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Abstract 

A variant of immersed boundary-lattice Boltzmann method (IB-LBM) is 

presented in this paper to simulate incompressible viscous flows around moving 

objects. As compared with the conventional IB-LBM where the force density is 

computed explicitly by the Hook’s law or the direct forcing method and the non-slip 

condition is only approximately satisfied, in the present work, the force density term 

is considered as the velocity correction which is determined by enforcing the non-slip 

condition at the boundary. The lift and drag forces on the moving object can be easily 

calculated via the velocity correction on the boundary points. The capability of 

present method for moving objects is well demonstrated through its application to 
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simulate flows around a moving circular cylinder, a rotationally oscillating cylinder, 

and an elliptic flapping wing. Furthermore, the simulation of flows around a flapping 

flexible airfoil is carried out to exhibit the ability of present method for implementing 

the elastic boundary condition. It was found that the flapping flexible airfoil can 

generate larger propulsive force than the flapping rigid airfoil.  

 

1. Introduction 

In recent years, the study on interaction between fluid and moving objects 

receives more and more attention as moving boundary problems are often appeared in 

the study of fish motion, insect flight, blood flow through heart valves, and countless 

others. Simulation of flows around moving objects accurately and efficiently puts a 

great challenge to numerical techniques, and is currently at the forefront in the 

computational fluid dynamics. 

The numerical approaches for simulation of flows around moving objects can be 

roughly classified into two major categories, boundary conforming methods and 

non-boundary conforming methods. For the boundary conforming methods, the 

boundary points coincide with the mesh points. So, the physical boundary condition 

can be implemented directly. One of popular methods in this category is the use of 

time-dependent coordinate transformation [1-4], in which the moving physical 

domain is transformed into a fixed computational domain, and all the numerical 

computations are easily performed in the computational domain. This approach is 

very efficient for the case where the whole object moves at the same mode. When the 
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part of objects moves locally with a different mode, the multi-block time-dependent 

coordinate transformation, which could be very tedious, has to be applied. To consider 

the general moving boundary problem, Li et al. [5] proposed the moving mesh finite 

element algorithm, in which re-meshing and interpolation are needed. Perhaps, the 

most popular boundary conforming method is the arbitrary Lagrangian Eulerian (ALE) 

approach [6-11], which is normally applied with finite difference, finite volume and 

finite element schemes. Due to regenerating the mesh to conform to the boundary at 

all times, it becomes difficult for ALE approach to solve the moving boundary 

problems with complex geometry, especially for the three-dimensional problem. In 

the category of non-boundary conforming methods, the governing equations are 

solved on a fixed Cartesian grid, and the boundary no longer coincides with the grid 

surface. The effect of boundary is accounted through the proper treatment of the 

solution variables at grid cells around the boundary. As compared to the boundary 

conforming methods, the non-boundary conforming methods eliminate the 

requirement of tedious grid adaptation, which makes the simulation of flows around 

complex boundaries undergoing movement be more straightforward.  

In terms of the treatment of the boundary conditions, the non-boundary 

conforming methods can be further classified as Cartesian grid methods and 

immersed boundary methods. In the Cartesian grid methods, the boundary is treated 

as a sharp interface, and the grid cells around the body surface are cut by the 

immersed boundary. The Cartesian grid methods have been successfully applied to 

solve many inviscid and viscous flow problems [12-16]. However, due to irregular 
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structures of the cut cells, the calculation of fluxes at the interface of cut cells requires 

complicated treatment, which may bring inconvenience and affect the computational 

efficiency. Recently, Zhou et al. [17] proposed an efficient Cartesian grid method, 

namely, the local domain-free discretization (DFD) method, for simulation of 

compressible flows around moving boundaries. In the local DFD method, the 

boundary information is transferred to an adjacent point to the boundary through low 

order interpolation.  

The immersed boundary method (IBM) may be the simplest non-boundary 

conforming method. It has been firstly proposed by Peskin [18] in the 1970s when he 

studied the blood flow in the human heart. Since then, numerous modifications and 

refinements have been proposed and a number of variants of this approach were 

proposed [19-22]. In the IBM, the flow field is represented by a set of Eulerian points, 

which are in fact the fixed Cartesian mesh points, and the boundary of immersed 

object is represented by a set of Lagrangian points. The basic idea of IBM is to treat 

the physical boundary as deformable with high stiffness. A small distortion of the 

boundary will yield a force that tends to restore the boundary into its original shape. 

The balances of such forces are distributed into the Eulerian points and the 

Navier-Stokes (N-S) equations with a body force are solved on the whole domain 

including exterior and interior of the object. Usually, in the IBM, the flow field is 

obtained by solving the N-S equations. Recently, as an alternative computational 

technique to the N-S solver, the lattice Boltzmann method (LBM) [23] has been 

proven to be an efficient approach for simulation of flow field. Like the IBM, the 
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standard LBM is usually applied on the Cartesian mesh. Due to this common feature, 

it is desirable to combine these two methods together. Many efforts [24-26] have been 

made in this aspect.  

One of key issues in the application of IBM is the computation of restoring force. 

Basically, there are three ways. The popular way is the penalty method [18], in which 

the Hook’s law is applied, and the spring parameter needs to be specified by the user. 

The second way is called the direct forcing method, which has been introduced firstly 

by Fadlun et al. [27]. This way directly applies the momentum equations at the 

boundary points to compute the force density. The third way has been proposed by 

Niu et al [28], in which the momentum exchange at the boundary is used to compute 

the force. It is noted that all the three ways compute the restoring force explicitly. As 

pointed out by Shu et al. [29], the pre-calculated restoring force cannot guarantee that 

the corrected velocity field due to presence of immersed boundary satisfies the 

non-slip condition at the boundary. As a result, obvious flow penetration to the 

immersed boundary can be observed in the IBM results. Flow penetration implies 

mass exchange across the boundary. As we know, mass exchange would bring the 

momentum exchange, leading to a numerical force. Clearly, this force error will affect 

the accuracy of lift and drag forces acting on the immersed object. This greatly limits 

the application of IBM to the moving boundary problems.  

To overcome the flow penetration problem in IBM results, a variant of immersed 

boundary-lattice Boltzmann method (IB-LBM) is presented in this work, where the 

restoring force is not pre-calculated and the flow field is obtained by the lattice 
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Boltzmann method. In the present work, the restoring force is determined by 

enforcing the non-slip condition on the boundary. Since the non-slip condition is 

accurately satisfied, no flow penetration can be found in the present results. Due to 

this improvement, it is expected that the present approach can be well applied to 

simulate flows around moving objects. The flows around a moving circular cylinder, a 

rotationally oscillating cylinder, and an elliptic flapping wing are chosen to validate 

the present approach. The obtained results agree very well with available data in the 

literature. Furthermore, the flow around the flapping flexible airfoil is simulated to 

exhibit the ability of present approach for implementing the elastic boundary 

condition.  

 

2. Numerical method 

2.1 Conventional immersed boundary method 

In the immersed boundary method, the effect of boundary to the surrounding 

fluids is through a force density exerting on them. The governing equations of 

immersed boundary method for the viscous incompressible flows can be written as 

p
t

ρ μ∂⎛ ⎞+ ⋅∇ +∇ = Δ +⎜ ⎟∂⎝ ⎠
u u u u f  (1)

0∇⋅ =u  (2)

( ) ( ) ( )( ), , ,t s t s t dsδ
Γ

= −∫f x F x X  (3)
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( ) ( )( ) ( ) ( )( ),
, , , ,

s t
s t t t s t d

t
δ

Ω

∂
= = −

∂ ∫
X

u X u x x X x  (4)

where x , u  and f  are the Eulerian coordinate, fluid velocity and force density 

acting on the fluid, respectively, p  is the fluid pressure, ρ  is the fluid density and 

μ  is the dynamic viscosity. X  and F  represent Lagrangian coordinates and 

boundary force density. ( )( ),s tδ −x X  is a Dirac delta function. Equations (1)-(2) 

are the N-S equations with external force. Equations (3)-(4) describe the interaction 

between the immersed boundary and the fluid flow by distributing the boundary force 

at the Lagrangian points to Eulerian points and interpolating the velocity at the 

Eulerian points to Lagrangian points. The calculation of boundary force density F, 

which is also called restoring force, is critical in the IBM. Using Hooke’s law, it can 

be determined by 

( ) ( ), fluid walls t k k t tξ= − Δ = − Δ − ΔF V V  (5)

where fluidV  is the fluid velocity at the boundary point interpolated from the 

surrounding fluid (Eulerian) points, wallV  is the boundary velocity of the object, k is 

the spring coefficient. Note that the boundary force density can also be computed by 

the direct forcing method [27] and the momentum exchange method [28]. The basic 

solution process of IBM can be summarized as follows: 

(1) Set force density f  as zero at beginning. Solve equations (1) and (2) to get 

flow variables at Eulerian points;  

(2) Interpolate velocity at Eulerian points to the boundary (Lagrangian) points by 

using equation (4); 

(3) Use interpolated velocity given in step (2) and the boundary velocity of the 
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object to compute the boundary force density F  by using equation (5); 

(4) Compute the force density f  at Eulerian points by using equation (3); 

(5) Solve equations (1) and (2) with the force density f  to get the corrected 

velocity field at Eulerian points; 

(6) Go back to step (2) until the convergence criterion is satisfied. 

It should be noted that in the above process, when the boundary force F , and 

therefore the force density f , is computed explicitly, the new (corrected) velocity 

given in step (5) may not satisfy the non-slip boundary condition. So, IBM needs to 

continue the process until convergence state is reached, and hopes that at the 

converged state, the non-slip condition can be satisfied. However, we have to indicate 

that in the whole process, there is no guarantee to satisfy the non-slip boundary 

condition. Indeed, it is only approximately satisfied. This could be the major reason to 

cause flow penetration to the solid body in the conventional IBM results. As shown in 

the following section, we will present a variant of IB-LBM to enforce the non-slip 

boundary condition. 

 

2.2 A Variant of immersed boundary-lattice Boltzmann (IB-LBM) method 

Equations (1) and (2) are the governing equations for the flow field. In the lattice 

Boltzmann context, they can be replaced by the lattice Boltzmann equation. In this 

work, the form of lattice Boltzmann equation proposed by Guo et al. [30] is adopted, 

which can be written as 

( ) ( ) ( ) ( )( )1
, , , ,eqf t t t f t f t f t F tα α α α α αδ δ

τ
δ+ + − = − − +x e x x x  (6)
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2 4

1
1

2 s s

F w
c c

α α
α α ατ

− ⋅
= − + ⋅

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

e u e u
e f  (7)

1
2

f tα α
α

ρ δ= +∑u e f  (8)

where fα  is the distribution function, eqfα  is its corresponding equilibrium state, τ  

is the single relaxation time, αe  is the particle velocity, wα  are coefficients which 

depend on the selected particle, and f  is the external force density. For the popular 

D2Q9 model [31], the particle velocity set is given by 

( ) ( )( )
( ) ( )( )

0 0

cos 1 2 ,sin 1 2 1,2,3, 4

2 cos 5 2 4 ,sin 5 2 4 5,6,7,8

c

c

α

α

α π α π α

α π π α π π α

⎧ =⎪
⎪= − − =⎡ ⎤ ⎡ ⎤⎨ ⎣ ⎦ ⎣ ⎦
⎪

− + − + =⎡ ⎤ ⎡ ⎤⎪ ⎣ ⎦ ⎣ ⎦⎩

e  (9)

where c x tδ δ= , xδ  and tδ  are the lattice spacing and time step, respectively. 

The corresponding equilibrium distribution function is 

( ) ( ) ( )22

2 4, 1
2

seq

s s

c
f t w

c c
αα

α αρ
⎡ ⎤⋅ −⋅⎢ ⎥= + +
⎢ ⎥⎣ ⎦

e u ue ux  (10)

with 0 4 9w = , 1 2 3 4 1 9w w w w= = = =  and 5 6 7 8 1 36w w w w= = = = . 3sc c=  

is the sound speed of this model. The relation between the relaxation time and the 

kinematic viscosity of fluid is 21
2 sc tυ τ δ⎛ ⎞= −⎜ ⎟

⎝ ⎠
. If we define the intermediate velocity 

*u  as  

fα α
α

ρ ∗ = ∑u e  (11)

and the velocity correction as 

1
2

tρδ δ=u f  (12)

then equation (8) can be written as 
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u u uδ∗= +  (13)

In the conventional IB-LBM, f  is computed explicitly by equation (5) or the direct 

forcing method [25, 27] or the momentum exchange method [28]. When the 

corrected velocity field is obtained from equation (13), there is no guarantee that the 

velocity at the boundary point interpolated from the corrected velocity field satisfies 

the non-slip boundary condition. To overcome this drawback, we have to consider the 

force density f  as unknown, which is determined in such a way that the velocity at 

the boundary point interpolated from the corrected velocity field satisfies the non-slip 

boundary condition. As shown in Fig. 1, the velocity correction δu  at Eulerian 

points is distributed from the velocity correction at the boundary (Lagrangian) points. 

In the IBM, the boundary of the object is represented by a set of Lagrangian points 

( ),lB s tX , 1, 2, ,l m= . Here, we can set an unknown velocity correction vector l
Bδu  

at every Lagrangian point. The velocity correction δu  at the Eulerian point can be 

obtained by the following Dirac delta function interpolation  

( ) ( ) ( )( ), , ,xu u X x XB B Bt t s t dsδ δ δ
Γ

= −∫  (14)

In the actual implementation, ( )( ),x XB s tδ −  is smoothly approximated by a 

continuous kernel distribution 

( )( ) ( ) ( ) ( ), l l l
B ij ij B ij B ij Bs t D x X y Yδ δ δ− = − = − −x X x X  (15)

where ( )rδ  is proposed by Peskin [32] as 

( ) ( )( )1
4 21 cos , 2

0, 2

r
r

r
r

π

δ
+⎧ ≤⎪= ⎨

⎪ >⎩

 (16)

Using equation (15), the velocity correction at Eulerian points can be expressed as 
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( ) ( ) ( ), ,l l l
ij B B ij ij B l

l

t t D sδ δ= − Δ∑u x u X x X    ( )1, 2, ,l m=  (17)

where lsΔ  is the arc length of the boundary element. In order to satisfy the no-slip 

boundary condition, the fluid velocity at the boundary point must be equal to the 

boundary velocity at the same position 

( ) ( ) ( )
,

, ,l l l
B B ij ij ij B

i j
t t D x y= − Δ Δ∑U X u x x X  (18)

Here, l
BU  is the boundary velocity; u  is the fluid velocity, which is corrected by 

the velocity correction δu  

( ) ( ) ( ), , ,ij ij ijt t tδ∗= +u x u x u x  (19)

where ∗u  is the intermediate fluid velocity obtained from equation (11). Note that 

the unknowns in equations (18) and (19) are the velocity corrections at the boundary 

points, l
Bδu . Substituting equations (19) and (17) into equation (18) gives 

( ) ( ) ( )

( ) ( ) ( )
,

,

, ,

,

l l l
B B ij ij ij B

i j

l l l l
B B ij ij B l ij ij B

i j l

t t D

t D s D

x y

x yδ

∗= −

− Δ −

Δ Δ

+ Δ Δ

∑

∑∑

U X u x x X

u X x X x X
 (20)

Equation system (20) can be further rewritten as the following matrix form 

=AX B  (21)

where { }1 2, , ,
Tm

B B Bδ δ δ=X u u u ; { }1 2, , , T

m= Δ Δ ΔB u u u  with 

( ) ( ) ( )
,

, ,l l l
l B B ij ij ij B

i j

t t D x y∗Δ = − − Δ Δ∑u U X u x x X  ( )1, 2, ,l m=  (22)

Note that the elements of matrix A  are only related to the boundary points and their 

nearby Eulerian points (See Fig. 1). After obtaining the velocity correction at the 

boundary point by solving equation system (21), the velocity correction and the 

corrected velocity at Eulerian points are then calculated by equations (17) and (19). In 

our simulation, the density and pressure are calculated by 
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fα
α

ρ =∑ ,    2
sP c ρ=  (23)

With velocity correction uδ , the force density f  can be simply calculated by 

equation (12) as 

2 tρδ δ=f u  (24)

Equation (24) can be applied at the boundary points to compute the lift and drag 

forces. The basic procedure of present IB-LBM is outlined as follows, 

 Step 1: Set initial values, compute the elements of matrix A  and get its inverse 

matrix 1−A ; 

 Step 2: Use equation (6) to get the density distribution function at time level 

nt t=  (initially setting 0Fα = ) and compute the macro variables using equations 

(11) and (23); 

 Step 3: Solve equation system (21) to get the velocity corrections at all boundary 

points and use equation (17) to get velocity corrections at Eulerian points; 

 Step 4: Correct the fluid velocity at Eulerian points using equation (19) and 

obtain the force density using equation (24); 

 Step 5: Compute the equilibrium distribution function using equation (10); 

 Step 6: Repeat Step 2 to Step 5 until convergence is reached. 

 

3. Results and discussion 

3.1 Steady flow over a stationary circular cylinder 

To demonstrate that the present approach has no flow penetration to the 

boundary of immersed object and provides more accurate forces acting on the object, 
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the steady flow over a stationary circular cylinder is selected for simulation. This 

problem has been studied extensively and there are numerous theoretical, 

experimental, and numerical results available in the literature. Depending on the 

Reynolds number, different kind of flow behaviors can be characterized. Here, the 

Reynolds number is defined as 

Re U D
υ
∞=  (25)

where U∞  is the free stream velocity, D  is the diameter of cylinder, and υ  is the 

kinematic viscosity. 

It has been pointed out by Lai and Peskin [33] that, the drag force arises from 

two sources: the shear stress and the pressure distribution along the body. The drag 

coefficient is defined as  

( ) 21 2
D

d
FC

U Dρ ∞

=  (26)

where DF  is the drag force. Here, it can be calculated by 

D xF f d
Ω

= −∫ x  (27)

xf  stands for the x-component of force density f  at the boundary point. 

The simulations at Re = 20 and 40 are carried out. The computational domain is 

set by 50D×50D with a mesh size of 451×401. The cylinder is located at (20D, 

25D). The free stream velocity is taken as 0.1U∞ =  and the fluid density is 1.0ρ = . 

The computation starts with the given free stream velocity. At the far field boundaries, 

the equilibrium distribution functions are used to implement the boundary condition. 

To well capture the accurate solution near the cylinder surface, fine grid should be 

used around cylinder. On the other hand, considering the computational efficiency, 
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coarse grid is good enough for the region far away from the cylinder. To balance these 

two, the non-uniform mesh is used in the present simulation. As the standard lattice 

Boltzmann method is only applicable on the uniform mesh, in this work, we adopt the 

Taylor series expansion and least squares-based lattice Boltzmann method (TLLBM) 

[34], which can be well applied on the non-uniform mesh. The region around the 

cylinder is 1.2D×1.2D with a very fine uniform mesh size of 97×97. 

The streamlines are plotted in Fig. 2 for the case of Re = 40. As shown in the 

figure, a pair of symmetric recirculation bubbles appears in the wake of the cylinder. 

At the same time, we can observe two pairs of weak vortices enclosed inside the 

cylinder. It means that the flow inside the cylinder has been occluded by the boundary. 

This is an ideal case as it ensures no mass exchange between interior and exterior of 

the cylinder surface. To the best of our knowledge, this is the first such promising 

result obtained by IBM and its various versions. The good performance of present 

results is indeed due to enforcement of non-slip boundary condition to prevent flow 

penetration to the boundary.  

Table 1 compares the length of recirculation bubbles L (based on the diameter of 

cylinder D) and drag coefficients dC  for two cases with previous data [35-37]. Also 

shown in the table are the results obtained by conventional IB-LBM [28]. From the 

table, we can see clearly that the present drag coefficients are closer to the 

experimental data and numerical results obtained by body-fitted N-S solvers than the 

conventional IB-LBM results. This is also because the non-slip boundary condition is 

enforced in the present method, and flow penetration is avoided. As a consequence, 
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the boundary force could be computed more accurately. This is of underlying 

importance for moving boundary flow problems.  

 

3.2 Flow over a moving circular cylinder 

For the case presented above, the cylinder is stationary. To investigate the 

capability of present method for modeling moving boundary flow problems, the 

simulation of flow over a moving cylinder is carried out. To ease the simulation, the 

uniform mesh is used. For making comparison, the flow over a stationary cylinder is 

also simulated on the same mesh. The computational domain is set by 32D×32D 

with a mesh size of 1281×1281. The stationary cylinder is located at (8D, 16D). The 

moving cylinder moves towards the left from the position of (30D, 16D). The 

Reynolds number for both case are taken as Re = 40. 

To compare the results of moving cylinder case with that of stationary cylinder 

case, we can adjust the frame of reference. It can be easily implemented by adding an 

opposite velocity U∞  onto the velocity in the Eulerian mesh. The adjusted 

streamlines are shown in Fig. 3. For comparison, the streamlines of stationary 

cylinder case are also shown in Fig. 3. It is apparent that the results of both cases have 

good agreement with each other. The good agreement of both results can be further 

confirmed by Fig. 4, which compares the pressure profiles on the surface of cylinder 

for two cases. Through this example, on one hand, we demonstrate the capability of 

present method for simulation of flows around a moving object; on the other hand, we 

show Galilean invariance of present approach.  
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3.3 Flow over a rotationally oscillating cylinder 

Vortex shedding in the near wake behind a bluff body could produce periodically 

oscillating drag and lift forces. These fluctuating forces would produce structural 

vibrations, acoustics noise or resonance. Hence, it is very important from practical 

engineering perspective to control vortex shedding appropriately. Many attempts for 

such control have been made recently. One of simple attempts is the rotary control of 

cylinder wake [38, 39]. Here, we apply our developed method to simulate such 

moving boundary flow problem. 

The control of motion has the form of the rotary oscillation of the cylinder with 

the instantaneous rotational velocity given by 

( ) ( )0
2sin 2 sin 2 St f
U Ut ft A t
D D

γ γ π π∞ ∞⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (28)

where U∞  and D  represent the free stream velocity and diameter of cylinder, 

respectively. f  and 0γ  are the frequency and the rotation amplitude respectively, 

which can be expressed in terms of non-dimensional parameters: the Strouhal number 

St f fD U∞= and the normalized amplitude ( )0 2A D Uγ ∞= . These two parameters 

are sufficient to characterize the control. 

The computational domain is set by 50D×40D and the cylinder is located at 

(20D, 20D). The region around the cylinder is 1.2D×1.2D with a very fine uniform 

mesh size of 121×121. The whole domain is discretized on the non-uniform mesh. 

Hence, the TLLBM [34] is applied. 

In present simulation, A = 2.0 is selected. Based on the free stream velocity U∞  
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and diameter of cylinder D, the Reynolds number is taken as Re = 100. To verify our 

method for this problem, the case of Stf = 0.163 is simulated firstly. At Re = 100, the 

natural vortex shedding (Stn) for flow over a stationary cylinder is about 0.163. As 

indicated by Choi et al. [38], when Stf = Stn, the interesting vortex shedding pattern 

would happen, which is shown in Fig. 5. Note that the result of Choi et al. [38] is also 

included in Fig. 5 for comparison. It is clear from the figure that the present result 

compares well with that of Choi et al [38]. We also simulate the case of Stf = 0.4 to 

compare the forces exerted on the cylinder with that of Choi et al [38]. The obtained 

time-averaged coefficient and maximum amplitude of lift coefficient fluctuation are 

1.302 and 0.321 respectively, which have good agreement with 1.231 and 0.299 from 

[38]. 

After verification of the method, the cases for five different forcing frequencies 

are simulated. They are Stf = 0.1, 0.16, 0.3, 0.7, and 0.9. Figure 6 illustrates the 

instantaneous vorticity contours obtained from the numerical simulations at the same 

time levels. As a reference, the flow pattern of stationary cylinder case is also 

included. The similar vorticity contours have been obtained by Protas and Wesfreid 

[39]. Fig. 6 (b) shows that the vortices with Stf = 0.1 have the wavelength about twice 

as big as that in the stationary case (shown in Fig. 6 (a)). In Fig. 6 (c), the cylinder 

releases two arrays of regular vortices per half-cycle. This flow pattern happens when 

the forcing frequency is close to the natural shedding frequency. In Fig. 6 (d), the 

wake structure is synchronized with the rotary oscillation forcing and moves 

downstream without coalescence. This feature can be utilized to stabilize the flow in 
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the wake of the cylinder. In Fig. 6 (e), the near-wake structure also becomes 

synchronized with the forcing. However, it becomes unstable and merges into a 

large-scale vortex some distance downstream. In Fig. 6 (f), the oscillation forcing 

only generates small-scale vortices in the shear layers near the cylinder, and most of 

the wake resembles that behind the stationary cylinder. 

The flow behind a rotationally oscillating cylinder can be classified into two 

categories: lock-on and non lock-on. According to Choi et al. [38], the cases for Stf 

being equal to 0.1, 0.16, and 0.3 belong to lock-on and the remaining cases belong to 

non lock-on. As pointed out in [38], one of the characteristics for the non lock-on 

region is the occurrence of modulation phenomenon. The modulation frequency is 

very low as compared to the forcing and vortex shedding frequencies. Figure 7 shows 

the time histories of the lift and drag coefficients for non lock-on cases. Figure 8 

shows the variations of the time-averaged drag coefficients and the maximum 

amplitude of the lift coefficient fluctuations due to the rotary oscillation forcing. In 

the present simulation, the mean drag coefficient for the stationary cylinder is about 

1.361. It is shown in Fig. 8 (a) that the mean drag decreases markedly with increasing 

Stf in the lock-on region, and it increases gradually with increasing Stf in the non 

lock-on region. The local minimum of mean drag exists near the boundary between 

the lock-on and non lock-on regions. The similar trend is found for the maximum 

amplitude of the lift coefficient fluctuations in Fig. 8 (b). 

 

3.4 Unsteady flows at low Reynolds number flapping flight 
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The flapping insect flight has fascinated physicists and biologists for more than 

one century. As compared to the fixed wing, flapping wing demonstrates attractive lift 

enhancement due to unsteady effects, which is very important for insect flight. Using 

the proposed method, we will simulate unsteady flows arising from flapping of a 

single elliptical wing to display the flow patterns associated with wing translation and 

rotation, as well as stroke reversal. The obtained fluid forces on the object are 

compared with those obtained numerically and experimentally in References [40] and 

[41].  

In current simulation, the elliptical wing of aspect ratio 10 follows a prescribed 

sinusoidal translational and rotational motion. Specially, the wing sweeps in the 

horizontal plane and pitches about its center 

( ) 0 cos(2 )
2
Ax t ftπ= ,    ( ) 0y t =  (29)

( ) ( )0 sin 2t ftα α β π φ= + +  (30)

where ( ) ( ),x t y t  is the position of the center of wing, ( )tα  is the wing orientation 

which is measured counterclockwise relative to the positive x-axis. The parameters 

also include the stroke amplitude 0A , the initial angle of attack 0α , the amplitude of 

pitching angle of attack β , the frequency f  and the phase difference φ  between 

( )x t  and ( )a t . For the motion simulated in this work, the Reynolds number can be 

defined as max 0Re U c fA cυ π υ= = , where maxU  is the maximum wing velocity and 

c  is the chord. In current simulation, 0 2.8A c =  with Re = 75 is used. Other 

parameters 0 ,α β  and f  are fixed to be 2, 4π π  and 0.25 Hz, respectively. 

Based on previous investigations, it is well known that the phase difference φ  
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between rotation and translation is a critical parameter in force generation. Here, two 

phase differences are selected: 4φ π=  and 4π− , corresponding to the advanced 

and delayed rotation, respectively. To make a fair comparison, all above parameters 

are chosen the same as those used by Wang et al. [40] and Eldredge [41]. The 

computational domain of 20c×20c is discretized by a non-uniform mesh. The region 

around the center of domain for the wing motion is 3.5c×1.2c with a very fine 

uniform mesh size of 281×97. 

Figure 9 shows four snapshots of vorticity contours given in one cycle for 

advanced rotation of 4φ π= . They are very similar to those obtained by Eldredge 

[41], which gave the physical interpretation. 

The time histories of lift and drag coefficients are plotted in Fig. 10. The 

previous numerical and experimental results [40, 41] are also included for comparison. 

All forces are normalized by the maxima of the corresponding quasi-steady forces 

which are mentioned in [40]: ( )1.2sin 2LC α= , ( )1.4 cos 2DC α= − , where α  is 

the angle of attack. From Fig. 10, we can see that the present lift coefficient matches 

very well with the result of Eldredge [41], and the peak values are in good agreement 

with those from Wang et al. [40] in the whole four strokes. In the later strokes, the 

peak values of lift also compare well with experimental results of [40]. The present 

drag coefficients also agree very well with those given in [40-41]. Figure 11 depicts 

the vorticity contours for the delayed rotation case of 4φ π= − . By comparing the 

results of 4φ π=  with those of 4φ π= − , the sensitivity to the kinematics is 

obvious. Similar to the advanced rotation case, the behavior of leading edge vortex is 
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recaptured and trailing edge vortex shedding is also observed. The instantaneous lift 

and drag coefficients are plotted in Fig. 12 and are compared with those of Wang et al 

[40]. It can be found that the agreement is reasonable. By comparing Fig. 10 with Fig. 

12, we can find that the characteristics of lift and drag are very different. The 

time-averaged lift and drag coefficients are (0.526, 0.567) and (0.101, 0.721) 

respectively for advanced and delayed rotation cases. From these values, we can 

conclude that the phase difference φ  affects the force generation significantly, 

especially for the lift production. 

 

3.5 Flow over a flapping flexible airfoil 

The numerical solution of fluid flow problems with thin flexible moving objects 

is motivated by the wide range of potential applications in biology and physiology. To 

exhibit the capability of our method for modeling such problems, the simulation of a 

single flapping flexible airfoil is carried out. 

In our simulation, a single NACA0012 airfoil with flexural deformation executes 

plunge motion, which means that the airfoil makes the cross flow oscillation. The 

plunge motion of airfoil shown in Fig. 13 can be expressed by 

( )0 cosh h c tω=  (31)

where h  means the instantaneous position of the airfoil, 0h  is the dimensionless 

stroke amplitude, c  denotes the chord length of the airfoil, and ω  is the flapping 

frequency. 

Inspired by the hydrodynamics of fishlike swimming, the profile of the flexible 
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airfoil varying over time can be expressed by 

( )2
0 cosy a cx tω φ= − +  (32)

where 0a  is the dimensionless flexure amplitude and φ  denotes the phase angle. In 

the above equation, the x-y local frame refers to the body coordinate system and x is 

in the range of [ ]0,c  with 0x =  corresponding to the head of airfoil and x c=  to 

the tail. 

In current study, the parameters for controlling the airfoil motion are chosen as: 

0 0.4h = , 0 0.3a = , 2φ π= , and 0.2,ω =  0.3, 0.4, 0.5. The Reynolds number 

based on the chord length c  is Re = 500. A non-uniform mesh is used in the whole 

computational domain of 30c×24c. In the small region around the airfoil (1.1c×1.5c) 

where airfoil is moved, a very fine uniform mesh size of 221×301 is applied. 

The instantaneous vorticity contours in one cycle and evolution of drag 

coefficient are plotted in Fig. 14 and 15, respectively. For comparison, the results of 

flapping rigid airfoil with the same stroke amplitude are also included. In both cases, 

the flapping frequency ω  is 0.4. From Fig. 14, we can observe the vortex being shed 

from the trailing edge of airfoil due to oscillation of the airfoil. Subsequently, the 

periodic vortex shedding induces the drag coefficient to vary periodically, which can 

be found in Fig. 15. We can also find that the drag coefficient becomes negative partly, 

which implies generation of a propulsive force. Fig. 14 reveals that the flow patterns 

of two cases are almost the same except that the wavelength of vortex for rigid airfoil 

is a bit longer than that of flexible airfoil. One reason may be that the flexible airfoil 

makes the vortex shed more easily, implying that the vortex shedding becomes faster. 
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Additionally, it is noticeable in Fig. 15 that the maximum of negative drag coefficient 

for flexible airfoil is much larger than that of rigid airfoil, and that more negative drag 

region appears for flapping flexible airfoil. Therefore, it may be concluded that the 

flexure could effectively augment the propulsive force for flapping airfoil. 

Figure 16 presents the evolution of the pressure contours around the rigid and 

flexible airfoils during one cycle. The corresponding results for the lift coefficients are 

plotted in Fig. 17. As can be seen from Fig. 16, the pressure in the wake of flexible 

airfoil is higher than that of rigid airfoil. As a result, the pressure contributes less drag 

force for the flexible airfoil case. This is in line with the findings in [42].  

To demonstrate the effect of flapping frequency on the generation of thrust force, 

the evolution of drag coefficients with four different flapping frequencies is depicted 

in Fig. 18. It is clear that the maximum negative drag coefficient increases with the 

flapping frequency. Higher frequency implies more generation of propulsive force. 

Let T denote the flapping period, the period-averaged thrust force xF  can be 

calculated by 

( )
0

1 T

x xF F t dt
T

= ∫  (33)

where ( )xF t  represents the instantaneous thrust force on the airfoil, which is equal 

to the negative drag force. Therefore, we can define the period-averaged thrust power 

coefficient ξ  as 

( )21 0
2

1 Tx
d

F U C dt
TU c U

ξ
ρ

∞

∞ ∞

= = − ∫  (34)

Fig. 19 shows the variation of the thrust power coefficient with the flapping 

frequency. It can be seen that the thrust power coefficient is greater at larger flapping 
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frequency. Hence, same conclusion with that from Fig. 18 can be obtained. 

 

4. Conclusions 

A new version of immersed boundary-lattice Boltzmann method (IB-LBM) is 

presented in this paper for simulating incompressible viscous flows around moving 

objects. In the conventional IB-LBM, the force density is calculated explicitly by the 

Hook’s law or the direct forcing method or the momentum exchange method. 

Therefore, the non-slip boundary condition is only approximately satisfied. In this 

study, the force density, which can be recognized as the velocity correction, is set as 

unknown. It is solved by enforcing the non-slip boundary condition. Moreover, the lift 

and drag forces on the moving object can be easily calculated via the velocity 

correction on the boundary points. The lattice Boltzmann equation with a force 

density term is adopted in this work to obtain the flow field on the Eulerian points.  

To show that the present method does not have any flow penetration to the solid 

boundary and provides better results for the forces acting on the object, the steady 

flow over a stationary circular cylinder was first simulated. Numerical results do 

confirm our expectation. For moving boundary flow problems, the simulation of 

flows around a moving circular cylinder, a rotationally oscillating cylinder and an 

elliptic flapping wing was performed. The obtained numerical results are compared 

well with available data in the literature. In addition, to demonstrate the capability of 

present method for solving elastic boundary flow problem, the flow around a flexible 

flapping airfoil was simulated. It was found that as compared with the flapping rigid 
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airfoil, the flapping flexible airfoil can easily generate the propulsive force. Through 

numerical experiments, it is believed that the present method has a potential to 

effectively simulate incompressible viscous flows around moving objects.  
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Table 1 Comparison of drag coefficients and length of recirculation zone 

Case Authors dC  L  

Dennis and Chang [35] 2.05 0.94 

Nieuwstadt and Keller [36] 2.053 0.893 

Shukla et al. [37] 2.07 0.92 

Niu et al. [28] 2.144 0.945 

Re = 20 

Present 2.072 0.92 

Dennis and Chang [35] 1.52 2.35 

Nieuwstadt and Keller [36] 1.54 2.18 

Shukla et al. [37] 1.55 2.34 

Niu et al. [28] 1.589 2.26 

Re = 40 

Present 1.554 2.3 

 

 

Boundary point

Fluid points
domain

 

Fig. 1 Configuration of boundary points and their surrounding fluid points 
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Fig. 2 Streamlines for flow over a stationary cylinder at Re = 40 

 

  

(a) moving cylinder case       (b) stationary cylinder case 

Fig. 3 Streamlines for moving and stationary cylinder cases at Re = 40 
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Fig. 4 Pressure distribution on the surface of cylinder at Re = 40 
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Result of present simulation 

 

Result of Choi et al. [38] 

Fig. 5 Comparison of vorticity contours when Stf = Stn at Re = 100 

  

(a) stationary        (b) Stf = 0.1 

  

(c) Stf = 0.16         (d) Stf = 0.3 

  

(e) Stf = 0.7         (f) Stf = 0.9 

Fig. 6 Vorticity contours at Re = 100 for flow around a rotationally oscillating 

cylinder (solid lines: positive; dashed lines: negative) 



 34

 

 

 

time

C
d

50 60 70 80 90 100
1.2

1.25

1.3

1.35

1.4

modulation period

 time

C
l

50 60 70 80 90 100

-0.5

0

0.5

1

modulation period

 

(a) Stf = 0.7 
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(b) Stf = 0.9 

Fig. 7 Time histories of the lift and drag coefficients for two non lock-on cases 
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(a) time-averaged drag coefficients (dash line: the value for stationary cylinder case) 
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(b) maximum amplitude of the lift coefficient fluctuation 

Fig. 8 Variations of drag and lift coefficients versus Stf 
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Fig. 9 Vorticity contours in one cycle for φ = π 4  
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Fig. 10 Time histories of lift and drag coefficients for φ = π 4  
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Fig. 11 Vorticity contours in one cycle for φ −= π 4  
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Fig. 12 Time histories of lift and drag coefficients for φ −= π 4  
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Fig. 13 Plunge and deflection motion of a single flexible airfoil  

(solid line: downstroke motion; dashed line: upstroke motion) 
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(a)           (b) 

 

Fig. 14 Instantaneous vorticity contours for flapping airfoil in one cycle 

(a) rigid airfoil; (b) flexible airfoil 
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Fig. 15 The evolution of drag coefficients for rigid and flexible airfoils 
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(a)           (b) 

Fig. 16 The pressure contours for flapping airfoil in one cycle 

(a) rigid airfoil; (b) flexible airfoil 
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Fig. 17 The evolution of lift coefficients for rigid and flexible airfoils 
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Fig. 18 The evolution of drag coefficients with different frequencies 
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Fig. 19 Effect of flapping frequency on thrust power coefficient 

 

 

 


