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Approximation Methods for Hybrid Diffusion Systems

with State-dependent Switching Processes: Numerical

Algorithms and Existence and Uniqueness of Solutions

G. Yin,∗ Xuerong Mao,† Chenggui Yuan,‡ Dingzhou Cao§

Abstract

By focusing on hybrid diffusions in which continuous dynamics and discrete events
coexist, this work is concerned with approximation of solutions for hybrid stochastic
differential equations with a state-dependent switching process. Iterative algorithms
are developed. The continuous-state dependent switching process presents added dif-
ficulties in analyzing the numerical procedures. Weak convergence of the algorithms is
established by a martingale problem formulation first. This weak convergence result is
then used as a bridge to obtain strong convergence. In this process, the existence and
uniqueness of the solution of the switching diffusions with continuous-state-dependent
switching are obtained. Different from the existing results of solutions of stochastic dif-
ferential equations in which the Picard iterations are utilized, Euler’s numerical schemes
are considered here. Moreover, decreasing stepsize algorithms together with their weak
convergence are given. Numerical experiments are also provided for demonstration.
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1 Introduction

Recently, hybrid systems in which continuous dynamics and discrete events coexist have

drawn much attention. In particular, resurgent efforts have been devoted to the research on

switching diffusion systems (also known as regime-switching diffusions). Much of the study

was originated from applications arising from two-time-scale systems, control engineering

practice, manufacturing systems, estimation and filtering, and financial engineering; see

[5, 7, 15, 17, 19, 20, 21, 24], among others. Recent progress for switching diffusions has been

summarized in [14] and references therein. Up to this point, the study has been carried out for

such systems whose switching component is a continuous-time Markov chain independent

of the continuous state variable [13, 23], whereas lesser is known for the processes with

continuous-state-dependent switching [1, 25]. Nevertheless, in many applications, discrete

events and continuous dynamics are intertwined, and the independence assumption of the

discrete-event process and the continuous component poses restrictions. It would be nice to

be able to handle the coupling and dependence of the continuous states and discrete events.

Numerical methods for stochastic differential equations have been studied extensively, for

example in [4, 9, 16] among others, whereas numerical solutions for stochastic differential

equations with Markovian switching have also been well studied (see [14] and the many

references therein). Numerical solutions with state-dependent switching diffusions have not

been well understood to the best of our knowledge.

Suppose that M = {1, . . . , m} is a finite set. Consider the hybrid diffusion system

dx(t) = f(x(t), α(t))dt + σ(x(t), α(t))dw(t),

x(0) = x0, α(0) = α0,
(1.1)

and

P (α(t + ∆t) = j|α(t) = i, x(s), α(s), s ≤ t) = qij(x(t))∆t + o(∆t), i 6= j, (1.2)

where w(·) is an r-dimensional standard Brownian motion, x(t) ∈ R
r, f(·, ·) : R

r ×M 7→ R
r,

and σ(·, ·) : R
r×M 7→ R

r×r are appropriate functions satisfying certain regularity conditions,

and Q(x) = (qij(x)) ∈ R
m×m satisfies that for each x, qij(x) ≥ 0 for i 6= j,

∑m
j=1 qij(x) = 0

for each i ∈ M. There is an associated operator for the switching diffusion process defined as

follows. Use z′ to denote the transpose of z, and use ∇ and ∇2 as the notation for gradient

and Hessian, respectively. For each i ∈ M and suitable smooth function h(·, i), define an
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operator

Lh(x, i) = ∇h′(x, i)f(x, i) +
1

2
tr[∇2h(x, i)σ(x, i)σ′(x, i)] +

m∑

j=1

qij(x)h(x, j). (1.3)

The state-dependent model is largely motivated by applications in control and optimiza-

tion. Similar to the literature in Markov decision processes, we may consider a Markov

process (x(t), α(t)) whose generator has control dependence and the control is in feedback

form resulting in the consideration of switching process being state dependent. The consid-

eration of M being a finite set is mainly from an application point of view. For emerging

applications arising in manufacturing, wireless communication, and finance, the set M is

naturally a finite set. In principle, M can be an infinite set. However, if M is an infinite set,

we will need to deal with a coupled system with infinitely many components. In numerical

approximation, we shall approximate the resulting system with finitely many components.

For such M, we often approximate it by a large-dimensional finite set M. Reduction of com-

putational complexity for large-scale systems can be carried out using a time-scale separation

approach [22].

Since the solution of (1.1) can often be obtained only through numerical approximations,

constructing numerical solutions is of foremost importance. In this paper, our aim is to

construct numerical approximation schemes for solving (1.1) with α(t) taking values in M =

{1, . . . , m}. The novelty of our work lies in that Q(x), the generator of the switching process

α(t), is state dependent, which makes the analysis much more difficult. One of the main

difficulties is that due to the continuous-state dependence, α(t) and x(t) are dependent;

α(t) is a Markov chain only for a fixed x but is otherwise non-Markovian. Unlike the usual

diffusion processes represented by stochastic differential equations, the distribution of the

switching diffusion has mixture distribution. The essence in our approach is to treat the

pair of processes (x(t), α(t)) jointly; the two-component process turns out to be Markovian.

Nevertheless, much care needs to be exercised to handle the mixture distributions. To

proceed, we will use the following conditions.

(A1) The Q(·) : R
r 7→ R

m×m is a bounded and continuous function.

(A2) The functions f(·, ·) and σ(·, ·) satisfy

(a) |f(x, α)| ≤ K(1 + |x|), |σ(x, α)| ≤ K(1 + |x|), and

(b) |f(x, α)−f(z, α)| ≤ K0|x−z| and |σ(x, α)−σ(z, α)| ≤ K0|x−z| for some K > 0

and K0 > 0 and for all x, z ∈ R
r and α ∈ M.
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Note that condition (A1) is simply a condition on the function Q(x). If Q(x) = Q, we

are back to the case of Markovian switching diffusions. Here owing to the x-dependence, the

problem becomes more complex. The switching process and the diffusions are intertwined

and dependent. Using Poisson random measures (see [18] and also [1]), under conditions

(A1) and (A2), it can be shown that (1.1) has a unique solution for each initial condition by

following Ikeda and Watanable [6] with the appropriate use of the stopping times. However,

the Picard iteration method does not work. In this paper, we construct Euler’s scheme with a

constant stepsize for approximating solutions of switching diffusions. As a result, our method

differs from the usual approach. To obtain the convergence of the algorithms, we first show

the weak convergence of the algorithm by means of martingale problem formulation. Then

this result is used as a bridge to obtain strong convergence. In this process, we prove the

existence and uniqueness of the solution of (1.1). This result is of independent interest in its

own right; it enables us to obtain the strong convergence of the numerical algorithms. As

a demonstration, we provide numerical experiments to delineate sample path properties of

the approximating solutions. In addition, we present a decreasing stepsize algorithm, and

obtain its weak convergence.

To see that the state-dependence switching can contribute to much of the difficulty, we

consider the following scenario. Let a switching diffusion (x(t), α(t)) be given by (1.1).

First let the initial data be (x(0), α(0)) = (x, α) and then consider another initial data

(x(0), α(0)) = (y, α) for y 6= x. For the state-dependent switching case, since Q(x) depends

on x, αx,α(t) 6= αy,α(t) infinitely often even though initially αx,α(0) = αy.α(0) = α, where the

superscript above denotes the initial data dependence.

In what follows, for notational simplicity, we use the convention that K represents a

generic positive constant, whose values may be different for different appearances so that

K +K = K and KK = K is understood in an appropriate sense. In addition, for z ∈ R
ι1×ι2

for some ιi ≥ 1, z′ denotes the transpose of z.

The rest of the paper is arranged as follows. Section 2 presents a class of constant stepsize

algorithms. It needs to be pointed out that in our algorithms, we are not using discretization

of the switching diffusion processes, but rather we construct a sequence of iterates to approx-

imate the Brownian motion. In addition, we make another approximation of the transition

probability matrix exp(εQ(x)) using a truncated Taylor expansion, which is more convenient

for numerical solutions and Monte Carlo methods, and simplifies further the computation.

Section 3 is devoted to the convergence of the algorithm. Weak convergence methods are

used to establish that a sequence of suitable interpolations of the iterates converges weakly
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to the solution of a martingale problem with a desired generator. Hence the limit is the

solution of the system of switching diffusions. Section 4 presents a couple of computational

examples. Also provided in this section is a decreasing stepsize algorithm. Section 5 makes

a few more remarks to conclude the paper.

2 Numerical Methods

To approximate the r-dimensional standard Brownian motion w(·), we use a sequence of

independent and identically distributed Gaussian random variables {ξn} for simplicity. To

approximate the solution of (1.1), we propose the following algorithm

xn+1 = xn + εf(xn, αn) +
√

εσ(xn, αn)ξn. (2.1)

We would like to have αn be a discrete-time stochastic process that approximates α(t) in

an appropriate sense. It is natural that αn has a transition probability matrix exp(Q(x)ε)

when xn−1 = x. It is easily seen that the transition matrix may be approximated further

by I + εQ(x) + O(ε2) by virtue of the boundedness and the continuity of Q(·). Based on

this observation, in what follows, we discard the O(ε2) term and simply use I + εQ(x) for

the transition matrix for αn when xn−1 = x. We put what we said above into the following

assumption.

(A3) In (2.1), for each n, when xn−1 = x, αn has the transition matrix I + εQ(x), and

{ξn} is a sequence of independent and identically distributed random variables with

normal distribution such that ξn is independent of the σ-algebra Gn generated by

{xk, αk : k ≤ n}, and that Eξn = 0 and Eξnξ′n = I.

Remark 2.1. One of the features of (2.1) is that it is easily implementable. In lieu of

discretizing a Brownian motion, we generate a sequence of independent and identically dis-

tributed random variables with normal distribution to approximate the Brownian motion.

This facilitates the computational task. In addition, instead of using transition matrix

exp(εQ(x)) for a fixed x, we use another fold of approximation I + εQ(x) based on a trun-

cated Taylor series. All of these stem from consideration of numerical computation and

Monte Carlo implementation.

Since a Gaussian random variable is completely determined by its mean and covariance,

we know that E|ξn|p < ∞ for any p ≥ 2. Finally, we note that in analyzing the algorithm,

we could deal with correlated sequence {ξn} as long as it has 0 mean and E|ξn|2+∆ < ∞ for

some ∆ > 0. Nevertheless, from a computational point of view, the i.i.d. sequence appears

to be most convenient from an implementation point of view.
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3 Convergence of the Algorithm

3.1 Preliminary Estimates

We first obtain an estimate on the pth moment of {xn}. This is stated as follows.

Lemma 3.1. Under (A1), (A2) and (A3), for any fixed p ≥ 2 and T > 0,

sup
0≤n≤T/ε

E|xn|p ≤ (|x0|p + KT ) exp(KT ) < ∞. (3.1)

Remark 3.2. Throughout this paper, we assume the stepsize 0 < ε < 1. Note that in

Lemma 3.1, by T/ε, we mean the integer part of T/ε, i.e., ⌊T/ε⌋. However, for simplicity,

we will not use the floor function notation in what follows.

Note that in the proof of Lemma 3.1, U(x) is a Liapunov type function. The technique

used is standard in stochastic approximation [11, Chapter 5]. If correlated random sequences

are treated, we can use a perturbed Liapunov function technique [11, Section 4.5, p.112].

Proof of Lemma 3.1. Define U(x) = |x|p and use En to denote the conditional expectation

with respect to the σ-algebra Gn, where Gn was given in (A3). Note that Enσ(xn, αn)ξn =

σ(xn, αn)Enξn = 0 and that En|σ(xn, αn)|2|ξn|2 = |σ(xn, αn)|2En|ξn|2 ≤ K|σ(xn, αn)|2, where

K is a generic positive constant. Thus

EnU(xn+1) − U(xn) = En∇U ′(xn)[xn+1 − xn] + En(xn+1 − xn)′∇2U(x+
n )(xn+1 − xn)

≤ ε∇U ′(xn)f(xn, αn) + K|xn|p−2En|xn+1 − xn|2

≤ εK|xn|p−1(1 + |xn|) + Kε|xn|p−2(1 + |xn|2) + Kε2|xn|p−2(1 + |xn|2)

≤ Kε(1 + |xn|p),
(3.2)

where ∇U and ∇2U denotes the gradient and Hessian of U w.r.t. to x, and x+
n denotes

a vector on the line segment joining xn and xn+1. Note that in the last line of (3.2), we

have used the linear growth in x for both f(·, ·) and σ(·, ·). Since U(xn) = |xn|p, we obtain

En|xn+1|p ≤ |xn|p + Kε + Kε|xn|p. Taking the expectation on both sides and iterating on

the resulting recursion, we obtain

E|xn+1|p ≤ |x0|p + Kεn + Kε
n∑

k=0

E|xk|p.

An application of the Gronwall’s inequality yields that E|xn+1|p ≤ (|x0|p + KT ) exp(KT ) as

desired.
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In view of the estimate above, {xn : 0 ≤ n ≤ T/ε} is tight in R
r by means of the well-

known Tchebyshev’s inequality. That is, for each η > 0, there is a Kη satisfying Kη >
√

(1/η)

such that

P (|xn| > Kη) ≤
sup

0≤n≤T/ε

E|xn|2

K2
η

≤ Kη.

This indicates that the sequence of iterates is “mass preserving” or no probability is lost. To

proceed, take continuous-time interpolations defined by

xε(t) = xn, αε(t) = αn, for t ∈ [nε, nε + ε). (3.3)

We shall show that xε(·) and αε(·) are tight in suitable function spaces.

Lemma 3.3. Assume (A1)–(A3). Define

χn = (I{αn=1}, . . . , I{αn=m}) ∈ R
1×m and χε(t) = χn, for t ∈ [εn, εn + ε). (3.4)

Then for any t, s > 0,

E[χε(t + s) − χε(t)
∣∣∣F ε

t ] = O(s), (3.5)

where F ε
t denotes the σ-algebra generated by {xε(u), αε(u) : u ≤ t}.

Proof. First note that by the boundedness and the continuity of Q(·), for each i ∈ M,

m∑

j=1

E[I{αk+1=j} − I{αk=i}

∣∣∣Gk]

=

m∑

j=1

[(I + εQ(xk))ij − δij ]I{αk=i}

=

m∑

j=1

εqij(xk)I{αk=i} = O(ε)I{αk=i},

where (I + εQ(xk))ij denotes the ijth entry of I + εQ(xk) and δij =

{
1, if i = j,
0, otherwise.

It then

follows that there is a random function g̃(·) such

E[

(t+s)/ε−1∑

k=t/ε

[χk+1 − χk]
∣∣∣F ε

t ]

= E[

(t+s)/ε−1∑

k=t/ε

E[χk+1 − χk

∣∣∣Gk]
∣∣∣F ε

t ]

= g̃(t + s − t) = g̃(s),

(3.6)
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and that Eg̃(s) = O(s). In the above, we have used the convention that t/ε and (t + s)/ε

denote the integer parts of t/ε and (t + s)/ε, respectively. Since

E
[
χε(t + s) − χε(t) −

(t+s)/ε−1∑

k=t/ε

[χk+1 − χk]
∣∣∣F ε

t

]
= 0,

it follows from (3.6),

E[χε(t + s)
∣∣∣F ε

t ] = χε(t) + g̃(s).

The desired result then follows.

Lemma 3.4. Under the conditions of Lemma 3.3, {αε(·)} is tight.

Proof. For any η > 0, t ≥ 0, 0 ≤ s ≤ η, by virtue of Lemma 3.3,

E[|χε(t + s) − χε(t)|2
∣∣∣F ε

t ]

= E[χε(t + s)χε,′(t + s) − 2χε(t + s)χε,′(t) + χε(t)χε,′(t)
∣∣∣F ε

t ]

=

m∑

i=1

E[I{α(t+s)/ε=i} − 2I{α(t+s)/ε=i}I{αt/ε=i} + I{αt/ε=i}

∣∣∣F ε
t ].

(3.7)

The estimates in Lemma 3.3 then imply that

lim
η→0

lim sup
ε→0

E[E|χε(t + s) − χε(t)|2
∣∣∣F ε

t ] = 0.

The tightness criterion in [10, p. 47] yields that {χε(·)} is tight. Consequently, {αε(·)} is

tight.

Lemma 3.5. Assume that the conditions of Lemma 3.4 are satisfied. Then {xε(·)} is tight

in Dr[0,∞), the space of functions that are right continuous and have left limits, endowed

with the Skorohod topology.
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Proof. For any η > 0, t ≥ 0, 0 ≤ s ≤ η, we have

E|xε(t + s) − xε(t)|2 = E

∣∣∣∣∣∣
ε

(t+s)/ε−1∑

k=t/ε

f(xk, αk) +
√

ε

(t+s)/ε−1∑

k=t/ε

σ(xk, αk)ξk

∣∣∣∣∣∣

2

≤ Kε2

(t+s)/ε−1∑

k=t/ε

(1 + E|xk|2) + Kε

(t+s)/ε−1∑

k=t/ε

E|σ(xk, αk)|2E|ξk|2

≤ Kε2

(t+s)/ε−1∑

k=t/ε

(1 + sup
t/ε≤k≤(t+s)/ε−1

E|xk|2)

+Kε

(t+s)/ε−1∑

k=t/ε

(1 + sup
t/ε≤k≤(t+s)/ε−1

E|xk|2)

≤ O

(
t + s

ε
− t

ε

)
O(ε) = O(s).

(3.8)

In the above, we have used Lemma 3.1 to ensure that supt/ε≤k≤(t+s)/ε−1 E|xk|2 < ∞. There-

fore, (3.8) leads to

lim
η→0

lim sup
ε→0

E|xε(t + s) − xε(t)|2 = 0.

The tightness of {xε(·)} then follows from [10, p. 47].

With Lemma 3.3, Lemma 3.4, and Lemma 3.5 at our hands, we obtain the following

result.

Lemma 3.6 Under assumptions (A1)–(A3), {xε(·), αε(·)} is tight in D([0,∞) : R
r ×M).

3.2 Weak Convergence

Since (xε(·), αε(·)) is tight, by Prohorov’s theorem (see [3, 11]), we may select a convergent

subsequence. For simplicity, still denote the subsequence by (xε(·), αε(·)) with limit denoted

by (x̃(·), α̃(·)).

Theorem 3.7. Assume (A1)–(A3). Then {xε(·), αε(·)} converges weakly to (x(·), α(·)),
which is a process with generator given by (1.3).

Proof. By Skorohod representation (see [3, 11]) without loss of generality and without

changing notation, we may assume that (xε(·), αε(·)) converges to (x̃(·), α̃(·)) w.p.1, and

the convergence is uniform on each bounded interval. We proceed to characterize the limit

process.

Step 1: We first work with the marginal of the switching component, and characterize

the limit of αε(·). The weak convergence of αε(·) to α̃(·) yields that χε(·) converges a limit
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process χ(·) weakly, where χε(·) was defined in (3.4). For each t > 0 and s > 0, each positive

integer κ, each 0 ≤ tι ≤ t with ι ≤ κ, each bounded and continuous function ρ0(·, i) for each

i ∈ M,

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)
[
χε(t + s) − χε(t) −

(t+s)/ε−1∑

k=t/ε

(χk+1 − χk)
]

= 0. (3.9)

The weak convergence of χε(·) to χ(·) and the Skorohod representation imply that

lim
ε→0

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)[χε(t + s) − χε(t)]

= Eρ0(x̃(tι), α̃(tι), ι ≤ κ)[χ(t + s) − χ(t)].

Pick out a sequence {nε} of nonnegative real numbers such that nε → ∞ as ε → 0 but

δε = εnε → 0.

Let Ξε
l be the set of indices

Ξε
l = {k : lnε ≤ k ≤ lnε + nε − 1}. (3.10)

Then the continuity and boundedness of Q(·) imply

lim
ε→0

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)
[ (t+s)/ε−1∑

k=t/ε

(χk+1 − χk)
]

= lim
ε→0

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)
[ (t+s)/ε−1∑

k=t/ε

(E(χk+1

∣∣∣Gk) − χk)
]

= lim
ε→0

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)
[ (t+s)/ε∑

lnε=t/ε

∑

k∈Ξε
l

χk(I + εQ(xk) − I)
]

= lim
ε→0

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)
[ (t+s)/ε∑

lnε=t/ε

δε
1

nε

∑

k∈Ξε
l

χkQ(xlnε)
]
.

(3.11)

Note that

lim
ε→0

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)
[ (t+s)/ε∑

lnε=t/ε

δε
1

nε

∑

k∈Ξε
l

[χk − χlnε ]Q(xlnε)
]

= lim
ε→0

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)
[ (t+s)/ε∑

lnε=t/ε

δε
1

nε

∑

k∈Ξε
l

E[χk − χlnε

∣∣∣Glnε ]Q(xlnε)
]

= lim
ε→0

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)
[ (t+s)/ε∑

lnε=t/ε

δε
1

nε

∑

k∈Ξε
l

Eχlnε [(I + εQ(xlnε))
k−lnε − I]Q(xlnε)

]

= 0.

(3.12)
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Therefore,

lim
ε→0

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)
[ (t+s)/ε∑

lnε=t/ε

δε
1

nε

∑

k∈Ξε
l

χkQ(xlnε)
]

= lim
ε→0

Eρ0(x
ε(tι), α

ε(tι), ι ≤ κ)
[ (t+s)/ε∑

lnε=t/ε

δεχlnεQ(xlnε)
]

= Eρ0(x̃(tι), α̃(tι), ι ≤ κ)

∫ t+s

t

χ(u)Q(x̃(u))du.

(3.13)

Moreover, the limit does not depend on the chosen subsequence. Thus,

Eρ0(x̃(tι), α̃(tι), ι ≤ κ)
[
χ(t + s) − χ(t) −

∫ t+s

t

χ(u)Q(x̃(u))du
]

= 0. (3.14)

Therefore, the limit process α̃(·) has a generator Q(x̃(·)).
Step 2: For t, s, κ, tι as chosen before, for each bounded and continuous function ρ(·, i),

and for each twice continuously differentiable function with compact support h(·, i) with

i ∈ M, we shall show that

Eρ(x̃(tι), α̃(tι); ι ≤ κ)[h(x̃(t + s), α̃(t + s)) − h(x̃(t), α̃(t)) −
∫ t+s

t

Lh(x̃(u), α̃(u))du] = 0.

(3.15)

This yields that

h(x̃(t), α̃(t)) −
∫ t

0

Lh(x̃(u), α̃(u))du is a continuous-time martingale,

which in turn implies that (x̃(·), α̃(·)) is a solution of the martingale problem with operator

L defined in (1.3).

To establish the desired result, we work with the sequence (xε(·), αε(·)). Again, we

use the sequence {nε} as in Step 1. By virtue of the weak convergence and the Skorohod

representation, it is readily seen that

Eρ(xε(tι), α
ε(tι); ι ≤ κ)[h(xε(t + s), αε(t + s)) − h(xε(t), αε(t))]

→ Eρ(x̃(tι), α̃(tι); ι ≤ κ)[h(x̃(t + s), α̃(t + s)) − h(x̃(t), α̃(t))] as ε → 0.
(3.16)

On the other hand, direct calculation shows that

Eρ(xε(tι), α
ε(tι); ι ≤ κ)[h(xε(t + s), αε(t + s)) − h(xε(t), αε(t))]

= Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

[
[h(xlnε+nε, αlnε+nε) − h(xlnε+nε, αlnε)]

+[h(xlnε+nε , αlnε) − h(xlnε , αlnε)]
]}

.

(3.17)
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Step 3: Still use the notation Ξε
ℓ defined in (3.10). For the terms on the last line of (3.17),

we have

lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

(t+s)/ε−1∑

lnε=t/ε

[h(xlnε+nε , αlnε) − h(xlnε , αlnε)]

= lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

[
ε∇h′(xlnε, αlnε)

∑

k∈Ξε
l

f(xk, αlnε)

+
ε

2

∑

k∈Ξε
l

tr[∇2h(xlnε , αlnε)σ(xk, αlnε)σ
′(xk, αlnε)]

]}
.

(3.18)

By the continuity of f(·, i) for each i ∈ M and the choice of nε,

lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

δε∇h′(xlnε, αlnε)
1

nε

∑

k∈Ξε
l

[f(xk, αlnε) − f(xlnε, αlnε)]
}

= 0.

Thus, in evaluating the limit, f(xk, αlnε) can be replaced by f(xlnε, αlnε).

The choice of nε implies that εlnε → u as ε → 0 yielding εk → u for all lnε ≤ k ≤ lnε+nε.

Consequently, by the weak convergence and the Skorohod representation,

lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

ε∇h′(xlnε, αlnε)
∑

k∈Ξε
l

f(xk, αlnε)
}

= lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

δε∇h′(xlnε, αlnε)
1

nε

∑

k∈Ξε
l

f(xlnε , αlnε)
}

= lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

δε∇h′(xlnε, αlnε)f(xε(lδε), α
ε(lδε))

}

= Eρ(x̃(tι), α̃(tι); ι ≤ κ)
{∫ t+s

t

∇h′(x̃(u), α̃(u))f(x̃(u), α̃(u))du
}
.

(3.19)

In the above, treating such terms as f(xε(lδε), α
ε(lδε)), we can approximate xε(·) by a process

taking finitely many values using a standard approximation argument (see for example, [11,

p. 169] for more details).

Similar to (3.19), we also obtain

lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ε

2

(t+s)/ε−1∑

lnε=t/ε

∑

k∈Ξε
l

tr[∇2h(xlnε , αlnε)σ(xk, αlnε)σ
′(xk, αlnε)]

}

= Eρ(x̃(tι), α̃(tι); ι ≤ κ)
{∫ t+s

t

1

2
tr[∇2h(x̃(u), α̃(u))σ(x̃(u), α̃(u))σ′(x̃(u), α̃(u))]du

}
.

(3.20)
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Step 4: We next examine the terms on the next to the last line of (3.17). First, again

using the continuity, the weak convergence, and the Skorohod representation, it can be shown

that

lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

[h(xlnε+nε, αlnε+nε) − h(xlnε+nε , αlnε)]
}

= lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

[h(xlnε , αlnε+nε) − h(xlnε, αlnε)]
}

.

(3.21)

That is, owing to the choice of {nε} and the continuity of h(·, i), the term

h(xlnε+nε , αlnε+nε) − h(xlnε+nε, αlnε)

in the next to the last line of (3.17) can be replaced by

h(xlnε , αlnε+nε) − h(xlnε , αlnε)

as far as asymptotic analysis is concerned. It follows that

lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

[h(xlnε , αlnε+nε) − h(xlnε , αlnε)]
}

= lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

∑

k∈Ξε
l

[h(xlnε , αk+1) − h(xlnε , αk)]
}

= lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

∑

k∈Ξε
l

m∑

i=1

m∑

i1=1

E
[
[h(xlnε , i)I{αk+1=i}

−h(xlnε , i1)I{αk=i1}]
∣∣∣Gk

]}
.

(3.22)

Note that for k ≥ lnε,

E[[h(xlnε , i)I{αk+1=i} − h(xlnε , i1)I{αk=i1}]
∣∣∣Gk]

= [h(xlnε , i)P (αk+1 = i
∣∣∣Gk, αk = i1) − h(xlnε , i1)]I{αk=i1}

= [h(xlnε , i)(δi1i + εqi1i(xk)) − h(xlnε , i1)]I{αk=i1}

= εh(xlnε , i)qi1i(xk)I{αk=i1}.

(3.23)

Using (3.23) in (3.22) and noting the continuity and boundedness of Q(·), we can replace

qi1i(xk) by qi1i(xlnε) yielding the same limit. Then as in (3.12) and (3.13), replace I{αk=i1}

13



by I{αε(εlnε)=i1}, again yielding the same limit. Thus, we have

lim
ε→0

Eρ(xε(tι), α
ε(tι); ι ≤ κ)

{ (t+s)/ε−1∑

lnε=t/ε

[h(xlnε , αlnε+nε) − h(xlnε, αlnε)]
}

= Eρ(x̃(tι), α̃(tι); ι ≤ κ)
{∫ t+s

t

Q(x̃(u))h(x̃(u), ·)(α̃(u))du
}
,

(3.24)

where

Q(x)h(x, ·)(i1) =
m∑

i=1

qi1i(x)h(x, i) =
∑

i6=i1

qi1i(x)(h(x, i) − h(x, i1)).

Step 5: Combining Steps 1–4, we arrive at (x̃(·), α̃(·)), the weak limit of (xε(·), αε(·)) is

a solution of the martingale problem with operator L defined in (1.3). Using characteristic

functions, we can show as in [22, Lemma 7.18], (x(·), α(·)) the solution of the martingale

problem with operator L, is unique in the sense of in distribution. Thus (xε(·), αε(·)) con-

verges to (x(·), α(·)) as desired, which concludes the proof of the theorem.

3.3 Existence and Uniqueness of the Solutions

We have established convergence of (xε(·), αε(·)) to (x(·), α(·)) in the weak sense. In this sec-

tion, we strengthen the approximation result. We shall show that the weak limit (x(·), α(·))
is, in fact, the strong solution of Eq. (1.1). Define the continuous approximation of xε(t),

i.e.,

X̄ε(t) = x0 +

∫ t

0

f(xε(s), αε(s))ds +

∫ t

0

σ(xε(s), αε(s))dw(s). (3.25)

Note that X̄ε(εk) = xε(εk) = xk and αε(εk) = αk. That is, X̄ε(t) and xε(t) coincide at the

gridpoints k = t/ε (again, t/ε means ⌊t/ε⌋, the integer part of t/ε).

Theorem 3.8. Assume (A1)–(A3). Then there exists a unique solution to Eq. (1.1), which

is the limit given by the approximation 3.25.

Proof. Let ε and η be two different stepsizes (both being sufficiently small), by (3.25), we

have

|X̄ε(t) − X̄η(t)|2

≤ 2

∣∣∣∣
∫ t

0

(f(xε(s), αε(s)) − f(xη(s), αη(s)))ds

∣∣∣∣
2

+2

∣∣∣∣
∫ t

0

σ(xε(s), αε(s)) − σ(xη(s), αη(s))dw(s)

∣∣∣∣
2

.

(3.26)
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By Hölder’s inequality and Doob’s martingale inequality, we have

E

[
sup

0≤t≤T
|X̄ε(t) − X̄η(t)|2

]

≤ 2T

{
E

∫ T

0

|(f(xε(s), αε(s)) − f(xη(s), αη(s)))|2ds

+8E

∫ T

0

|σ(xε(s), αε(s)) − σ(xη(s), αη(s))|2ds

}
.

(3.27)

Using condition (A2), the Hölder inequality and Lemma 3.1, we obtain

E

∫ T

0

|(f(xε(s), αε(s)) − f(xη(s), αη(s)))|2ds

≤ E

∫ T

0

|(f(xε(s), αε(s)) − f(xε(s), α(s)))|2ds

+E

∫ T

0

|(f(xη(s), αη(s)) − f(xη(s), α(s)))|2ds

+E

∫ T

0

|(f(xε(s), α(s)) − f(xη(s), α(s)))|2ds

≤ 2E

∫ T

0

[
|f(xε(s), αε(s))|2 + |f(xε(s), α(s))|2

]
I{αε(s)6=α(s))}ds

+2E

∫ T

0

[
|f(xη(s), αη(s))|2 + |f(xη(s), α(s))|2

]
I{αη(s)6=α(s))}ds

+KE

∫ T

0

|xε(s) − xη(s)|2ds

≤ K

∫ T

0

E
[
(1 + |xε(s)|2)I{αε(s)6=α(s))}

]
ds + K

∫ T

0

E
[
(1 + |xη(s)|2)I{αη(s)6=α(s))}

]
ds

+KE

∫ T

0

|xε(s) − xη(s)|2ds

≤ K

∫ T

0

(
E(1 + |xε(s)|2)2

)1/2 (
EI{αε(s)6=α(s))}

)1/2
ds

+K

∫ T

0

(
E(1 + |xη(s)|2)2

)1/2 (
EI{αη(s)6=α(s))}

)1/2

+KE

∫ T

0

|xε(s) − xη(s)|2ds

≤ K

∫ T

0

(
[EI{αε(s)6=α(s))}]

1/2 + E[I{αη(s)6=α(s))}]
1/2

)
ds + KE

∫ T

0

|xε(s) − xη(s)|2ds,

(3.28)

where K is still a generic constant and it is independent of ε and η. Obviously, if f(·, ·) is

replaced by σ(·, ·), (3.28) still holds. On the other hand, by Lemma 3.1, we have

E|X̄ε(s) − xε(s)|2 ≤ KE
[
(1 + |xs/ε|2)(ε + |w(s) − w(ε(s/ε))|2)

]
≤ Kε. (3.29)
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This together with (3.28) yields

E

[
sup

0≤t≤T
|X̄ε(t) − X̄η(t)|2

]
≤ K

∫ T

0

(
[EI{αε(s)6=α(s))}]

1/2 + E[I{αη(s)6=α(s))}]
1/2

)
ds

+K(ε ∨ η) + KE

∫ T

0

|X̄ε(s) − X̄η(s)|2ds.

(3.30)

By the well-known Grownwall inequality,

E

[
sup

0≤t≤T
|X̄ε(t) − X̄η(t)|2

]

≤ KeKT

[∫ T

0

(
[EI{αε(s)6=α(s))}]

1/2 + E[I{αη(s)6=α(s))}]
1/2

)
ds + ε ∨ η

]
.

(3.31)

By Theorem 3.7, we have

lim
ε→0

E[I{αε(s)6=α(s))}] = 0 and lim
η→0

E[I{αη(s)6=α(s))}] = 0.

We hence obtain from (3.31) that

E

[
sup

0≤t≤T
|X̄ε(t) − X̄η(t)|2

]
→ 0, as ε and η → 0. (3.32)

Let {εl}∞l=1 be a nonrandom sequence of positive numbers such that εl is decreasing and

liml→∞ εl = 0. For any positive integer ℓ, by (3.32), we have

lim
l→∞

E

[
sup

0≤t≤T
|X̄εl(t) − X̄εl+ℓ(t)|2

]
= 0. (3.33)

This implies that {X̄εl(t) : 0 ≤ t ≤ T} is a Cauchy sequence in L2(Ω; C([0, T ], Rn)). Recalling

that the weak limit (x(t), α(t)) of (xε(·), αε(·)) is unique in the sense of in distribution and

noting (3.29), we see

lim
l→∞

E

[
sup

0≤t≤T
|X̄εl(t) − x(t)|2

]
= 0. (3.34)

In the same way as (3.28) was proved, we can show that

lim
l→∞

E

∫ T

0

|(f(X̄εl(s), αεl(s)) − f(x(s), α(t))|2ds = 0, (3.35)

and

lim
l→∞

E

∣∣∣∣
∫ T

0

(σ(X̄εl(s), αεl(s)) − σ(x(s), α(t)))dw(s)

∣∣∣∣
2

= 0. (3.36)

These, together with (3.34), yield that (x(t), α(t)) is a strong solution to equation (1.1). The

proof is therefore completed.
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Remark 3.9. The Lipschitz condition may be further relaxed to local Lipschitz condition.

Modifying the argument in Theorem 3.7, we can show that replacing the Lipschitz condition

in (A2) (a) by local Lipschitz condition of the functions, the weak convergence result still

holds. This, together with the standard truncation method of [12], leads to the following

theorem.

Theorem 3.10. Assume that Assumptions (A1) and (A2) (a) hold, but the Lipschitz condi-

tion (A2) (b) is replaced by the following local Lipschitz condition: For every integer j ≥ 1,

there exists a positive constant Mj such that for all t ∈ [0, T ], i ∈ M and all x, y ∈ R
n with

|x| ∨ |y| ≤ Mj,

|f(x, t, i) − f(y, t, i)| ∨ |σ(x, t, i) − σ(y, t, i)| ≤ Mj |x − y|. (3.37)

Then there exists a unique solution (x(t), α(t)) to equation (1.1).

In view of Theorem 3.7 and Theorem 3.10, we have obtained the following strong con-

vergence result.

Corollary 3.11. Under the conditions of either Theorem 3.8 or Theorem 3.10, the sequence

(xε(·), αε(·)) converges to (x(·), α(·)) in that

E

[
sup

0≤t≤T
|xε(t) − x(t)|2

]
→ 0 as ε → 0. (3.38)

4 Ramifications

This section deals with some ramifications. First, decreasing stepsize algorithms are pre-

sented. Then a couple of examples are provided to illustrate the use of the numerical

approximation schemes. We note that switching diffusions, for example, jump linear sys-

tems are used widely in control and systems theory [7, 15, 19]. Such systems also appear

in financial engineering for modeling a security asset [24]. So far, the modeling is mostly

concerned with Markov modulated switching diffusions in which the switching processing is

a Markov chain independent of the Brownian motion. It is clear for more complex situa-

tion, one would want to model the switching process by means of state-dependent process.

For example, a more realistic model for treating equity asset would be: Not only do the

appreciation rate and volatility depend on the switching process (e.g., bull or bear market),

but also the switching component depends on the equity asset price. This is surely a better

remedy, but it would also make the problem too complex to solve. The proposed numerical

algorithm is an effort towards the solution of such problem in this direction.
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4.1 Algorithms with Decreasing Stepsizes

So far the development is based on using constant stepsize algorithms. In the literature of

numerical solutions of stochastic differential equations, decreasing stepsize algorithms are

used most often. Here, we demonstrate that to approximate (1.1), we could also use a

decreasing stepsize algorithm of the form

xn+1 = xn + εnf(xn, αn) +
√

εnσ(xn, αn)ξn. (4.1)

Compared with (2.1), for xn−1 = x, αn is a finite state process with transition matrix

I + εnQ(x), Instead of (A3), we assume the following condition.

(A4) In (4.1), εn is a sequence of decreasing stepsizes satisfying εn → 0 as n → ∞ and
∑

n εn = ∞. The {ξn} is a sequence of independent and identically distributed normal

random variables such that ξn is independent of the σ-algebra Gn generated by {xk, αk :

k ≤ n}, and that Eξn = 0 and Eξnξ′n = I.

Define

tn =

n−1∑

k=0

εk, m(t) = max{n : tn ≤ t},

and continuous-time interpolations

xn(t) = xn, αn(t) = αn, for t ∈ [tn, tn+1).

Using essentially the same approach as in the development of Theorem 3.7 together with

the ideas from stochastic approximation [11, Chapters 5, 6, and 8], we obtain the following

result.

Theorem 4.1. Under (A1), (A2), and (A4), (xn(·), αn(·)) converges to (x(·), α(·)) weakly,

which is a solution of the martingale problem with operator L defined in (1.3).

4.2 Examples

Here we present two examples for demonstration. It would be ideal if we could compare the

numerical solutions using our algorithms with the analytic solutions. Unfortunately, due to

the complexity of the x-dependent switching process, closed-form solutions are not available.

We are thus contended with the numerical demonstrations.
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Example 4.2. In this example, we display the sample paths of approximated solutions of

(1.1) using both a constant stepsizes and a sequence of decreasing stepsizes. Assume that

the state-dependent generator Q(x) is given by

Q(x) =


 −5 cos2 x 5 cos2 x

10 cos2 x −10 cos2 x


 . (4.2)

Because of the x-dependence in Q(x) given by (4.2), and the different stepsize used, the

displays will not be the same. However, it can seen that with the same random seeds

chosen, the sample paths display similar behavior. This suggests that the constant-stepsize

approximation is a viable and easily implementable alternative as compared to the decreasing

stepsize algorithms. In this example, we assume that the jump process has state space

M = {1, 2}, and the drift is a nonlinear function f(·, ·) : R × {1, 2} 7→ R, where

f(x, 1) = 2 + sin x, f(x, 2) = 1 + sin x cos x.

The diffusion coefficients are given by

σ(x, 1) = 0.5x, σ(x, 2) = 0.2x.

We specify the initial conditions as x0 = 5 and α0 = 1, and use the constant stepsize ε = 0.01

and the decreasing stepsizes εn = 1/(n+99), respectively. The sample paths of the computed

iterates are displayed in Figure 1.

Example 4.3. In this example, we demonstrate the computational results of a process

whose continuous component is two dimensional. For x = (x1, x2)′ ∈ R
2, we use the x-

dependent generator Q(x) = Q(x1, x2) given by

Q(x1, x2) =


 −5 cos2 x1 − 2 cos2 x2 5 cos2 x1 + 2 cos2 x2

10 cos2 x1 + 2 sin2 x2 −10 cos2 x1 − 2 sin2 x2


 .

Use the same constant stepsize as in the Example 4.2 for each dimension and specify the

initial data as (x1
0, x

2
0)

′ = (5, 5)′, α0 = 1. The σ(x1, x2, α) matrix and f(x1, x2, α) are given
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(a) A sample path of approximation using constant
stepsize algorithm
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(b) A sample path of approximation using a decreas-
ing stepsize algorithm.

Figure 1: Sample paths for constant-stepsize and decreasing-stepsize algorithms

as follows:

σ(x1, x2, 1) =


 0.5x1 + 0.2x2 0.003x1 + 0.001x2

0.007x1 + 0.008x2 0.47x1 + 0.3x2


 ,

σ(x1, x2, 2) =


 0.2x1 + 0.3x2 0.001x1 + 0.002x2

0.008x1 + 0.005x2 1x1 + 0.5x2


 ,

f(x1, x2, 1) =


 2 + sin x1 + cos x2

1 + cos x1 + cos x2


 .

The sample paths are depicted in Figure 2.

For both of these examples, we have done a number of numerical experiments with

different stepsize selections. They all produced similar sample path behavior as displayed

above. For numerical experiment purpose, we have also tested different functions f(·, ·) and

σ(·, ·) as well. It is seen that our proposed algorithms are easily implementable and are

suited for Monte Carlo studies.

5 Further Remarks

Approximation methods for switching diffusion processes with state-dependent switching

have been developed in this paper. Our contributions are: First we presented a class of
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(a) A sample path of the first component of the
switching diffusion.
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(b) A sample path of the second component of the
switching diffusion.

Figure 2: Sample paths of a 2-dimensional switching diffusion

constant stepsize algorithms, in which the state-dependent modulated switching process is

approximated by a discrete-time switching process with state-dependent transition probabil-

ities. Second, we proved the weak convergence of the proposed algorithm using a martingale

problem formulation. We used continuity and localized analysis to overcome the difficulty

of the state dependence. Third, we obtained existence and uniqueness of the switching dif-

fusions. As a direct consequence, we obtain the strong convergence result in the sense of

usual numerical solutions for SDE and established that the approximation sequence con-

vergence strongly to the solution of the switching diffusion. Moreover, decreasing stepsize

algorithms were developed as well. Finally, we provided examples to illustrate the utility of

the approximation methods.

A number of problems deserve future study and investigation. Pursuing rates of conver-

gence study is a worthwhile under-taking. Effort may also be devoted to numerical methods

for regime-switching jump diffusions with state-dependent switching. Considering numerical

methods for systems with delays and switching will be both interesting and important.
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