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1. Abstract  

 

In studies of tribo-corrosion, the degradation of bio-materials has become of 

increasing research interest in recent years.  This is because, in many cases, the 

interactions of the tribological and corrosion component in biological environments 

are not well understood.  Moreover, the wide range of variables involved in the tribo-

corrosion process, and the variety of materials used in such conditions, means that 

there are few systematic studies where materials and operating conditions are 

optimized. 

 

In the total replacement of hip joints, the Co-Cr/UHMWPE couple has been used 

widely.  However, the application of any replacement joint for biological conditions 

will depend on many factors including the activity of the patient and the overall load 

imposed on the artificial joint.  This means evaluation of the tribo-corrosion 

behaviour over a multi parameter space is important in order to asssess the 

degradation possible for many patient/activity and body mass categories. 

 

In this work, the performance  of  a Co-Cr/UHMWPE couple was evaluated in 

Ringer’s solution in a tribological situation where micron size particles particles were 

entrained in the contact – micro-abrasion-corrosion.  The effects of applied load and 

potential were invesigated in the study.  Micro-abrasion-corrosion maps were 

constructed for the material indicaing the mechanism of degradation, the extent of 

wastage and of synergy/antagonism involved in the tribo-corrosion interaction.     
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2.   Introduction  

 

 

In the bio-materials field, a vast number of materials have been used in the 

construction of total replacement hip joints including ceramics, metals and plastics.   

Early research, however, indicated significant metal particle wear which arose during   

the product life cycle (1). 

 

The first modern prosthetics based on a Co-Cr/ Polymer couple was developed by 

Charnley (1). Initial polymers included Teflon, Polyacetal and Polyesters. However 

due to high-rates of clinical failure such materials have been replaced in recent years 

by the use of UHMWPE. In the replacement of the femur materials,  Co-Cr alloys are 

candidate alloys due to the formation of a chromium oxide layer on the surface which 

grows slowly and is adherent.    

 

The combined effect of applied load to the surface i.e during motion and the effect of 

a very corrosive environment, such as the human body, can cause significant 

degradation of the joint surface. In particular, small debris of micron sized particles 

can form in the tribological contact and contribute to a more severe wear effect by 

micro-abrasion. It has also been shown that the presence of many of the corrosive by-

products can lead to patient problems including necrosis, fibrosis and inflammation 

(2). 
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For hip joints, the maximum pressure generated during daily activities on the hip joint 

has been estimated at 12 MPa in acetabular cups (3). By considering a factor of safety 

of two, the maximum pressure used in this study was 25 MPa. (The load on the 

sample was calculated from Hertzian contact pressure, which was developed at the 

contact point between the femoral head and acetabular cups.) In some reported 

studies, expected pressure was approximated to a very high value of 375 MPa, to 

accelerate the expected wear events (4-5). 

 

Recent work (6) has shown that proteins have a significant effect on the corrosion rate 

of  Co-Cr-Mo implants. The presence of proteins in the abrasive test slurry can affect 

the cathodic kinetics. The protein enhanced interaction is interpreted in terms of its 

effect in the particle entrainment process. 

 

Some recent work (7) in micro-abrasion-corrosion has concentrated on the 

construction of engineering maps to characterise the wear mechanisms, wastage 

regimes and the various tribo-corrosion interactions involved in micro-abrasion-

corrosion have also been studied (8-9).  There has been significant interest in micro-

abrasion mechanisms (10) in recent years and regimes of micro-abrasion have been 

identified.  The corrosion behaviour of Co-Cr and UHMWPE in simulated biological 

solutions has also been studied (11-14).  

 

However, to date there have been few studies where the concepts of trbo-corrosion 

maps, micro-abrasion mechanisms, and a bio-material couple have been investigated 

simultaneously.  The aim of this study is to address this issue.  Here,  the effect of 
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applied load and potential have been used to generate a range of tribo-corrosion maps 

for Co-Cr/UHMWPE in a laboratory simulated biological environment- Ringer’s 

solution.  The potential application of such maps to in-vivo environments is discussed 

in this paper. 

 

 

 

 

 

3  Experimental details 

 

 

 

 

 

 

 

 

 

 

 

Micro-abrasion tests were performed with the TE-66, micro-abrasion tester, Figure. 1 

(Plint and partners (Phoenix, UK)).  The details of the experimental rig are as follows.  

A (25.4mm ball was located between two-coaxial shafts, each carried in a support 

bearing, with one of the shafts driven by a variable speed DC geared motor. A batch 

counter was provided to measure and control the number of shaft revolutions. A 

peristaltic pump head was connected to the other end of the shaft and this was used 

Load
 

Co-Cr 
specimen

Slurry solution 

L-Shaped arm

Rotating shaft 
supporting the ball 

WE RE AE 

Potentiostat

Data collection

UHMWPE 
counterface ball 

AE - Auxiliary Electrode, WE - Working Electrode, RE - Reference Electrode 

Figure 1.  Schematic diagram of the micro-abrasion-corrosion apparatus 

A
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for providing slurry feed to the contact. The test sample was clamped onto a platform, 

which was fitted to the pivoted L-shaped arm. This arm was rotated around its pivot 

until the sample came into contact with the ball. The load was applied by adding dead 

weights to a cantilever arm. It is important to note that this was not an attempt to 

directly simulate hip joint conditions  but instead to demonstrate the application of the 

concept of the micro-abrasion-corrosion map to a bio-material couple, where the 

analogy may be made to wear in artificial hip joints.  The slurry (concentration of 

0.25 g cm-3) was fed to a position just above the contact point and collected in a waste 

tray underneath. The relatively high concentration of SiC particles was used as to 

accelerate the test in order to simulate transitions between possible tribo-corrosion 

regimes.  The specification of the apparatus is shown in Table 1. 

Model TE-66 

Supplier Phoenix tribology (Plint), UK. 

Load range 0.05 to 5 N 

Ball diameter 25 mm 

Ball speed range 30 - 150 rpm 

Pump feed rate To 1 ml s-1 (Based on 0.5mm 

bore) 

 

Table 1.  Specification of micro-abrasion apparatus  

The arm, which holds the sample, could be moved horizontally in order that several 

tests on a single sample specimen could be carried out.  (It is recognized that with this 

arrangement, the actual load may deviate, particularly if the specimen looses contact 

with the ball at higher rotational speeds, where some experimental stability may set 
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in).   The sample was then removed from the apparatus and the diameter of the 

resulting abrasion scars was measured with profile projector and optical microscope. 

 

The material of the ball used was UHMWPE and was selected as stated above 

because it provided an inert surface against which corrosion of the counterface could 

be measured during the micro-abrasion test. The (Co-Cr) surfaces were ground and 

polished by conventional metallographic methods before testing. Following the test, 

the worn samples were examined by optical, scanning electron and atomic force 

microscopy in addition to profilometric methods. Repeat tests were carried out at 

various loads; the error in the experimental data was estimated to be + 20 %.  

 

The wear volume was calculated using the standard technique (13) for measuring the 

wear scar of spherical geometry(11) i.e. the geometry of the wear scar is assumed to 

reproduce the spherical geometry of the ball, and the wear volume (V) may then be 

calculated by measuring the crater diameter (b) 

 

V ≈ πb4   (64 R)-1     For b<<R         (1) 

 

The corrosive slurry of (Ringer’s solution, Table 2) and SiC 4µm particles, was stored 

in a container that could be agitated by means of a laboratory magnetic stirrer and was 

delivered to the specimen by an integral peristaltic pump. Hence, the surface of the 

wear scar was immersed during the test.   The pH of the solution was 7.2 For 

estimating the corrosion rate, the sample was connected to the working electrode and 

a reference electrode was connected by capillary tube in order to make contact with 

the circuit. A Pt-Ti wire mesh was used as an auxiliary electrode. To ensure that all 
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other parts were  insulated, the sample was painted with electrically nonconductive 

paint except at the point of interaction. The clamps and plate, which hold the sample, 

were made of non-conducting polymer. Potential control for corrosion studies was 

carried out using a Gill AC electrochemical interface (ACM instruments, UK). 

 

In this apparatus, the solution was exposed to air at room temperature, 25oC.   It is 

important to appreciate that in an electrochemical experiment, the measured current is 

a net quantity being the difference between the anodic and cathodic currents.  For 

polarization experiments carried out in aerated conditions, a background cathodic 

current due to oxygen reduction will always be present at potentials less than 

equilibrium potential for this reaction  which lies between -0.96 and 0.54 V (SCE).  

However, where the anodic currents are comparable to the background cathodic 

current, then the measured anodic current is too small by a constant quantity (i.e. the 

oxygen reduction current).  It is for this reason that many electrochemical tests are 

carried out under de-aerated conditions.  Where deaeration is not practicable, then 

compensation for the presence of the oxygen reduction current is carried out to extract 

the correct anodic currents.  It should be noted, that in this case, the uncorrected data 

are reported for the polarization and weight change data in order to reduce errors in 

the construction  of the micro-abrasion-corrosion map.   

 

The sample was prepared by initially grinding the surface to 4000 um and covering 

the surface with an insulating paint to prevent corrosion current measurements which 

could be attributed to the unabraded surface.  

Micro-abrasion-corrosion tests were carried out at various applied loads (0.5 – 5N) at 

a constant sliding distance of 3000 rev (235.50 m). The corrosion rates (Kc) during 
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micro-abrasion corrosion were obtained from the current densities at potentials of -

0.4, -0.2, 0, +0.2 V (SCE). The total mass losses due to micro-abrasion wear and 

corrosion (Kac) at the above potentials were measured after 30 minutes.   All the mass 

loss values reported relate to the metallic component and negligible corrosion of the 

polymer counterface is assumed for this study.   

 

 

 

 

 

 

 

Table 2. Composition of Ringer’s solution 

 

                                                                                                   

Sample 

material 

Co-Cr alloy (Co 61.75, Cr-27, Ni-2.5, Mo 5, C-0.25, Fe-2.5, 

Si-1) (Weartech Int., USA) 

 

Ball material UHMWPE (K-mac Plastics, Michigan USA) 

Speed 100 rpm 

Load 0.5-5 N 

Sliding 

distance 

117.78, 29.44, 58.88, 117.75,235.50m 

 (150, 375, 750, 1500, 3000 rev) 

Conditions Corrosive slurry 

Slurry Ringers solution mixed with SiC particles (concentration of 

Composition of Ringer‘s solution 

Components gL-1 

NaCl 8.6 

CaCl2 0.33 

KCl 0.30 
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0.025gcm-3) 

 

Table 3. Micro-abrasion-corrosion experimental details 

 

3.1 Materials 

 

The Co-Cr alloy was supplied from Wearech International, CA, USA Table 3.  The 

density was  8386 kgm-3  and hardness 386 HV.  The UHMWPE ball diameter was 

2.2 cm.  It was manufactured using injection moulding, and was supplied by K-Mac 

Plastics. 
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Figure 2(a). In the absence of particles

 
Figure 2 (b). In the presence of particles 
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Figure 2.  Polarization curves in Ringer’s solution. 

 

4.  Results 

 

4.1 Polarization curves   

 

The polarization behaviour indicated in the absence of particles, Fig. 2(a), for 0.5 N 

loads it can be seen that the value of Ecorr was higher than for the other loads. In 

addition, that for Icorr was also slightly lower for 0.5N than the other loads tested. 

Clear evidence of passivation was indicated at potentials between -0.250 mV and +  

250 mV. At this point, a transition to the transpassive regime was accompanied by an 

increase in current and hence an increase in surface corrosion. This is likely to be due 

to transpassive oxidation of the chromium ions from Cr+3 to Cr+6 and has been 

observed elsewhere (6).  

 

The remaining polarisation curves (1-5N) demonstrated similar behaviour with near 

identical values of Ecorr and Icorr. It should be noted, however, that for higher values 

of load, the polariation curves were observed to follow the more traditional S- shaped 

curve. At 0.5N, the passive regime was identified by a near steady current with 

increases in anodic potential, whereas for higher loads the current was observed to 

decrease slightly with increases in anodic potential before finally moving into the 

transpassive regime. There appears to be a critical load between 0.5 and 1N, where 

the corrosion current increases significantly.  
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With increasing load, Fig. 2(b), the anodic current shifted to higher values in the 

presence of particles.  It should be noted that the value of Ecorr  was marginally 

higher for loads 1-5N in the presence of SiC particles than their absence.  The current 

values were higher than those in the absence of particles although there was little 

difference between these values at higher loads.   

 

.3 Weight change results   

 

 

 

Fig. 3(a) -600 mV 

 

Fig.3(b)  -400 mV 
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Fig. 3(c) -200 mV 

 

Fig. 3(d) 0 mV 

 

Fig. 3(e) +200 mV 

 

Fig. 4. Weight change data at a range of applied potentials  

 



15 
 

The weight change data may be explained by defining the following terms, using the 

wear-corrosion analysis developed by Yue and Shi (16):  

 

If:           Kac= Ka + Kc        (2) 

 

where, Kac is the total micro-abrasion-corrosion, Ka is the total micro-abrasion rate, 

and Kc is the total corrosion rate. 

 

Ka can be written as Kao + Δ Ka, i.e.: 

 

Ka= Kao + Δ Ka         (3) 

 

where Kao is the micro-abrasion rate in the absence of corrosion, Δ Ka is the effect of 

corrosion on the micro-abrasion. 

 

Kc can be written as Kco + ΔKc, i.e: 

Kc=  Kco + ΔKc         (4) 

 

where Kco is the corrosion rate in the absence of wear, ΔKc is the effect of micro-

abrasion on the corrosion, or the enhancement of corrosion due to the micro-abrasion 

process. 

 

Hence, the total micro-abrasion – corrosion rate can be given as follows: 

 

Kac    =Kao + Δ Ka + Kco+ ΔKc       (5) 
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The results of the various contributions to weight change are given in Table 4. The 

corrosion rate data, Kc, were derived using Faraday’s law, e.g. 

 

Kc=Q(ZF)-1         (6) 

 

Kc=Mit(ZF)-1         (7) 

 

where Q is the charge passed, F is Faraday’s constant (96500 C), Z is the number of 

electrons involved in corrosion process, I, the total current, t the exposure time and M 

is the atomic mass  of the material. 

 

The weight loss due to wear in the absence of corrosion, Kao, was estimated by 

measuring the weight change in cathodic conditions i.e. at –0.96 V.   

 

The weight change results at, Fig. 3 (a) indicated an increase in mass loss, Kac,  with 

increasing applied load at -600 mV.  A generally similar increase in the value of Kac 

with increasing load was observed at -400mV, Fig. 3(b) .  Here, the fact that there was 

little difference between the values of Kac and Ka demonstrated that corrosion had a 

negligible role in the overall mass loss rate.  For further increases in applied potential 

at -200 mV, Fig. 3(c)  indicated values of Kac, Kc and Ka were largely independent 

of applied load.  However, at more positive applied potential, Fig. 3(d), 0 mV, the 

overall values of Kac and Ka again increased with applied load.  At this potential, at 

0.5 N, the value of Kc was marginally greater than Ka, a trend which reversed at 
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higher potentials, indicating a change in abrasion-corrosion regime as a function of 

applied load.   

 

At the highest potential value studied, Fig. 3(e), +200 mV, there was a decrease in  

the values of Kac and Ka at 3 N which reversed at higher loads.  The possible reasons 

for this are discussed below.  However, the reproducibility of the results was also 

evaluated, Fig. 5, and indicates that small deviations may be within the error in the 

experiment.  The reproducibility was estimated to be within ±20%.       

 

      

 

 

Fig.4 Variation in weight loss, Kac, at 0V, with increasing applied load showing the 

experimental error in the data based on two consecutive readings at each load. 
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5.  Discussion  

 

5.1 Analysis of weight change and polarization behaviour 

 

The general increasing trend of weight loss (Fig.3 (a-e)) with increasing load is 

consistent with the Archard theory of wear where the wear rate continually increases 

with increasing load (16).   It is interesting that the corrosion rate Kc, which includes  

two terms,  the corrosion in the presence and the absence of abrasion, Kco +  ΔKc, is 

largely independent of load, which indicates the above a critical load at a given 

potential, the abrasive action of the particles cannot remove any further passive film 

on the surface as identified by the polarization data. This pattern is also indicative of a 

micro-abrasion enhanced corrosion phenomenon. 

 

The results also indicate that the interactions between corrosion and micro-abrasion 

are enhanced at low loads. However, this is not the case at all anodic potentials.  For 

example, at 0 mV, the value of Kc is marginally greater than Ka at 0.5 mV and 

approximately equal to Ka at 1 N.  At higher loads the situation revereses and the 

value of Ka exceeds that of Kc.  This identifies a change in micro-abrasion-corrosion 

mechanism, from passivation affected to micro-abrasion affected behaviour at such 

potentials.  Surprisingly, such trends are not observed at more positive potentials and 

this may be attributed to the decrease in corrosion currents at more anodic values as 

observed in the polarization data, Fig. 2. 
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The reduction in micro-abrasion rate at intermediate loads i.e. at 3 N at 0 mV, Fig. , 

3(e), has also been observed for pure metals (17).  This has been attributed to a 

transition to a 2 body ridging mechanism where above a critical load, the micron sized 

particles may entrain in grooves in the surface and the surfaces may become into 

contact resulting in heat generation and/or associated processes such as thermal 

softening and oxidation. It also may be due to the error in the experiment, as indicated 

in Fig. 4.  Below a critical particle size, a transition from a micro-abrasion dominated 

process to a sliding action is anticipated once the particles are small enough to remain 

in the grooves formed by the gouging action of the particles.  Various transitions in 

micro-abrasion have been the subject of extensive study (6, 17-18).  However, it is not 

possible at this stage to state whether such behaviour observed above can be attributed 

to such a process.          

 

It is acknowledged that the highest load tested, 5N, represents a force which is 

artificially high for potential application to bio-implants.  For the TE 66 apparatus, it 

also represents a high value for this test.  However, the purpose of this study was to 

investigate using an accelerated test methodology the various possible regimes for a 

bio-material couple and hence the wide range of load values used in the study.    
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5.3 Micro-abrasion-corrosion maps 

. 5 

 

 

Fig. 5 (a) Mechanism map 

 

The results, Tables 4 and 5, were used to construct micro-abrasion-corrosion maps.  

The mechanism map  is based on the criteria 

Kc/Ka  < 0.1  Micro-abrasion                (8) 

  1>       Kc/Ka  > 0.1    Micro-abrasion-corrosion   (9) 

            1 >     Kc/Ka  > 1      Corrosion-micro-abrasion   (10) 

                      Kc/Ka    >10    Corrosion     (11) 

 

The micro-abrasion process was identified as 2-body based on the Adachi and 

Hutchings analysis (19) for the conditions studied. 
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It is clear, from the results, Fig. 5(a) that at cathodic potentials less than -400 mV, 

micro-abrasion is dominant.  Above such values, the wastage mechanism changes to 2 

body abrasion-passivation apart from in the region of 0 mV, where a transition to 

passivation-2 body abrasion takes places.  This indicates the combination of 

conditions where corrosion is more dominant than abrasion. 

 

  

 

 

Fig. 5 (b) Wastage Map  

 

In the construction of a wastage map for the results, Fig. 5(b), the following criteria 

are used to set the limits. 

Kac <  3 . 10-6g Low   (12) 

3 . 10-6g < Kac <  6 . 10-6g Medium  (13) 

Kac> 6 . 10-6g High   (14)  
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The results indicate that when the alloy passivates in Ringer’s solution, the process  

has the effect of marginally reducing the wastage rate except at high potentials.  The 

beneficial effect of formation of the chromium oxide passive film is particularly 

evident in the region centred around 0 mV and  between 1 and 2N.   This suggests that 

there may be an optimum electrochemical equilibria /tribological condition where 

wear may be minimized in body fluids of comparable concentration.   If tribo-

corrosion occurs as a result of smaller particles in hip joint contacts i.e.by nano 

paricles as has been suggested in recent work, it may be interesting to see how such 

maps would appear for the effects of these particles. (20) 

 

 

    Fig. 5 (c) Synergy map 
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Fig. 5. Micro-abrasion-corrosion maps for Co-Cr/UHMWPE in Ringer’s solution 

 

In order to investigate the trends in the results further, Tables 4-5, micro-abrasion-

corrosion synergy maps were constructed using the following limits as defined in 

other work (21-24).  

 

∆Ka/∆Kc ≤ 0.1             Additive     (15) 

1≥ ∆Ka/∆Kc > 0.1        Additive-Synergistic    (16) 

 ∆Ka/∆Kc  > 1              Synergistic        (17) 

 

If the inequalities are negative, then “synergistic” is replaced by “antagonistic” 

behaviour.  The results, Fig. 5 (c) indicate that the map is largely dominated by 

antagonistic behaviour.  

 

Using the error estimation of ±19.5 % which was obtained from Fig. 4, all values of 

∆Ka and ∆Kc were modified in the positive and negative directions to their extreme 

error values. The resulting synergy/antagonism levels were then recalculated for each 

error modified scenario to investigate whether the original defined regime would still 

remain at the extreme values or possibly transition into a new regime.  

 

(It should be noted that most of the original values of ∆Ka/∆Kc remained unaltered.  

However, various isolated regions in the map are now included in a transition region 

outlined in the diagram which includes the additive - antagonistic or additive- synergy 

regimes. The authors have decided that grouping these values together is acceptable 
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as these values are relatively small in comparison with some of the larger synergy and 

antagonism values.)  

 

 At low loads, i.e. less than 1.5 N, the synergistic effect changes to antagonistic in the 

region of 0 mV.  This reverts to synergistic behaviour at higher potentials.  This 

indicates that the corrosion conditions under which this passive film of chromium 

oxide forms are the optimum for the exposure conditions, in which an applied stress is 

imposed.  Hence, they indicate that the film is generally providing protection under 

this window of conditions.  The transition to transpassive behaviour at higher 

potentials as observed from the polarization data results in micro-abrasion-corrosion 

process where the film is commencing to break down. 

 

The results are interesting in that they demonstrate that for application to bio-medical 

conditions i.e. a hip/joint for patient A of relatively high activity i.e. a professional 

sports person, if a potential range could be identified for the tribo-corrosion  

behaviour for such an individual, then some projection of lifetime could be made 

based on the mapping methodologies above. This could lead to a decision to replace 

the joint with a metallic material or with the same material with a surface coating.  

However, further research is necessary to realize the practical applications of such 

work to real life conditions.          

 

Hence, it is shown that by using tribo-corrosion mapping methodologies above, 

optimum electrochemical and tribological parameters may be identified for bio-

implant materials using the micro-abrasion test apparatus.  The application of such 

results to in-vivo conditions will involve knowledge of the electrochemical and 
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tribological variables together. Further work will be to investigate how such diagrams 

can be applied to other hip joint material couples, including addressing mathematical 

models of tribo-corrosion mapping development as in recent work (24), in addition to 

other biological conditions involving implants.   

 

 

 

 

 

6.  Conclusions 

 

(i) The micro-abrasion-corrosion behaviour of a Co-Cr/UHMWPE couple has 

been investigated in Ringer’s solution, by investigating the effect of 

applied load over a range of potentials in potentiostatic and 

potentiodynamic conditions. 

(ii) The results have indicated various trends on the effect of load as a function 

of increasing potential, with corrosion dominating the abrasion at low 

loads, at anodic potentials, where passive film formation is favoured.    

(iii) Micro-abrasion-corrosion maps have been constructed using such an 

approach demonstrating variation in mechanisms, wastage and 

synergism//antagonism in the tribo-corrosion processes. 

(iv) Over the potential range studied, strong evidence of antagonism has been  

observed, indicating that the chromium oxide layer formed on the surface 

was resistant to the micro-abrasion conditions.  The ability of this film to 
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provide protection has been found to be dependent on the load and 

potential.   
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Table 4: Kc/Ka values at various 

potentials    

Potential 

mV/SCE   

Kac 

(g x10-6) 

Kc 

(g x10-6) 

Ka 

(g x10-6) 

Kc/Ka 

   

(a) 0.5N Applied Load     

-600  14.05 10.96 3.084 3.55 

-400  26.41 1.05 25.36 0.04 

-200  31.41 6.14 25.27 0.24 

0  14.34 7.55 6.79 1.11 

200  32.48 6.97 25.51 0.27 

      

(b) 1N Applied Load     

-600  21.23 12.02 9.22 1.30 

-400  28.83 0.37 28.45 0.01 

-200  33.03 7.83 25.21 0.31 

0  19.32 9.25 10.07 0.92 

200  40.18 8.04 32.14 0.25 

      

(c) 2N Applied Load     

-600  33.03 8.73 24.30 0.36 

-400  37.08 0.63 36.45 0.02 

-200  35.30 8.08 27.23 0.30 

0  31.41 9.75 21.66 0.45 

200  49.93 8.49 41.44 0.20 

 

      

(d) 3N Applied Load     

-600  38.30 11.84 26.46 0.45 
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-400  34.15 1.12 33.03 0.03 

-200  35.89 7.38 28.50 0.26 

0  39.55 10.01 29.53 0.34 

200  39.55 9.73 29.82 0.33 

      

(e) 4N Applied Load     

-600  48.44 10.48 37.96 0.28 

-400  52.23 1.05 51.18 0.02 

-200  37.08 10.48 26.60 0.39 

0  41.48 10.96 30.53 0.36 

200  49.18 10.48 38.70 0.27 

      

(f) 5N Applied Load     

-600  55.42 10.41 45.00 0.23 

-400  61.34 0.40 60.95 0.01 

-200  36.48 8.89 27.59 0.32 

0  49.93 11.50 38.43 0.3 

200   52.23 10.25 41.98 0.24 
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Table 5: ΔKa/ΔKc values at various potentials 

   

Potential 

mV/SCE   

ΔKa 

(g x10-6) 

ΔKc 

(g x10-6) 

ΔKa/ΔKc 

    

Effect 

   

(a) 0.5N Applied Load     

-400  11.02 0.88 12.57 Synergy 

-200  10.93 6.06 1.80 Synergy 

0  -7.55 7.38 -1.02 Antagonistic 

200  11.17 6.77 1.65 Synergy 

      

(b) 1N Applied Load     

-400  11.60 -0.07 -158.40 Antagonism 

-200  8.35 7.35 1.14 Synergy 

0  -6.79 8.80 -0.77 Additive-Antagonistic 

200  15.28 7.62 2.00 Synergy 

      

(c) 2N Applied Load     

-400  4.51 0.13 34.05 Synergy 

-200  -4.72 7.54 -0.63 Additive-Antagonistic 

0  -10.28 9.26 -1.11 Antagonism 

200  9.49 8.05 1.18 Synergy 

      

(d) 3N Applied Load     

-400  -27.44 0.60 -45.42 Antagonism 

-200  -31.97 6.76 -4.73 Antagonism 

0  -30.94 9.50 -3.26 Antagonism 

200  -30.65 9.26 -3.31 Antagonism 
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(e) 4N Applied Load     

-400  5.62 0.51 11.00 Synergy 

-200  -18.96 9.52 -1.99 Antagonism 

0  -15.03 10.42 -1.44 Antagonism 

200  -6.86 9.99 -0.69 Additive-Antagonistic 

      

(f) 5N Applied Load     

-400  -0.40 -0.34 1.18 Synergy 

-200  -33.75 7.82 -4.31 Antagonism 

0  -22.91 10.74 -2.13 Antagonism 

200   -19.37 9.73 -1.99 Antagonism 
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Captions for tables 

 

 

1. Specification of micro-abrasion apparatus 

 

2. Composition of Ringer’s solution 

 
 

3. Micro-abrasion-corrosion experimental details 

 

4.  Kc/Ka values at various potentials 

 
5. ΔKa/ΔKc values at various potentials 
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Captions for Figures 

 

 

1.         Micro-abrasion corrosion apparatus 

 

2.         Polarisation curves at various loads in Ringer’s solution 

 

(a) In the absence of particles 

(b) In the presence of particles 

 

3. Variation of weight change during the micro-abrasion-corrosion process 

(a) – 0.600 mV  

(b)  –0.400 mV  

(c)  –0.200 m V   

(d)  0 mV   

(e)  +0.200 mV 

 

4.    Variation in weight loss, Kac at 0.2 V, with increasing applied load showing 

the experimental  error in the data based on two consecutive readings at each 

load.      

 

5.   Micro-abrasion corrosion maps for the Co-Cr/UHMWPE couple in Ringer’s 

solution. 

(a) Mechanism map  
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(b) Wastage map 

(c)  Synergy map 
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