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An Inverse Problem of Reconstructing the Electrical
and Geometrical Parameters Characterizing Airframe

Structures and Connector Interfaces
C Mackay†, D Hayward‡, S McKee†,

A J Mulholland† and R A Pethrick‡

Abstract

This paper is concerned with the detection of environmental ageing
in adhesively bonded structures used in the aircraft industry. Using
a transmission line approach a forward model for the reflection coeffi-
cients is constructed and is shown to have an analytic solution in the
case of constant permeability and permittivity. The inverse problem
is analysed to determine necessary conditions for a unique recovery.
The main thrust of this paper then involves modelling the connector
and then experimental rigs are built for the case of the air-filled line to
enable the connector parameters to be identified and the inverse solver
to be tested. Some results are also displayed for the dielectric-filled
line.
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Glasgow G1 1XH
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1 Introduction

The imaging of the conductivity and permittivity of a heterogeneous material
by electromagnetic field measurements is an inverse problem that is often
called “impedance tomography.” It has applications in many areas such
as nondestructive testing (NDT), radar and oil-pocket location. An NDT
problem associated with the aircraft industry is that of testing adhesively
bonded joints in airframe structures [1]. The bonds can become weakened by
bird strikes, lightning, or thermal stress, eventually leading to water ingress,
oxydation and bond failure. Recovery of the spatially dependent dielectric
properties can provide an indication of water ingress and consequently some
insight into the strength of the bond.

Among the many techniques that exist for nondestructive testing of ad-
hesively bonded structures in aircraft are ultrasonic, radiation, thermal and
eddy current techniques [2]. However, there is no single technique that
can classify completely the “state of the bond.” Computer controlled high-
frequency vector network analysers (VNAs) have been employed to gain in-
formation on dielectric values of bonded structures [3, 4]. The VNA sends an
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electromagnetic wave down the structure and receives a reflected response,
effectively treating the structure like a waveguide. The reflection coefficient
measured is given as a ratio of the reflected wave to that of the wave emitted
by the VNA and is obtained through a range of frequencies.

This paper is concerned with the development of a multilayered model of a
dielectric-filled transmission line and the recovery of the electrical and spatial
parameters characterising that line. A forward model for the determination
of the reflection coefficients has been developed in [5]. In this paper we revisit
this model and focus on the simpler test case of an air-filled line. This leads
to a clearer understanding of the different roles played by the connector and
line parameters in the cost function. We also derive a necessary condition for
the uniqueness of the inverse problem detailed in [5]. Finally, we derive an
exact solution to the Riccatti difference equation which arose in the analysis
in [5].

2 The forward problem: Determination of

the reflection coefficient in a multilayered

medium

Following Norgren and He [6] we shall employ transmission line theory to
model the adhesively bonded structures. However, in contrast to their work,
we shall be interested in spatially varying bonds and consequently shall con-
sider a multilayered approach [5]. In addition the differential equation relat-
ing the reflection coefficient to the physical parameters of the structure will be
solved analytically. This has the advantage that not only can the uniqueness
of the recovered solution be analysed, but also that an analytic expression
for the Jacobian can be obtained leading to substantial improvements in the
computational efficiency of the optimisation algorithm.

Since there are two aluminium plates bounding a dielectric slab we shall,
as we have stated, exploit transmission line theory. However, although the
aluminium plates bounding the dielectric slab are highly conducting they
are nevertheless not infinitely conducting. This will result in fringe field
effects that will contribute to the attenuation of any electromagnetic wave
propagating between the two aluminium conductors; as we shall see later this
will have a small effect on the inverse problem. To facilitate our discussion on
the uniqueness problem we must necessarily repeat some of the key equations
from [5].

Transmission line theory exploits a particular set of travelling wave so-
lutions of Maxwell’s equations. From these the telegraph equation may be
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derived in matrix form [6]

d

dz

(

V

I

)

=

(

0 −j
ω

g
µ

−jωgε 0

)

(

V

I

)

(1)

where ε is the permittivity, µ is the permeability, ω is the angular frequency,
W is the plate width, d is the plate separation (for the present assumed
constant), g = W/d, and V (z) and I(z) are the voltage between, and the
current through the plates (see Figure 1(b)).
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(a) Air Filled Transmission Line: Plan View.
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(b) Air Filled Transmission Line: Profile View.
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(c) Connector and Transmission Line.
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(d) Inner Conductor and Connector.

Figure 1: The Air Filled Transmission Line. Plate separation d = 2.7 ±
0.05mm, width W = 23.04 ± 0.02mm, length L = 198 ± 2mm (inner = 196
mm, outer = 200 mm), ε = ε0, ρ = 0.56µΩm and Z0 = 50Ω.

The reflection coefficient r is measured at either end of the aluminium
structure (z = 0 and z = L where L denotes the length of the structure) pro-
viding two reflection coefficients over a range of frequencies. Loss through

3



polarisation and the skin effect is also taken into account [5]. In a multi-
layered approach in order to obtain the reflection coefficient r0 := r(z)

∣

∣

z=0
,

in addition to the line parameters xi = (εi
s, ε

i
∞, di, ρi, `i) for each layer, the

boundary condition at z = L is also required. The parameter `i is the length

of ith layer such that
∑m

i=0 `i = L. The governing differential equation in
this multilayered context is [5]

dri

dz
= 2airi + bi(1 + r2

i ) (2)

subject to rm+1 = (ZL−Z0)(ZL+Z0) where ai = jω/2(εiWZ0/di+diµi/(WZ0)),
bi = jω/2(εiWZ0/di − diµi/(WZ0)), εi = ε0(ε

i
∞ + (εi

s − εi
∞)/((1 + (jωτ)α)β))

and µi = µ0 +(1− j)/di

√

2µ0ρi/ω. Now equation (2) is a Riccati differential
equation and as such admits the recurrence relation

ri =
ri+1 + Ai

Bi − Airi+1
(3)

where Ai = (Pi(1−Ei))(Ei − P 2
i ), Bi = (1− P 2

i Ei)(Ei − P 2
i ), Pi = −ai/bi +

√

(ai/bi)2 − 1 = −(ai + jω
√

εiµi)/bi, Ei = e−jθi and θi = 2ω
√

εiµi`i. Thus
given a boundary condition at z = L (i.e. rm+1) and the parameters xi, the
recurrence relation (3) may be used to obtain the solution for r0.

Reversing the indexing in (3), so that m increases from 0 to M , gives a
Ricatti difference equation

rm+1rm −
(

Bm

Am

)

rm+1 +

(

1

Am

)

rm + 1 = 0. (4)

For the homogeneous case, that is constant permeability and permittivity, it
may be solved exactly to obtain (see Appendix 1)

rm =
(Em − P 2)r0 + P (1 − Em)

P (Em − 1)r0 + 1 − P 2Em
. (5)

Comparing this with (3) it can be seen that the reflection coefficient at layer
m consists of raising the parameter E to the power m. Thus this analytic
solution correctly predicts that the reflection coefficient of m layers is the
same as a layer of length m`. However for the inhomogeneous case it would
appear that no such analytic solution exists in general.

3 Necessary conditions for a unique recovery

In this section we shall address the question of uniqueness of the line param-
eters. Clearly a necessary condition for the recovery of a unique set of line
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parameters xi = (εi
s, ε

i
∞, di, ρi, `j) is that Ai and Bi must be known uniquely.

Since the width of the structure was experimentally determined, the param-
eter W is considered to be known. Further since the measuring equipment
has a characteristic impedance of 50Ω for any selected frequency ω, the char-
acteristic impedance Z0 and the frequency are also considered to be known.
Assuming then that Ai and Bi are known uniquely, then

Bi − 1

Ai

= Pi +
1

Pi

= −2
ai

bi

. (6)

Therefore knowledge of Ai and Bi yields the ratio ai/bi. Solving for ai and
bi gives

ai = jω
√

εiµi

(

Pi + 1/Pi

1/Pi − Pi

)

and bi =
2jω

√
εiµi

Pi − 1/Pi

. (7)

Thus to resolve ai and bi the value of
√

εiµi must be known. Note however
that since Ei = e−2jω

√
εiµi `i then

√
εiµi =

j

2ω`i

ln

(

Pi + AiP
2
i

Ai + Pi

)

. (8)

Thus `i must be uniquely known to give
√

εiµi uniquely. From the expressions
for ai and bi we also have

εi

W

di

=
ai + bi

jωZ0
(9)

and

µi

di

W
= Z0

(

ai − bi

jω

)

. (10)

Thus we see that the ratio of the permittivity and the plate separation (εi/di)
and that of the product of permeability and plate separation (µidi) may be
calculated. Hence

Z0(ai − bi)

jω
= µ0

di

W
+

(1 − j)

W

√

2µ0ρi

ω
. (11)

Resolving this into real and imaginary parts gives

Re

{

Z0(ai − bi)

jω

}

= µ0
di

W
+

1

W

√

2µ0ρi

ω
(12)

and

Im

{

Z0(ai − bi)

jω

}

= − 1

W

√

2µ0ρi

ω
. (13)
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Addition of these two equations resolves di (provided W and µ0 are known).
Furthermore (13) gives

ρi =
W 2Z2

0

2µ0ω
Im{j(ai − bi)}2. (14)

The permittivity εi is then determined from (9):

εi =
(ai + bi)

jωZ0

di

W
. (15)

In Section 2 we have

εi = ε0ε
r
i = ε0

(

ε∞i +
εs
i − ε∞i

(1 + (jωτ)α)β

)

(16)

where ε∞i and εs
i are the infinite and static permittivities respectively.

Multiplying the numerator and the denominator by the complex conju-
gate of 1 + (jωτ)α and taking the principal root of j we get

εr
i = ε∞i + (εs

i − ε∞i )

(

δ1

δ2

)β

(17)

where δ1 = 1 + (ωτ)αe−j π

2
α and δ2 = 1 + 2(ωτ)α cos

(

π
2
α
)

+ (ωτ)2α. In polar
form this may be written as

δ1 = |δ1|e−jφ (18)

where |δ1|2 = (ωτ)α+cos2
(

π
2
α
)

+sin2
(

π
2
α
)

and arg δ1 = arctan
(

(ωτ)α sin π

2
α

1+(ωτ)α cos π

2
α

)

.

Splitting δβ
1 into real and imaginary parts results in

εr
i = ε∞i + (εs

i − ε∞i )

(

e1 + je2

δβ
2

)

(19)

where e1 = |δ1|β cos βφ and e2 = −|δ1|β sin βφ. Finally taking real and imag-
inary parts of (19) yields Re{εr

i } = ε∞i (1 − e1/δ
β
2 ) + εs

i (e1/δ
β
2 ) and Im{εr

i} =
(εs

i − εi
∞) e2/δ

β
2 , which then gives ε∞i = Re{εr

i} − e1/e2Im{εr
i}and εs

i =
Re{εr

i} − (e1 − δβ
2 /e2)Im{εr

i} where α, β and τ are assumed to be known.
Therefore given the parameters Ai, Bi, W, τ, α, β, `i and ω, the line param-
eters ε∞i , εs

i , ρi and di can be uniquely reconstructed. Note the implica-
tion of these results: we cannot simultaneously reconstruct the parameters
[L, W, d, ρ] (in the simpler case of the air-filled line). This is because ρ, W
and d are related by the two equations (12) and (13) and consequently it is
only possible to uniquely recover two of these parameters. The air-filled line
is important, not only in its own right as a special case of the resin-filled
line, but also a vehicle for modelling the connector as we shall see in the next
section.
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4 Modelling the connector

Before resolving the spatial variation of the permittivity, resistivity and plate
separation a model of the experimental connector is required [5]. An air-
filled transmission line was constructed from tool plate aluminium 6mm thick
with a flatness of 50µm in 1m and a roughness of 0.6µm (see Figure 1).
The two plates were held in place by type N female connectors and the
separation along the length was 2.7 ± 0.05mm. The inner plate was 196
mm long and the outer 200 mm. The difference in length of the inner and
outer conductor is clearly seen in Figure 1(c). The width of both plates
was 23.04 ± 0.02mm. The resistivity of the aluminium was measured as
0.56±0.03µΩm. Reflection coefficients were obtained using an Agilent 8753Es
network analyser calibrated with a set of type N standards. Measurements
were made at 801 linearly spaced points between 7.5 MHz and 6 GHz.

The vector network analyser (VNA) was connected to the air-filled line by
a coaxial cable which terminated in a type N male connector. The air-filled
plates were constructed with two type N female connectors that controlled
the plate separation and avoided the need to use insulating spacers to fix the
plate separation. There was no attempt to match the impedance between
the VNA and the line since the permittivity could vary greatly from one test
piece to another and was required over a large frequency range.

The connector was modelled as a length of lossless 50Ω line to account
for the distance between the VNA calibration plane and the point of con-
tact with the line. Also included in the model was an excess capacitance
and inductance at the point of contact: the capacitance characterises the
additional electric field between the inner plate and the connector flange
(Figure 2) while the inductance represents the additional current path from
the outer coaxial conductor to the outer plate.

Coaxial to Measuring
Equipment Outer Plate

Inner Plate

LC

Flange
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Figure 2: Coaxial-Connector-Plate Construction.

Initial measurements suggested that the electric length of the connector
was about 15mm. The excess capacitance Cc was estimated to be about 1pF
and the excess inductance Lc to be about 0.1nH. The contact resistance was
estimated to be less than 0.01Ω and was neglected. The contact resistance
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estimate is based on the manufacturer’s specification [11], the inductance
estimate is from a simple calculation of the inductance of the additional path
taken by current from the outer of the type N connector and the capacitance
estimate is again a simple calculation based on the geometry of the connector.
Similarly, the conductance between the inner and outer conductors of the
connector was typically about 10−12S and was also neglected. The impedance
of the line at the connector-structure interface was calculated from

ZL =

(

1 + r0

1 − r0

)

Z0. (20)

This impedance was then used to calculate the total impedance of the line
and the connector-structure interface.

ZT = jωLc +
1

(

1
ZL

+ jωCc

) . (21)

The original model was now modified to include the connector term and
the recovery parameters were augmented by Cc and Lc. The connector was
modelled in two stages: a connection between the connector and the structure
(connector-structure interface) and a connection between the connector and
the coaxial cable (coaxial-connector interface). The reflection coefficient from
the line just before the connector-structure interface is r1 while the reflection
coefficient just after the connector-structure interface will be denoted by r0,
that is r(0+) = r1 and r(0−) = r0. However any wave travelling from the
measuring equipment must travel some effective distance ∆z, say, beyond the
coaxial-connector interface (calibration plane) to actually reach this interface.
This length (∆z) was treated as the length of an ideal coaxial line of 50Ω
characteristic impedance and as such produces a phase shift between the
measured reflection coefficient rcal and the modelled reflection coefficient r0.
Hence the reflection coefficient was given by

r0 = rcale
2jk∆z = r(−∆z)e2jk∆z

where k is the wave number. Thus the reflection coefficient as observed by
the measuring equipment has been shifted in phase by 2k∆z.

The coaxial connector was partly constructed with an air dielectric and
partly with a polytetrafluoroethylene (ptfe) dielectric so the length ∆z was in
fact an effective length equal to that which a connector with an air dielectric
would have had. Measurements suggested that this equivalent (electrical)
length was 15 mm. The reflection coefficients from the model for the air-filled
line were now produced taking into account the connector. Qualitatively,
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Table 1: Constraint on Optimisation Variables.
Line Parameter Lower Bound Upper Bound

Length L 180mm 220mm
Width W 21mm 25mm

Plate Separation d 1.7mm 3.7mm
Resistivity ρ 10−8 Ωm 10−6 Ωm

Connector Inductance Lc 10−11H 10−9H
Connector Capacitance Cc 10−13F 10−11F

these results compared favourably with the experimental results (for more
details see [10]).

A nonlinear least squares method was now employed to solve for the
unknown parameters s = [(Cc, Lc, L, d, ρ], (see Section 5). The objective
function to be minimised, with respect to s, was

∑

k

(|r(s; ωk) − rd(ωk)|2 (22)

for supplied reflection data rd(ωk) from the boundary conditions. Constraints
on the parameters were specified by the experimental error bounds (see Ta-
ble 1).

Larger bounds were set for the length and resistivity to account for the
unknown effects of the two differing conductor lengths and of the conductivity
of the conductor surface layer. The constraints were also used as an interval
in which to generate 20 uniformly distributed random initial conditions for
each parameter. This set of initial conditions was augmented by a set which
was predicted from physical measurement. This spread of initial conditions
provided some insight into the form of the objective function. In particular
we were interested in whether certain subsets would converge to a unique
minimum, or if they converged to a local minimum and if so were they
closely clustered, well separated or periodic in some sense (for further details
see [10]).

For the air-filled structure the experimental data was initially used by the
inverse solver to reconstruct the line parameters for the length L, width W ,
plate separation d and resistivity ρ. The results indicated that it was possible
to achieve this; however, convergence to a consistent solution could not be
guaranteed and was often dependent upon the initial (guessed) iterate. These
poor results led ineluctably to the analysis presented in Section 3 where we
saw that it is only possible to uniquely recover two of these three parameters.
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Table 2: Constraint on Optimisation Variables.
Line Parameter Lower Bound Upper Bound

Width W 20mm 25mm
Resistivity ρ 10−7 Ωm 10−4 Ωm

Connector Inductance Lc 10−11H 10−9H
Connector Capacitance Cc 10−13F 10−11F

Thus the inverse solver was run with experimental data to recover the
two connector parameters Lc and Cc and the two line parameters ρ and W .
In this case the solver always converges to a unique solution, although it was
necessary at times to iterate outwith the bounds imposed by Table 2.

There was however a consistent overestimation of the width which was due
to fringe fields. Indeed a finite element analysis of the full Maxwell’s equa-
tions verified this and consequently an effective width must be used in the
forward model to compensate for the additional energy in the non-uniform
field. Considerably greater detail may be found in MacKay’s thesis [10].

5 Parameter recovery from the resin-filled line

In section 4 we demonstrated that the connector-structure could be modelled
as a combination of an inductance and a capacitance term. In the air-filled
line the outer and inner conducting plates had been drilled and the signal
directly applied so as to minimise any resistance between the connector and
the plates. Clearly drilling of the aircraft aluminium would not be a practical
proposition; furthermore it is important that the experimental set up be as
close to the real situation as possible. With this in mind we have developed
a more sophisticated model of the connector-structure which takes account
of clamping rather than drilling the connector to the resin-filled line [5].

Eight structures (denoted by X1, . . . , X8) were manufactured. Of the
eight structures X1 to X4 had a step geometry (Figure 3(a)) and X5 to X8

had a tapered form (Figure 3(b)).
Estimates of the electrical properties are given in Table 3. This infor-

mation was employed to generate simulated reflection coefficients to test the
ability of the multilayered model to recover the parameters.

The electrical properties were chosen randomly from a uniform distribu-
tion which lay within 5% of those given in Table 3. The recovered plate
separation profiles were excellent although as the number of layers increases
some oscillations started to appear. The recovery of the electrical properties

10
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(b) Double Taper Geometry.

Figure 3: Structure Geometries.

Electrical Properties Name Symbol Value Units

Electrical Length ∆z 14 mm

Connector Resistance R 0.1 Ω

Connector Properties Connector Inductance Lc 1 nH

Connector Capacitance 1 C1 1 pF

Connector Capacitance 2 C2 1 pF

Resistivity ρ 1 µΩm

Structure Properties Static Permittivity εs 3.5 –

Infinite Permittivity ε∞ 2.5 –

Termination Property Termination Capacitance Ct 1 pF

Table 3: Electrical Property Estimations for Connector, Structure and Ter-
mination.

was in general satisfactory with the stepped geometries being more amenable
to this recovery than those from the tapered structures. The recovery of the
resistivity was less encouraging with the recovered value varying markedly
with the number of layers used. The main problem with the resistivity re-
covery is that the resistivity term only contributes to the cost function over
a relatively limited frequency range and so the cost function is dominated by
the contribution from the connector terms. One solution may be to initially
assume the line is uniform, solve for the connector parameters first, without
generating a complete solution for all the line parameters, and then solve for
the line including the resistivity.

The experience gained from the simulated data was then utilised in the
recovery of the same parameters from experimental data. The reconstructed
geometric profiles clearly show the geometry as being tapered or step-like
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(see Figure 4). However, it can be seen that the reconstructions consistently
underestimate the plate separation, which may suggest that the adjustment
of another parameter may remedy this.
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(a) Structure X4: 10 Layers.
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Figure 4: 10 Layer Reconstructions.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

P
la

te
S
ep

ar
at

io
n

(m
m

)

Plate Length (mm)

Structure Profile

Estimated Profile
Reconstructed Profile

Structure S1
Structure S2
Structure S3
Structure S4
Structure S5
Structure S6
Structure S7
Structure S8
Structure X1
Structure X2
Structure X3

Structure X4

Structure X5
Structure X6
Structure X7
Structure X8

S1
S2
S3
S4
S5
S6
S7
S8
X1
X2
X3
X4
X5
X6
X7
X8

(a) Structure X4: 15 Layers.
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Figure 5: 15 Layer Reconstructions.

As before with 15 layers the reconstructions were not quite as smooth as
they were for the 10 layer model (see Figure 5). The range of permittivities
which are recovered are certainly feasible on physical grounds, with the static
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(c) Resistivity Reconstruction.

Figure 6: Reconstructed Structural Electrical Properties of X1 to X8: 10, 15
and 20 Layers.

permittivity reconstruction being slightly high (see Figure 6). There is also
some unexpected variations between the different test pieces. Interestingly
the number of layers used to reconstruct the geometry does appear to have
an effect on the reconstruction of the electrical parameters. The low value
which is recovered for the resistivity of the aluminium seems unrealistically
low (see Figure 6, plot (c)). It also varies from one test piece to another
and it is possible that there is a link between this underestimation of the
resistivity and the overestimation of the static permittivity. For more results
and greater detail the reader is referred to [10] and [5].
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6 Conclusions

This paper has been concerned with the integrity of bonded aircraft struc-
tures. By assuming transmission line theory on a multilayered structure a
forward model for the reflection coefficients was developed. In any practical
situation measurement of these reflection coefficients requires a measuring
device and a connection to the aircraft structure. This connector therefore
needs to be modelled and its associated electrical parameters identified. In
this paper we have concentrated on an air-filled line to test the feasibility of
the inverse solver in reconstructing the parameters associated with the line
and the connector. Having demonstrated the efficacy of the inverse solver we
turned our attention to the dielectric-filled line and the multilayered model.
The connector was remodelled to take account of the fact that in a real situa-
tion it would be clamped to an aircraft structure and the full inverse problem
was solved both for simulated data and experimental data.

The results demonstrate the effectiveness of this approach in recover-
ing the spatial parameters associated with an adhesively bonded structure.
Reconstructions of the plate separation were shown to be consistently under-
estimated in comparison with the experimental measurements. More serious
was the resistivity which was substantially overestimated; the static per-
mittivity reconstruction was also felt to be a little on the low side. From
extensive simulations it appears that the resistivity term only contributes to
the cost function over a relatively limited frequency range and so the cost
function becomes dominated by the contribution from the connector terms.
Our current work is focussing on initially assuming that the line is uniform,
solving for the connector parameters first, without generating a complete
solution for all the line parameters, and then solving for the line including
the resistivity. The VNA performs a synchronous detection of its own sig-
nal and we have found that the relatively low levels of noise which arise in a
practical situation do not pose any difficulties for the method. There is a fur-
ther level of uncertainty which arises through the calibration standard of the
analyser but we have found that the results were very similar when various
analysers with differing calibration standards were utilised. Thus this paper
presents a feasible and practical method of nondestructive examination of in
situ adhesively bonded aircraft structures.

Appendix A An analytic solution of the recursion re-
lationship for the reflection coefficient
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The Riccati difference equation (3) reduces to

rm+1rm −
(

B

A

)

rm+1 +
1

A
rm + 1 = 0 (A.1)

when

Am = Am+1 = A =
P (1 − E)

E − P 2
, m = 0, 1, 2, . . . (A.2)

and

Bm = Bm+1 = B =
1 − P 2E

E − P 2
, m = 0, 1, 2, . . . (A.3)

Performing the transformation rm = (B − zm+1/zm)/A results in the linear
second order difference equation

zm+1 − (1 + B)zm+1 + (A2 + B)zm = 0 (A.4)

which may be solved to give

zm = C1λ
m
1 + C2λ

m
2 (A.5)

where λ1 = (P 2 − 1)/(P 2 − E)and λ2 = Eλ1. Transforming back to the
original variable gives

rm =
1

A

(

B − λm+1
1 + C3λ

m+1
2

λm
1 + C3λm

2

)

(A.6)

where C3 = C2/C1 and C1 6= 0. Now, if r0 is known we may solve (A.10)
(with m = 0) for C3 to obtain

C3 =
B − λ1 − Ar0

Ar0 − B + λ2
=

P (P − r0)

r0P − 1
(A.7)

after some manipulation using (A.1), (A.2), (A.3) and (A.8). Substituting
(A.8) into (A.10) and writing the expression over a common denominator
yields

rm =

(

B(1 + C3E
m) − λ1(1 + C3E

m+1)

1 + C3Em

)

(A.8)

=
P (P − r0)E

m(1 − E) − P 3r0(E − 1) + P 2(E − 1)

P (E − 1)(Pr0(Em − 1) + 1 − P 2Em)
(A.9)

using (A.1), (A.2) and (A.12). Further simplification results in

rm =
(Em − P 2)r0 + P (1 − Em)

P (Em − 1)r0 + 1 − P 2Em
. (A.10)
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