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NON-LINEAR LONGITUDINAL/TRANSVERSAL MODAL INTERACTIONS IN 

HIGHLY-EXTENSIBLE SUSPENDED CABLES 
 

Narakorn Srinil and Giuseppe Rega 
Department of Structural and Geotechnical Engineering, SAPIENZA University of Rome, 

via A.Gramsci, Rome 00197, Italy 
 

Abstract Recent research literature mostly deals with non-linear resonant dynamics of low-

extensible cables involving transversal modes. Herein, we aim to investigate geometrically non-

linear longitudinal/transversal modal interactions in highly-extensible suspended cables, whose 

material properties are assumed to be linearly elastic. Depending on cable elasto-geometric 

properties, the spectrum of low-order planar frequencies manifests primary and secondary 

frequency crossover phenomena of transversal/transversal and longitudinal/transversal modes, 

respectively. By focusing on 1:1 internal resonances, non-linear equations of finite-amplitude, 

harmonically forced and damped, cable motion are considered, fully accounting for overall 

inertia and displacement coupling effects. Meaningful quadratic non-linear contributions of non-

resonant, higher-order, longitudinal modes are highlighted via a multimode-based, second-order 

multiple scales solution. Overall coupled/uncoupled dynamic responses, bifurcations, stability 

and space-time varying displacements due to longitudinal/transversal (vs. transversal/transversal) 

modal interactions at secondary (vs. primary) crossovers are analytically and numerically 

evaluated, along with the resonant longitudinal mode-induced dynamic forces.   

Keywords highly-extensible cable, longitudinal mode, modal interaction, internal resonance, 

non-linear forced vibration 

 

1. INTRODUCTION 

 Suspended cables are basic structural components widely used in civil, mechanical, electrical 

and offshore ocean engineering. Cables with high extensibility or elongation, reaching large 

initial strain without undergoing failure in tension, are often found, for instance, in automotive 

industry including antennae, cable-crane systems and connections to control panels, or in 
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oceanographic applications such as tethered buoys and moorings. Depending on the material and 

mechanical properties, highly-extensible cables offer great flexibility and advantages over low-

extensible cables in some technical applications that require long-span structural elements having 

the capability to withstand excessive dynamic stresses.  

 Low-extensible, e.g. metallic, suspended cables are characterized by high values of Young’s 

modulus giving rise to small initial static strain. The transversal displacements substantially 

dominate their low-order modes, whereas the corresponding first longitudinal mode (also known 

as elastic mode) – characterized by a prevailing longitudinal displacement – usually occurs at a 

relatively higher-order frequency [1-3] along the so-called “elastic mode transition” line, which 

has been discussed originally in [1] and more recently in [3]. In the case of highly-extensible, e.g. 

synthetic, cables, the first longitudinal mode and its modal transition occur, on the contrary, at a 

much lower-order (e.g., 3rd or 4th) frequency [4]. Triantafyllou and Yue [5] analyzed the effect of 

hysteretic damping and large sensitivity to parametric changes in linear vibration of synthetic 

cables. 

 Many theoretical studies have investigated non-linear vibrations of low-extensible suspended 

cables involving different kinds of internal resonances of transversal modes [6]. For such 

systems, the influence of longitudinal inertia and the associated higher-order coupling of 

longitudinal/transversal displacements are often neglected through the kinematic condensation 

procedure, which assumes cable quasi-static stretching entailing spatially-independent dynamic 

strain [7]. Accordingly, this simplified model may lead to significant quantitative and/or 

qualitative discrepancies in the non-linear internally resonant responses and stress estimations of 

even shallow cables [8]. As a matter of fact, using the condensed model in the analysis of 

longitudinal modes (or transversal modes with significant longitudinal components) for highly-

extensible (or low-extensible non-shallow) cables would be meaningless. Based on a numerical 

finite difference scheme accounting for longitudinal inertia, Newberry and Perkins [9] 

investigated the resonant tensioning mechanism in low-extensible submerged cables due to a 3:1 
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internal resonance of high-order longitudinal/transversal (85th/28th) modes, and observed strong 

energy transfer between these coupled modes. The non-linear forced responses of highly-

extensible underwater cables subject to current fluid forces were studied in [10] implementing a 

non-linear stress-strain relationship. 

 The objective of this analytical-numerical study is to complement previous investigations of 

non-linear modal interactions of low-extensible cables [8, 11] by qualitatively comparing typical 

transverse/transverse interactions at 1:1 internal resonances with the companion 

longitudinal/transversal interactions mostly occurring in highly-extensible cables. In view of 

such a comparison, the same non-condensed model and linearly elastic material properties as of 

low-extensible cables are considered, although the latter assumption might be questionable from 

a modeling standpoint. Within this framework, the geometrically quadratic non-linear effect of 

higher-order longitudinal modes on a second-order multiple scales solution is highlighted, and 

(ii) insight into dynamic interaction features involving low-order longitudinal/transversal 

resonant modes is gained. The first issue addresses a meaningful aspect from a practical reduced-

order modeling viewpoint with respect to low-extensible cables [8], whereas the second issue is 

discussed against the case involving interaction of only transverse modes. Both numerical 

continuation and direct time integration of system modulation equations are performed, verifying 

the obtained responses and illustrating the existence of periodic and aperiodic oscillations 

involving longitudinal modes. For the sake of completeness, the corresponding space-time 

varying non-linear dynamic displacements and tensions are also examined.  

 

2. EQUATIONS OF MOTION AND ELASTIC MODE TRANSITION 

 With reference to the Cartesian coordinates in Fig.1a, non-linear finite-amplitude planar 

vibration about the static equilibrium of a highly-extensible, small-sagged, suspended cable 

subject to a uniformly-distributed transversal harmonic excitation is governed by an infinite 

series of ordinary-differential equations expressed in non-dimensional state-space form as [8] 
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fm (pm) are time-dependent generalized displacement (velocity) modal coordinates,                                        

related to the longitudinal (or horizontal) u and transversal v motion of original system through 
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the relevant linear u and v orthonormalized eigenfunctions, and ωm being natural frequencies. 

The parameters are µm damping, F (Ω) the variable amplitude (frequency) of excitation, 

α =ECAC/H with EC being the cable Young’s modulus, AC the uniform cross-sectional area and H 

the constant horizontal static tension. The static configuration under its own weight is assumed 

as an inextensible parabola y≈4dx(1-x) [7], with d being the cable sag-to-span ratio. In Eq.(1), x 

(t) is the space (time) independent variable and the prime (dot) denotes the associated derivative. 

The space-related variables have been non-dimensionalized with respect to the cable span XH, 

whereas the time-related variables have been non-dimensionalized with respect to the 

characteristic time / ,H CX w gH with g being the gravity and wC the cable self-weight per unit 

unstretched length. Zero displacements at hinged-hinged boundaries are considered. 

 It is worth remarking that Eq.(1) explicitly accounts for overall inertia and u/v displacement 

coupling effects, and captures geometrically quadratic (2) and cubic (3) nonlinearities due to 

cable sag and axial extensibility. As in low-extensible cable cases, the initial static strain (e) has 

been assumed such that (1+e) ≈ 1, an assumption to be further verified. However, the arbitrary 

spatial/temporal variation of dynamic strain is accounted for in Eq.(1) [8, 12]. Associated natural 



 5

frequencies and modal shape functions are obtained based on admissible sine series of linear u/v 

displacements and the Galerkin approach [12]. The overall cable dynamics depends on the well-

known elasto-geometric parameter ( ) ( )2 31 C C C Cw S E A Hλ π π= [1, 7], in which SC is the 

cable equilibrium length. To suitably discuss the geometrical non-linear effect of possibly low-

order longitudinal modes on dynamic response (Sect.4), we consider a suspended cable having 

linearly elastic material properties, however with a low axial rigidity ECAC chosen, along with 

the other parameters, in such a way to produce a range of very low λ/π values. Of course, these 

are representative of an extremely soft material. By varying H, and thus SC, the spectrum of the 

first 12 frequencies * /ω π , normalized with respect to the characteristic time /C CS w gH  [1], is 

plotted vs. λ/π in Fig.1b, which refers to different sagged and strained cables. Solid lines denote 

results with 40 sine series, whereas dotted lines are corresponding finite element (FE) results – 

utilized to validate the approximate cable model – of the more realistic linearized model [12] 

accounting for 50 beam elements, extensible catenary static profile and space-varying (1+e) 

effect.  

 Quantitative discrepancies are seen to occur mostly in some higher-frequency results both at 

low (e.g., regions A′-D′) and higher (e.g., region D) λ/π values. Such differences between the 

two cable model predictions are particularly concerned with the static equilibrium solution, 

whose different assumptions on the initial static strain are likely to affect the frequency values, 

as well as the possible shift of λ/π (e.g., region D) due to different ensuing values of 

(inextensible vs. extensible) equilibrium length SC. Of course, the discrepancies also depend on 

the differences in the Galerkin-based spatial discretization procedure, i.e. the number of terms in 

sine-based series vs. the number of finite elements, of the two considered solution techniques. 

Nevertheless, overall qualitative agreement occurs between the results of the two models, both 

exhibiting a “primary” frequency crossover E as in the low-extensible (higher EC) cable case [7]. 

Moreover, both models reveal a sequence of “secondary” frequency crossover phenomena A, C, 
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… - spaced out with frequency avoidance phenomena B, D, … - as it typically happens at 

higher-order modes of low-extensible cables [1,3]. This sequence highlights the coexistence of a 

“first elastic mode transition” occurring at low-order modes [4] and provides information on 

possible relevant 1:1 (and other) internal resonances. A second elastic mode transition and so on 

consecutively occurs at higher-order frequencies, e.g., the A′-D′ sequence.  

 By way of examples, internally 1:1 resonant cables at crossovers A, C and E are considered, 

whose relevant parameters, frequencies of low-order (ωr) and high-order (ωs) modes are given in 

Table 1. The associated (r, s) shape functions are displayed in Fig.2. It is found that – due to the 

first elastic mode transition at low (A) or higher (C) order frequencies – one (r) of the coalescing 

frequencies of both cables A (solid lines) and C (dashed lines) corresponds to the first 

longitudinal mode with predominant symmetric u and smaller anti-symmetric v amplitudes, 

whereas the coexisting higher s frequencies correspond to symmetric transversal modes having 

different predominant symmetric v (very small anti-symmetric u) amplitudes. On the other hand, 

both the low/high coalescing frequencies of cable E (dotted lines) correspond to transversal 

modes being anti-symmetric and symmetric, respectively.  

 As regards Fig.1b, the maximum percent value of the space-varying initial static strain e 

from FE analysis is about 12.6 % for cable A and 4 % for cable E, the latter corresponding to the 

string/inextensible cable transition [4, 7]. This means that the (1+e) term plays a greater role in 

cable A than in cable E. Yet, by comparing the first 12 frequencies (Fig.1b) associated with the 

two models for cable A, it is found that the maximum percent difference of frequencies with 

respect to the FE-based model is about 5.84 %, thus being acceptable. Accordingly, the 

assumption (1+e) ≈ 1 made in the sine-based eigenvalue problem may be plausible for the 

considered sag and extensibility (λ/π) range in which cables A (d ≈ 0.038) and E (d ≈ 0.134) 

exhibit largest (smallest) and smallest (largest) e (sag), respectively. 

 As a further remark, similar elastic mode transitions may take place for highly-extensible 

inclined cables, with both the primary and secondary crossovers (involving symmetric/anti-
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symmetric modes) in Fig.1b being replaced with frequency avoidances or veering (involving 

hybrid or asymmetric modes) because of the asymmetry of inclined configurations [1, 13]. Here, 

based on the Cartesian reference frame, we only deal with horizontal cables as their longitudinal 

(i.e., horizontal) and transversal (i.e., vertical) mode shapes are clearly distinguished from each 

other. Yet, in addressing some modal interaction features of highly-extensible inclined cables, it 

might be preferable to use the arc-length or space-varying local coordinates [1, 9] in 

discriminating actual longitudinal (i.e., tangential to the cable axis) modes from transversal (i.e., 

normal to the cable axis) modes since the Cartesian coordinates generally entail commensurate 

horizontal/vertical displacements depending upon the cable inclination [14]. 

 

3. MODULATION EQUATIONS AND LONGITUDINAL MODAL CONTRIBUTIONS 

 Even if no external force is supplied in the u direction, energy from the directly excited 

transversal mode is transferred to the longitudinal mode through a 1:1 internal resonance. 

Primary resonance of a high-frequency transversal s mode (Fig.2) is considered. Based on a full-

eigenbasis Galerkin discretization and a second-order multiple scales solution of Eq.(1), real-

valued modulation equations, describing the non-linear interaction of amplitudes (ar, as) and 

phases (βr, βs) of the two 1:1 resonant (r, s) modes, are obtained, in polar form, as [8]  
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where γr=(σf +σ)t-βr, γs=σf t-βs, ∆ =γr-γs are relative phases, σf and σ are external and internal 

detuning parameters described through Ω=ωs+ε2σf, ωs=ωr+ε2σ, respectively, with ε being a 
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bookkeeping parameter. Let σf or F be the system varying control parameter, Eqs.(4)-(7) reveal 

both uncoupled-mode (ar=0, as≠0) and coupled-mode (ar≠0, as≠0) solutions. The effective 

second-order coefficients, accounting for an infinite-dimensional series of resonant 

(quadratic/cubic) and non-resonant (quadratic) modes (nonlinearities), read [8] 
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 Based on Eqs.(2)-(3), these coefficients depend, in general, on contributions of the cable 

elasto-geometric parameter, sag, spatial modal characteristics (e.g., Fig.2) and system frequency 

relationship. Thus, based on a finite number of retained modes, overall coefficients affect non-

linear response through Eqs.(4)-(7). Apart from the effective cubic coefficients which depend on 

solely resonant (r,s) modes, the percentage (mC ) of each m modal contribution ( qmK ) to the 

effective quadratic coefficients ( , , , )q q q q
rr ss rsK K K K  in Eqs.(8-10) is evaluated [8, 11] through     

1

( / ) 100
M

m qm qm

m

C K K
=

= ×∑ , in which M is the number of retained modes. The absolute of the 

denominator implies that one also accounts for whether each modal contribution produces a 

softening or hardening effect, and entails the overall sum ∑ mC  to be either 100 or -100 %. A 

second-order closed-form solution of 1:1 resonant u/v dynamic configurations – depending on 

coupled amplitudes, relative phases and spatial profile corrections due to quadratic nonlinearities 

of every retained mode – is given in [8, 14]. 

 With reference to Table 1, Figs.1 and 2, the percentage mC  values of quadratic contribution 

from each resonant (underlined) and non-resonant mode to coefficients (9)-(11) are compared 
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between cables A and E in Table 2, with M = 25 and 40, respectively. With the analysis of low-

extensible cables at primary crossovers in the background [8], here we discuss and distinguish 

between the longitudinal/transversal and transversal/transversal modal interactions of highly-

extensible cables at secondary (A) and primary (E) crossovers, respectively. It is found that since 

both cables A and E, as well as C, involve r/s interactions between symmetric/anti-symmetric u 

(anti-symmetric/symmetric v) displacements, see Fig.2, the non-linear orthogonality properties 

(do not) affect the coefficients with (mixed) symmetric or anti-symmetric modal-based 

eigenfunctions [8] of both highly-extensible cables. This entails that, particularly at low-

frequency order, both symmetric and anti-symmetric transversal modes contribute to,q q
rsK K , 

whereas only symmetric transversal modes, e.g., m=6 (5) for cable A (E), contribute to ,q q
rr ssK K . 

 Generally speaking, the two cables highlight significant quadratic contributions from non-

resonant, besides resonant, modes. However, while contributions from resonant transversal 

modes play a significant role for cable E, those from resonant longitudinal/transversal modes are 

nearly negligible for cable A. This highlights how such resonant modes play a role only in the 

associated cubic coefficients in Eqs.(8)-(10). Indeed, the most outstanding quadratic 

contributions of cable A come from non-resonant longitudinal (higher-order) modes (bold), see, 

for example, the second longitudinal mode (m=7) in q
rrK  and the sixth longitudinal mode (m=23) 

in q
ssK , whose predominant u displacements are both anti-symmetric, as depicted in Fig.3a. Note 

that the non-resonant transverse lower-order (e.g., m=2, 5) modes also give meaningful 

contributions to q
rsK  and qK . In turn, cable E reveals significant contributions from longitudinal 

higher-order modes, too, e.g., with m=19 ( ,q q
rsK K ) and m=26 (all coefficients), whose 

predominant u displacements are symmetric and anti-symmetric, respectively, as shown in Fig. 

3b. Since the values of associated frequency factor terms in Eqs.(8)-(10) are small, i.e., of the 

order of O(10-1)-O(10-4), there is no diverging effect possibly due to a higher-order planar 

internal resonance [15].  
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 Therefore, overall analyses highlight significant higher-order longitudinal modal 

contributions for both primary/secondary crossover cables having high extensibility, with special 

emphasis on the latter. The associated effects are likely to increase with cable sag due to the 

occurrence of consecutive elastic mode transitions giving rise to coexisting higher-order 

longitudinal modes. This gives us clear hints about the insufficient minimal-order model 

accounting for only resonant modes and the need to use reduced-order models of highly-

extensible cables with more degrees of freedom, up to a properly detected (minimum) frequency 

order, than those of lower-extensible cables at primary first or second crossover, where lower-

order transversal modes are sufficiently accounted for in the same 1:1 resonant solution [8]. In 

the following, to obtain solution convergence, higher-order non-resonant – symmetric as well as 

anti-symmetric – longitudinal modes are accounted for. 

 

4. LONGITUDINAL/TRANSVERSAL MODAL INTERACTIONS 

 Retaining the first 25, 32 and 40 modes for cables A, C and E, respectively, the pertinent 

second-order coefficients, incorporating quadratic and cubic nonlinearities, are comparatively 

given in Table 3. Overall, 1:1 resonances are activated as K ≠ 0 [8], and there are quantitative 

and/or some qualitative differences observed in their values and/or sign, which would certainly 

affect modal interaction features of different sagged cables, see, e.g., rrK and ssK . Based on the 

Cartesian form [14] of Eqs.(4)-(7) via the transformations 2 2 1/2( )i i ia p q= + , 1tan ( ),i i iq pγ −=  

with i = r or s, the steady-state (fixed-point) solution and associated local stability are determined 

using the continuation approach. In the following (Figs.4 and 5), solid lines indicate stable fixed 

points, whereas dashed (dotted) lines indicate unstable fixed points due to a saddle-node SN or 

pitchfork PF (Hopf, HF) bifurcation. The latter (HF) plays a significant role in the onset of 

periodic, quasi-periodic and chaotic responses, which will be checked through direct numerical 

integration results with proper initial conditions. For the sake of comparison, we assign µr = 

.005, µs = .006, σ = 0 in all cases, and consider F = .005 in frequency-response (FR) diagrams. 
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 FR curves of cable A are shown in Fig.4a, whereas the associated forcing amplitude-response 

(FAR) curves with σf = .025 are shown in Fig.4b. In turn, FR curves of cables C and E are shown 

in Figs.5a and 5b, respectively. Apart from overall quantitative differences, all non-linear 

response diagrams manifest a general qualitative agreement as regards the coupled-mode (ar≠0, 

as≠0) solution originating from the uncoupled-mode (ar=0, as≠0) one via a PF bifurcation, even 

though the type of the latter may be different, namely super-critical and/or sub-critical, thus 

giving rise to a stable and/or unstable coupled-mode solution. Yet, some meaningful differences 

are observed:  

(i) Uncoupled-mode FR curves of cables A (Fig.4a) and C (Fig.5a) exhibit a hardening non-

linear behavior, whereas those of cable E (Fig.5b) exhibit a softening non-linear behavior similar 

to low-extensible suspended cables [8]. This is likely due to the sign difference in the associated 

coefficient Kss (Table 3) entering Eqs.(6) and (7). 

(ii)   For cable E, up to seven (two stable and one unstable uncoupled, one stable and three 

unstable coupled) FR solutions are possible, with a coupled stable solution persisting over a wide 

σf range [8]. On the contrary, for both cables A and C, which exhibit a smaller number of 

solutions, the single coupled stable FR solution occurs in only a marginal σf range. Yet, multiple 

coupled stable solutions are possible in the relevant FAR curves (e.g., in Fig.4b of cable A with 

F = .01). 

 Besides exhibiting typical SN and PF bifurcations, coupled-mode responses of cable A or C 

highlight one or two HF bifurcations, respectively, whereas those of cable E reveal none of them. 

This entails possible occurrence of periodic, quasi-periodic as well as chaotic oscillations for 

cables A and C involving longitudinal/transversal modal interactions. To verify such prediction, 

numerical transient-free time responses manifesting amplitude modulation are illustrated as 

follows.  

 Following the HF bifurcation (σf ≈ 0.0177) in Fig.4a, the qr-qs phase projection results with a 

slow increment in σf (σf = .0180 →.0187) and fixed initial conditions are displayed in Fig.6. The 
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limit cycle (Fig.6a) initially loses stability via a period-doubling bifurcation (Fig.6b), leading to a 

progression of multiple closed-loop trajectories whose amplitudes considerably increase in size 

(Figs.6c-d). Eventually, due to the accumulation of period doublings, the time histories appear 

aperiodic and the trajectories experience chaos as shown in Figs.6e and 6f. By varying F, another 

chaotic oscillation is detected near the single HF bifurcation in the associated FAR curves in 

Fig.4b. In turn, the occurrence of quasi-periodic response is exemplified in Fig.7, corresponding 

to the FR curves in Fig.5a with σf ≈ -0.006 between the two HF bifurcations. Besides showing 

different multi-harmonic features of pr-qr (Fig.7a) and ps-qs (Fig.7b) phase planes, a closed-loop 

map of ar-as Poincarè section in Fig.7c confirms a quasi-periodic motion.  

 Depending on coupled/uncoupled amplitudes, a comparison of space-time evolution of non-

linear longitudinal/transversal (u/v) displacements and dynamic tension Td [8] over a half forcing 

period is illustrated in Fig.8. The Td values are normalized with respect to the cable maximum 

static tension TH at supports. The responses relevant to three coexisting (ar,as) stable solutions, 

i.e., (.010792, .010905), (0, .006378) and (.005915, .004266) in Fig.4b at F=.01, are illustrated in 

Figs.8a-c, 8d-f and 8g-i, respectively. Overall, due to 1:1 resonant interaction at secondary 

crossover A (Fig.1b), the spatial symmetric/anti-symmetric (anti-symmetric/symmetric) 

combination of longitudinal (transversal) configurations (Fig.2), taking into account also second-

order spatial corrections [12], highlights asymmetric features of time-varying u (v) profiles in 

Fig.8a or 8g (8b or 8h), whereas the uncoupled configurations preserve the spatially symmetric 

character of the directly excited v mode (Fig.8e) accompanied by anti-symmetric u component 

(Fig.8d). The resonantly coupled u and v configurations have comparable amplitudes, with the 

former (Fig.8a or 8g) predominating over the latter (Fig.8b or 8h) in the non-linear range. This is 

clearly different from the associated uncoupled case (Fig.8e vs 8d) or from other resonant cases 

with transversal modal interactions in low-extensible cables at primary crossovers [8], whose v 

components are the only significant responses. Besides manifesting the spatially asymmetric 

character, the internally resonant-induced dynamic tensile or compressive forces – involving 



 13

longitudinal/transversal modal interactions – are also substantially large due to both u and v 

contributions (Figs.8c and 8i), with respect to the small-amplitude symmetric ones practically 

due to the predominant v contribution (Fig.8f). The former figures highlight the importance of 

accounting for the longitudinal inertia ( )uɺɺ  and the corresponding higher-order displacement 

gradients 2 3( , )u u′ ′ , some of which being coupled with the transversal component 2( )u v′ ′  [8]. 

 Finally, it should be noted that the presented results are simply aimed at qualitatively 

evaluating the geometrical non-linear (strain-displacement) effect on the finite-amplitude forced 

dynamics of highly (vs. lower) extensible cables. In this respect, the circumstance that some 

values of the elasto-geometric parameter λ/π possibly correspond to about the lower threshold of 

the physically admissible elastic range [3], in view of presently available values of the strength-

to-stiffness material ratio, does not deserve special attention. On the other hand, considering a 

more realistic non-linear and/or hysteretic constitutive (stress-strain) relationship (e.g., [5, 10, 

16]) would be of major practical significance, and is left for future investigation. 

 

5. CONCLUSIONS 

 Analysis of second-order geometrically quadratic non-linear coefficients governing planar 

1:1 resonant interactions of highly-extensible suspended cables has highlighted meaningful 

higher-order longitudinal modal contributions at both primary/secondary frequency crossovers. 

By focusing on the secondary crossover cable involving the first longitudinal (i.e., elastic) mode, 

relevant longitudinal/transversal modal interactions provide some insights into the non-linear 

dynamics of highly-extensible cables, with respect to the primary crossover cable involving 

transversal/transversal modal interactions, whose response characteristics appear quite similar to 

those of low-extensible crossover cables [8]. In particular, the occurrence of periodic, quasi-

periodic as well as chaotic oscillations involving the resonant longitudinal mode is revealed. 

Based on the effective quadratic/cubic nonlinearities, overall analytical-numerical outcomes, 

involving coupled longitudinal/transversal amplitudes, manifest space-time, multi-modal, 
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asymmetrical distributions of displacement and tension. These highlight a crucial role played, for 

even small-sagged suspended cables, by the longitudinal inertia and the associated higher-order 

displacement coupling accounted for through the underlying kinematic non-condensed modeling. 
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Table 1 
 

Cable λ π  d r-s ωr ωs Order Mode* 
A 0.27 .038 3-4 u-v 9.403 9.408 
C 1.17 .099 5-6 u-v 15.616 15.648 
E 1.88 .134 1-2 v-v 5.866 5.869 

                                        * u (v) denotes dominant longitudinal (transverse) mode. 
 
 
 

 
 

Table 2 
 

m 
     q

rrK    q
ssK    q

rsK   qK  

A E A E A E A E 
1 2.311 0 5.286 0 7.057 28.108 -0.063 93.631 
2 0 39.582 0 88.896 71.798 47.220 47.695 -17.507 
3 0 0.052 0 1.324 0.923 -1.691 0.806 3.375 
4 0.412 0 0.793 0 1.363 4.516 -0.133 0.889 
5 0 1.535 0 0.645 16.074 -0.307 48.054 -0.783 
6 -0.101 0 -0.020 0 0.622 6.615 -0.416 5.444 
7 -102.729 0 -0.092 0 -0.173 6.079 3.821 5.231 
: : : : : : : : : 

11 0 0 0 0 0.756 0 0.156 0 
12 0.015 0.063 0.003 0 -0.007 -0.006 -0.004 -0.007 
13 0 0.500 0 0.054 0 0.070 0 0.087 
: : : : : : : : : 

19 0 0 0 0 2.156 14.638 0.573 15.854 
: : : : : : : : : 

23 0.012 0 93.927 0 -1.334 0.008 -0.438 0.008 
24 0 0.045 0 0 0 -0.006 0 -0.007 
25 0 0 0.012 0 0 0.004 0 0 
26  57.518  8.823  -9.868  -11.272 
:  :  :  :  : 

     
 
 
 
 

 
 

Table 3 
                                

Coefficients        Frequency Crossover 
A C E 

Krr -88008.100 144462.495 -31366.931 
Kss -90803.684 -2037330.156 9857.837 
Krs 22022.335 538886.724 17924.739 

       K  48452.827 810408.833 7283.243 
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