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Average seasonal changes in chlorophyll a in Icelandic waters

Kristinn Guðmundsson, Mike R. Heath, and Elizabeth D. Clarke

Guðmundsson, K., Heath, M. R., and Clarke, E. D. 2009. Average seasonal changes in chlorophyll a in Icelandic waters.

The standard algorithms used to derive sea surface chlorophyll a concentration from remotely sensed ocean colour data are based

almost entirely on the measurements of surface water samples collected in open sea (case 1) waters which cover �60% of the

worlds oceans, where strong correlations between reflectance and chlorophyll concentration have been found. However, satellite

chlorophyll data for waters outside the defined case 1 areas, but derived using standard calibrations, are frequently used without refer-

ence to local in situ measurements and despite well-known factors likely to lead to inaccuracy. In Icelandic waters, multiannual

averages of 8-d composites of SeaWiFS chlorophyll concentration accounted for just 20% of the variance in a multiannual dataset

of in situ chlorophyll a measurements. Nevertheless, applying penalized regression spline methodology to model the spatial and

temporal patterns of in situ measurements, using satellite chlorophyll as one of the predictor variables, improved the correlation

considerably. Day number, representing seasonal variation, accounted for substantial deviation between SeaWiFS and in situ estimates

of surface chlorophyll. The final model, using bottom depth and bearing to the sampling location as well as the two variables men-

tioned above, explained 49% of the variance in the fitting dataset.
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Introduction
Chlorophyll concentrations derived from the sea surface reflectance

data gathered by satellite borne sensors have become widely

accepted as measures of phytoplankton abundance in oceanic

waters. Indeed for many ecological applications, no ground truth

data sources are now available to supplement these data.

Nevertheless, there are a number of well known unsolved problems

with satellite collected data (Siegel et al., 2005a; Werdell and Bailey,

2005; Alvain et al., 2006; Lee and Hu, 2006) that sometimes are dis

regarded and may lead to considerable uncertainty, e.g. for the

results of primary production estimates (Siegel et al., 2005b). First,

the observations apply to just a thin layer at the ocean surface, and

subsurface chlorophyll concentrations remain undetected. Second,

the standard algorithms for deriving chlorophyll concentration

from spectral data are almost entirely based on concurrent reflec

tance and in situ measurements at open ocean sites, referred to as

case 1 waters (O’Reilly et al., 1998; Hooker and McClain, 2000).

Considerable regional and seasonal deviations in satellite surface

chlorophyll a have been noted when compared with measurements

from near surface water samples (Dierssen and Smith, 2000;

Burenkov et al., 2001; Sathyendranath et al., 2001; Gregg and

Casey, 2004), especially from high latitudes and areas characterized

as case 2 waters. The variable accuracy of calculated satellite chloro

phyll estimates (Gregg and Casey, 2004), especially for case 2 areas,

has been attributed to material of different colour in the water that

may be misinterpreted as chlorophyll (Mobley et al., 2004). The

definition applies especially to shallow and turbid waters over con

tinental shelves, or otherwise influenced from land (Kirk, 1994), but

also to boreal and Subarctic areas of theNorth Atlantic (Lee andHu,

2006). Others have cited biological variation as a possible expla

nation because different phytoplankton communities vary in their

absorption characteristics (Cota et al., 2003; Sathyendranath et al.,

2004; Alvain et al., 2006).

Simultaneous measurements of in situ chlorophyll a and ocean

colour records from satellites (Gregg and Casey, 2004; Werdell

and Bailey, 2005) are in some regions too few for detailed compari

son (e.g. in Subarctic Atlantic waters). Therefore, blending method

ologies have been applied to produce climatological models of the

seasonal distribution of surface chlorophyll. For example, Clarke

et al. (2006) used a penalized regression spline analysis to model

in situmeasurements of chlorophyll as a three dimensional function

of day of the year, seabed depth, and multiannual average (1997

2002) of 8 d composites of SeaWiFS chlorophyll (CHLsat). The

model was applied to predict surface chlorophyll for any day of

the year, and at any location in the domain, in this case the

Northeastern Atlantic including the northern North Sea, 56 728N

and 308W 208E, and later extended (Speirs et al., 2006) to the

northern North Atlantic, 30 808N and 808W 858E. The variable

seabed depth was a proxy for the reflectance water type, i.e. case 1

water in open oceans or case 2 water over continental shelves.



The productive waters around Iceland and bordering the Arctic

basin present a particular challenge for estimating the distribution

of chlorophyll concentration from reflectance data. The continen

tal shelf there is narrow with an anticyclonic coastal current driven

by freshwater run off, which is occasionally loaded with glacial

clay. Ocean currents of contrasting temperature and salinity flow

along sections of the continental slope (Figure 1a): the warm

saline North Atlantic Current (NAC) and the Irminger Current

(IC) in the southwest, and the cold, less saline East Icelandic

Current (EIC) in the northeast (Valdimarsson and Malmberg,

1999). As a result, the northern and southern Icelandic shelves

have characteristically different water column stability and seaso

nal cycles of phytoplankton abundance (Gudmundsson, 1998).

In general, the area may be characterized as case 2 waters, accord

ing to the definition of Lee and Hu (2006).

Clarke et al.’s (2006) Northeast Atlantic model (NEA model)

covers the water around Iceland, but although the assembled water

sample analyses used for the study included some 13 000 stations

visited by multinational survey vessels between 1986 and 1999, just

203 stations were in Icelandic waters. We located additional chloro

phyll data at theMarine Research Institute (MRI) in Iceland that had

not previously been collated for spatial and temporal syntheses. The

new dataset was treated as an independent test of the chlorophyll dis

tributions predicted by the NEA model, then used to produce an

alternative model (IS model) based on the penalized regression

spline methodology. An analysis of the results and an interpretation

of the findings are presented.

Material and methods
The study area, 62 698N and 30 6.58W, covers the shelf and slope

waters around Iceland. Chlorophyll a data were collated from

spectrophotometric and fluorimetric analysis of pigment extracts

from MRI’s water samples in this region from 1986 to 2005. In

all, 1470 stations (Figure 1b) were collected (i) during annual

hydrographic monitoring surveys in May/June, (ii) from the

pumped seawater supply to flow through instruments aboard

MRI vessels, and (iii) at fixed stations on the shelf sampled at

varying intervals throughout the year. At each station, the interp

olation scheme described by Clarke et al. (2006) was applied to

estimate the average concentration of chlorophyll in the upper

5 m (CHLsurf) from the various discrete depth water samples.

Few stationswere sampled duringwinter, and the SeaWiFS sensor

is unable to provide data from high latitudes then because of the low

angle of the sun. Therefore, the analysis was restricted to a 9 month

period from mid February to mid November. The final number of

CHLsurf observations used for the analysis was 1614, of which 179

were common with the dataset of Clarke et al. (2006).

In common with Clarke et al. (2006), we used the calibrated

output from the 2002 NASA OC4v4 reprocessing (O’Reilly et al.,

1998) of the SeaWiFS data archive, compiled into multiannual

(1997 2002) averages over 50 latitude � 50 longitude pixels, com

posites for successive 8 d intervals throughout the year (CHLsat).

Full details of the procedures for in filling missing pixels and

processing of these data are provided by Clarke et al. (2006).

Aiming for an optimal distribution of the data for fitting a new

model, the whole data assemblage was allocated to intervals of 8 d

throughout the year, then one observation was selected per inter

val, at random, from each 1/48 latitude � 1/28 longitude cell in

the model region. This created a subset of 910 observations

(stations) which were, as far as possible, evenly distributed in

space and time. The remaining data were used as a secondary

dataset for subsequent testing. Obviously, because of the over

weighting of data from the annual monitoring in late May, the

dataset was biased with regard to temporal distribution, especially

the secondary dataset.

Seabed depths for each cell with SeaWiFS data were determined

from the ETOPO2 (2’ latitude resolution) global relief dataset

(National Geophysical Data Centre; http://www.ngdc.noaa.gov/
mgg/global/global.html).

The dominant circulation regime around Iceland is a clockwise

flow along the shelf and shelf edge. Major rivers discharge glacier

meltwater at various points, and ocean water masses are entrained

into the circulation over the shelf (Figure 1a), causing changes in

temperature, salinity, and nutrient concentrations. To caricature

the possible effect of river discharge and entrainment on the pat

terns of chlorophyll distribution, the angular bearing of each

sampling station from a central position in Iceland (658N 198W)

was used as an additional covariate in the IS model.

Models were fitted to this new Icelandic dataset using the same

approach as Clarke et al. (2006) with thin plate splines and tensor

product splines (Wood, 2006). The models were fitted using the

package mgcv, version 1.3 1, in R 2.1.1 (R Development Core

Figure 1. Maps of (a) seabed depth and the main system of currents around Iceland, the North Atlantic Current (NAC), the Irminger Current
(IC), the East Icelandic Current (EIC), and the East Greenland Current (EGC), and sampling stations (dots) for time-series of chlorophyll. (b)
Geographical distribution of sampling stations for the collated CHLsurf used in this study.



Team, 2005). Several variants of the model were tested to deter

mine the most appropriate smoother. The degrees of freedom

assigned to smoothing each explanatory variable were chosen by

recursively fitting the model and systematically varying the

degrees of freedom associated with each variable in turn and com

paring GCV scores.

Results
Correlation between the full dataset of Icelandic sampling stations,

CHLsurf (n ¼ 1614), and the raw SeaWiFS composite values

CHLsat (r2 ¼ 0.23) was not markedly different from that with

NEA model predications (CHLNEA) at the corresponding

locations and days of the year (r2 ¼ 0.27). From this, we conclude

that although the NEA model provides significant improvement

in predictions of average CHLsurf over the whole Northeast

Atlantic compared with composite SeaWiFS data, the same does

not apply for Icelandic waters because of the sparseness of the

available data in this region.

A GAM with one dimensional cubic spline smoothing and a

normal error distribution was used for an initial exploration of

the dependence of log(CHLsurf) on each of the explanatory vari

ables, log(CHLsat), square root transformed seabed depth,

angular bearing around Iceland, and day of the year. The two

last variables were treated as cyclic. The predictive influence and

distribution of each variable over the range of values measured

is shown in Figure 2.

The variance explained by the model, as covariates were added

sequentially, was 31% for CHLsat, and increasing to 41% with the

addition of day of the year. Addition of either one or both of the

remaining variables (seabed depth and angular bearing) only

increased the variance explained by a further 2%. Nonetheless,

the best model was a four dimensional tensor product smoother

of all covariates, optimized for the degrees of freedom assigned

to each explanatory variable. This IS model explained 49% of

the variance in log(CHLsurf), using the fitting dataset. Seabed

depth and bearing contributed substantially to the final model,

because the variance explained was 44% for a two dimensional

tensor product smooth using CHLsat and day of the year as predic

tors. The CHLsat was, as expected, the primary predictive variable,

but the seasonal variation was obviously important too.

The CHLsurf in the fitting dataset and the corresponding com

posite SeaWiFS CHLsat values, along with the predicted values

from the NEA model (CHLNEA) and the new IS model (CHLIS),

were plotted (Figure 3) for examination of the variation in the

scatter. This was then repeated for CHLsurf in the secondary

dataset, and the corresponding squared correlation coefficients

(r2) were calculated. Although the r2 values for the secondary

dataset were low, the scores were highest for the IS model for

both datasets (Table 1). To assess whether the three predictors

(CHLsat, CHLNEA, and CHLIS) were biased, we calculated the

average difference between each predictor and the observed

CHLsurf value it was being used to predict (Table 1). This value

would be negative when the predictor consistently underestimated

the values observed and positive when the predictor consistently

overestimated those values. The IS model performed better than

both the NEA model and the satellite values, apparently being

almost unbiased for both the fitting and testing datasets.

However, this apparent lack of bias was really the result of the

model predictions being negatively biased at high observed chlor

ophyll values and positively biased at low values (Figure 3). This is

Figure 2. Mean and standard error of the four explanatory variables: (a) 8-d composite of satellite chlorophyll a 1997 2002, (b) day of the
year, (c) seabed depth, and (d) the bearing to the sampling location from a central point on Iceland, fitted and smoothed (d.f. ¼ 3, 3, 6, and
12, respectively). The distribution of data pairs is shown by marks along the x-axis.



a well known problem with satellite data, which the model has

partially overcome for these data. The NEA model performs the

worst, being the most (negatively) biased, again a well known

phenomenon in that using predictions from inappropriate

models is likely to cause bias. The fact that the results are similar

for both the fitting and the test datasets supports our contention

that the high r2 in the test dataset is attributable to high variability

in the data rather than poor predictions.

Extreme values of CHLsurf were poorly predicted by all predic

tors (Figure 3). Broken down by month (Figure 4), the correlations

for the IS model during the months May July were clearly weaker

than for the rest of the year. For closer examination, we performed

separate model analyses, on the one hand restricted to data from

waters north and east of Iceland (cold Arctic waters) and on the

other hand to waters to the south and west (warm Atlantic

waters), to determine whether systematic differences in seasonality

between these regions might account for the weaker fit in May/
June. However, the analyses did not result in any substantial

change in the overall explained variance or suggest any obvious

and plausible hypotheses.

For visual examination of the changes in horizontal distri

bution during the growth season, the fitted model was used to

Figure 3. The scatter of log-transformed chlorophyll a concentrations at the surface, measured from water samples from above 5 m deep
(CHLsurf) vs. (a and d) 8-d composites of SeaWiFS records, averaged for the years 1997 2002 (CHLsat), (b and e) predicted by the NEA-model,
and (c and f) predicted by the IS-model, respectively, for fitting and testing data.



predict average surface chlorophyll (CHLIS) on the first day of each

month between March and November over a 50 latitude � 50

longitude grid of seabed (Figure 5). Further, at four locations

where detailed annual time series were available in the dataset

(Figure 1a), the relationships between in situ measurements

(CHLsurf), SeaWiFS CHLsat, and predicted CHLsurf according to

the models were examined (Table 2). The IS model predictions

provided the closest correlation with the observed variable

CHLsurf at three of the locations and similar or lower bias than

the composite SeaWiFS data and the NEA model predictions.

Discussion
The highly variable correlations between CHLsurf and CHLsat
found for case 2 waters are attracting increased attention (Hu

et al., 2000; Cota et al., 2003; Gregg and Casey, 2004; Magnuson

et al., 2004; Maritorena and Siegel, 2005; Brown et al., 2008;

Komick et al., 2009). The variations are for the most part con

sidered to be caused by material of variable colour dissolved or

suspended in the seawater (Morel and Bélanger, 2006) that is mis

interpreted as chlorophyll when using standard algorithms for cal

culating CHLsurf from satellite records. Some suggestions for

resolving the problems have been proposed (Hu et al., 2000;

Magnuson et al., 2004; Siegel et al., 2005a; Wynne et al., 2006),

but await further tests and evaluation. Given the shortage of avail

able CHLsurf data that meet the criteria set for validating algor

ithms (Werdell and Bailey, 2005) for our study area, an

alternative is to analyse climatological satellite data and multiann

ual observations.

The analysis described here produced a fitted statistical model

(IS model), based on averaged 8 d composites of SeaWiFS chloro

phyll data, day of the year, seabed depth, and the angular bearing

to the location of water sampling around Iceland. The model,

adjusted to the data available inside the study area, may be used to

predict the surface chlorophyll for any day and location inside the

region modelled. The predictions were tested against measurements

of chlorophyll a inwater samples, and the calculated values of r2were

compared with that of predictions according to a model for the

whole Northeast Atlantic (NEA model) and the average SeaWiFS

composite values, testing the relative performance (Figure 3,

Table 1). Further, the correlations between water sample measure

ments of surface chlorophyll a and either the values inverted from

satellite ocean colour records or those predicted by the IS model

at four locations used for seasonal studies (Table 2) support the

Table 1. Correlation coefficients (r2) and bias estimate calculated
for the primary fitting dataset and the secondary testing dataset of
measured in situ chlorophyll a concentrations (CHLsurf) vs. the
corresponding 8-d composite SeaWiFS (OC4v4) averages for the
years 1997 2002, and the predicted values according to the NEA-
and IS-models.

Source

Fitting data
(n 5 910)

Testing data
(n 5 704)

r
2 Bias r

2 Bias

SeaWiFS 0.26 0.26 0.17 0.25

NEA model 0.31 0.42 0.21 0.50

IS model 0.49 0.00 0.30 0.04

Figure 4. The scatterof chlorophyll a, measured fromwater samples vs. that predicted according to the IS-model for themonthsMarch November.



notion that the IS model is an improvement on the perception of

climatological spatial and temporal patterns of surface chlorophyll

around Iceland. The predicted CHLIS explains more of the variance

in the available in situ measurements of surface chlorophyll

measured from water sampled around Iceland than the raw

SeaWiFS composite data and the NEA model predictions.

The paramount reason for the high variability, found when

analysing the relationship between spectral reflectance and chlor

ophyll, is connected to seasonal change (Figures 2 and 4). An

obvious explanation is the variation in chlorophyll concentration

observed in these waters, such as may be caused by storms

(Thórdardóttir, 1986).

The angular bearing of locations around Iceland was used to

represent possible differences between the Arctic waters masses

overlying the shelf north and east of Iceland and the Atlantic

waters overlying the southern and western shelf, as well as other

variable environmental influence near land (e.g. silt in glacial

rivers and wind borne dust). Seabed depth, as a single predictive

variable, contributed least to explaining the variability in

CHLsurf. Leaving seabed depth out of the analysis, however,

resulted in a greater reduction in overall variance explained than

the contribution of the variable alone implied, indicating an inter

action with other covariates, probably the angular bearing, because

the two together act as a spatial index.

Like the NEA model, the IS model was based on the SeaWiFS

chlorophyll data averaged for the years 1998 2002. The aim was to

produce a climatological interpolation and synthesis of the avail

able water sampling data. However, there are considerable inter

annual differences in date specific CHLsurf at given locations

around Iceland, owing to both the variable entrainment of

Atlantic and Arctic water north of Iceland (Thórdardóttir, 1984;

Gudmundsson, 1998) and meteorological conditions south of

Iceland (Thórdardóttir, 1986). The water samples and SeaWiFS

data span different years, a fact that has not been taken into

account in the analyses. However, examination of the variance

for each year, separately for northeast and southwest of Iceland,

did not reveal any recognizable or significant trend (not shown).

As most of the collated data were collected during the latter half

of May, during the annual regional monitoring surveys, there is an

unavoidable bias in terms of temporal distribution. Moreover, as

the first selection for the fitting dataset aimed for a uniform

spatial and temporal distribution, the remaining secondary

dataset was obviously and inevitably biased towards the sampling

in May. The monthly plots of CHLIS vs. CHLsurf (Figure 4) illus

trate the scatter in the months May July, during the high growth

season. In light of the uneven distribution towards the latter half of

May at the time of the spring bloom in the region (Gudmundsson,

1998), one may expect low values of r2, especially when testing the

correlations for the secondary dataset (Table 1). Therefore, a

Figure 5. The IS-model predictions of horizontal distribution of chlorophyll a in the surface layer, for the 1st of each month, March November.

Table 2. Correlation coefficients (r2) and bias estimate calculated
for in situ measurements of chlorophyll a, the corresponding values
from the 8-d composite SeaWiFS (OC4v4) averages for the years
1997 2002, and predictions from the NEA- and IS-models
calculated for available time-series at GR (Grı́msey 66815’N
18834’W), EY (Eyjafjörður 66828’N 18804’W), SW1 (63846’N
21804’W), and SW2 (63829’N 20820’W).

Source

GR
(n 5 79)

EY
(n 5 12)

SW1
(n 5 117)

SW2
(n 5 115)

r
2 Bias r

2 Bias r
2 Bias r

2 Bias

SeaWiFS 0.12 0.36 0.38 0.40 0.16 0.34 0.40 1.03

NEA model 0.15 0.78 0.60 1.01 0.19 1.20 0.26 1.68

IS model 0.22 0.23 0.49 0.29 0.24 0.61 0.46 1.20



reason for the poor fit during the high growth season may be that

CHLsat are averaged values, from several years of SeaWiFS records,

whereas CHLsurf are highly variable in situ measurements.

Obviously, the two subsamples of data are not entirely

comparable.

Visual examination of isopleths drawn according to the results

of measurements of chlorophyll in water samples during annual

cruises around Iceland, and comparison with corresponding 8 d

composite images of chlorophyll distribution made available by

NASA, had demonstrated some correlation. However, for a

detailed study on the exact correlation between CHLsat and

CHLsurf, one needs simultaneous high quality datapoints, which

are not yet available. Calculating the average values of satellite

chlorophyll for a number of years was a mean to obtain a complete

dataset on satellite chlorophyll for the whole region, needed

because the persistent cloud cover results in poor coverage of sat

ellite data in the region (Clarke et al., 2006).

Our study has demonstrated the need for local corrections of

CHLsat, shown here for a multiannual average of 8 d composites

from SeaWiFS ocean colour data. The results confirm the

method of Clarke et al. (2006) as a valuable approach to adjust

inverted chlorophyll from satellite ocean colour records to

average CHLsurf and show that a locally adapted model is needed

to produce realistic predictions of CHLsurf in a regional domain.

The next rational step will be to initiate a sampling scheme for

high quality sea truth measurements (Gregg and Casey, 2004;

Yuan et al., 2005), intended to construct a regionally adapted

algorithm to correct regional CHLsat values or to test some

general algorithms that may be able to cope with both case 1

and 2 waters and seasonal and local variations. To date, the

IS model predictions presented here are the best available infor

mation (interpolation) on spatial and temporal distribution of

surface chlorophyll around Iceland.
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