant, M.H. (2009) Impact of varying intensities of blue-light exposure on 3T3 cells. European Cells and Materials, 18 (Suppl. 2). p. 106. ISSN 1473-2262

http://strathprints.strath.ac.uk/18714/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge. You may freely distribute the url (http://strathprints.strath.ac.uk) of the Strathprints website.

Any correspondence concerning this service should be sent to The Strathprints Administrator: eprints@cis.strath.ac.uk

Impact of Varying Intensities of Blue-Light Exposure on 3T3 cells

S. Smith¹, M Maclean², SJ MacGregor², JG Anderson² & MH Grant¹

¹ Bioengineering Unit and ² Robertson Trust Laboratory for Electronic Sterilisation Technologies, University Of Strathclyde, Glasgow, UK

INTRODUCTION: There is the need to develop a compatible sterilisation method for hybrid biomaterials. High-intensity blue light in the 405 nm region has been shown to be an effective bacterial decontamination method [1], to cause no noticeable damage to the gross structure of type-I collagen monomer (when treated at 10 mW/cm²) [2], and to have no noticeable effect on 3T3 cell viability, growth rate, redox state or lactate dehydrogenase (LDH) leakage (at 1.0 mW/cm²) [2]. The purpose of this research was to investigate the effect of varying the blue-light intensity on the 3T3 cell response parameters.

METHODS: 3T3 cells, at a seeding density of 2×10^4 cells/cm², were exposed to the blue-light source at intensities of 10, 1 and 0.1 mW/cm², for 1 hour. Cell responses were measured for up to 4 days post treatment using the MTT and neutral red (NR) microplate assays, LDH leakage and the intracellular levels of reduced glutathione (GSH) and protein.

RESULTS AND DISCUSSION: At treatment intensities of 0.1 and 1 mW/cm^2 there was no significant negative effect on any of the response parameters. For example, MTT was $150 \pm 4\%$ of control cells, NR was $102 \pm 1\%$, LDH leakage $70 \pm 4\%$ and GSH $112 \pm 8\%$ 1 day after treatment with blue-light at 0.1 mW/cm². Figure 1 shows that, in contrast, treatment with 10 mW/cm² had a negative effect on cell responses 1 day after treatment.

Fig. 1: Effect of blue-light treatment at 10 mW/cm^2 on 3T3 cell response parameters at 1 day post-treatment. Statistical analysis was carried out using ANOVA followed by Dunnett's test, at the 95% level.

A small drop in viability after 1 day was observed but was found only to be significant using the NR assay. Treatment at 10 mW/cm² had no significant effect on LDH leakage, therefore it does not appear to compromise cell membrane integrity. The most notable effect of blue-light treatment at 1 day was on intracellular levels of GSH, where an increase observed (0.030 ±0.022 GSH/mg protein was compared to 0.014 ±0.004 GSH/mg protein for the untreated control). It is known that blue-light causes excitation of endogenous porphyrins, generating light-induced reactive oxygen species (ROS). The increased GSH levels observed suggest that the blue-light at 10 mW/cm² results in the production of ROS and induces a state of oxidative stress within the cells. This effect was reversible, and by 2 days post treatment the GSH levels were comparable to those of the untreated control (0.038 ± 4) and 0.044 ± 4 GSH/mg protein, respectively), providing evidence of recovery. The cell growth rate also showed evidence of recovery post-treatment with all control and treated cultures reaching confluence at day 3.

CONCLUSION: Blue light treatment at intensities of 1 mW/cm^2 and lower has no significant affect on 3T3 cell response parameters. This finding together with the lack of effect on type I collagen suggests that blue light shows excellent potential to be utilised as a sterilisation method for hybrid biomaterials.

REFERENCES: ¹ M. Maclean, S MacGregor, J Anderson et al (2008) *FEMS Micro Let* **285**(2): 227-232. ² S. Smith, M. Maclean, S. MacGregor et al. (2009) *IFMBE Proceedings* **23**: 1352-1355.

ACKNOWLEDGEMENTS: SS is funded by EPSRC Doctoral Training Centre (DTC) in Medical Devices.

