
Strathprints Institutional Repository

Clarke, J.A. and Yaneske, P.P. (2009) A rational approach to the harmonisation of the thermal
properties of building materials. Building and Environment, 44 (10). pp. 2046-2055. ISSN 0360-
1323

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9025303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
Clarke, J.A. and Yaneske, P.P. (2009) A rational approach to harmonisation of the thermal 
properties of building materials. Building and Environment, 44 (10). pp. 2046-2055. 
ISSN 0360-1323
 
 
 
 
http://strathprints.strath.ac.uk/16455/
 
 
This is an author produced version of a paper published in Building and Environment, 44 (10). 
pp. 2046-2055. ISSN 0360-1323. This version has been peer-reviewed but does not 
include the final publisher proof corrections, published layout or pagination. 
 
 
Strathprints is designed to allow users to access the research output of the University 
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained 
by the individual authors and/or other copyright owners. You may not engage in 
further distribution of the material for any profitmaking activities or any commercial 
gain. You may freely distribute both the url (http://strathprints.strath.ac.uk) and the 
content of this paper for research or study, educational, or not-for-profit purposes 
without prior permission or charge. You may freely distribute the url 
(http://strathprints.strath.ac.uk) of the Strathprints website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://strathprints.strath.ac.uk/16455/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


A Rational Approach to the Harmonisation of the 

Thermal Properties of Building Materials 

 

Professor J A Clarke, Department of Mechanical Engineering 

 Dr P P Yaneske, Department of Architecture 

University of Strathclyde 

Glasgow 

 

Abstract 

The Energy Systems Research Unit at the University of Strathclyde in Glasgow was 

contracted by the Building Research Establishment to review existing data-sets of 

thermo-physical properties of building materials and devise vetting and conflation 

mechanisms. The UK Chartered Institute of Building Services Engineers subsequently 

commissioned a project to extract a sub-set of these data for inclusion in Guide A, 

Section 3. This paper reports the project process and outcome. Specifically, it describes 

the source of existing data, comments on the robustness of the underlying test procedures 

and presents a new approach to data classification and conflation. 

 

Keywords: material thermo-physical properties, test methods, CIBSE Guide data. 
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Introduction 

By the early 90’s several modelling systems had emerged that were capable of predicting 

the environmental states and energy demands of a building on the basis of inputs defining 

form, fabric and operation. In support of this capability, the Building Research 

Establishment commissioned the Energy Systems Research Unit at the University of 

Strathclyde in Glasgow to compile a quality-assured collection of material thermo-

physical properties. The project had the following objectives. 

• To review existing data-sets in terms of data source, underlying test procedures and 

degree of consensus. 

• To devise and apply a conflation mechanism. 

• To comment on the underlying test procedures and the need for harmonisation. 

• To extract a robust sub-set of data for inclusion in Section 3 of CIBSE Guide A. 

 

Six material properties were included within the project’s scope: thermal conductivity 

(W/m·K), density (kg/m3), specific heat capacity (J/kg·K), surface emissivity (-), surface 

shortwave absorptivity (-), and vapour resistivity or resistance (MN·s/g·m and MN·s/g 

respectively). In particular, an attempt was made to obtain data that described the 

variation of these properties as a function of temperature and moisture content. Note that 

the project excluded some significant material properties – such as those relating to 

moisture absorption/desorption and liquid water transport. Should such properties be 

available, it is possible to use a specialist modelling tool to adjust, for example, the 

thermal conductivity as a function of moisture content. Clearly, understanding the limits 

of a program in a particular application is an important part of the modelling process. 
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Project Process 

The project comprised four stages. First, model users/developers and material testing 

groups were contacted in order to obtain information on the data-sets in current use and 

their underlying test procedures. A wide range of organisations were polled: professional 

bodies (such as CIBSE, ASHRAE and IBPSA), architectural and engineering practices, 

government agencies, research organisations, academic groups, software vendors, 

material manufacturers, and testing laboratories. In total 400 questionnaires were 

despatched and 100 replies received. Second, a selective follow-up was initiated to obtain 

significant data-sets identified in the questionnaire returns and to appraise these in terms 

of source, content and associated test procedures. Third, a mechanism for merging the 

data-sets was elaborated. Finally, a set of rules were devised to guide the extraction of a 

sub-set of data suitable for inclusion in Section 3 of CIBSE Guide A. 

 

On analysing the collected data-sets, it was apparent that some collections were 

derivatives of other, more authoritative ones. In essence some 13 independent data-sets 

were identified: ASHRAE (US), BRE (UK), BS5250 (UK), CIBSE (UK), CSTC 

(Belgium), DOE-2 (USA), ESP-r (UK), Leeds University (UK), Leuven University 

(Belgium) and national data-sets from France, Germany, India, Italy and The 

Netherlands. 

 

From the questionnaire returns from testing organisations, it was apparent that there 

existed little information on specific heat capacity, indicating that the measured thermal 

conductivities were intended for use in steady-state applications. The decision by 

ASHRAE in 1985 to quote only recommended U-values for building assemblies, as 

determined by hot box tests, is consistent with this conclusion. This suggests that the then 

extant testing procedures were not well matched to the requirements of dynamic building 

performance modelling. 
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Vapour resistivity was determined by under two thirds of the respondents, with the 

quoted test standards leading, at most, to a two point result, which is insufficient to 

generate a differential permeability curve of the kind required to define the behaviour of 

hygroscopic materials. 

 

Few testing organisations measured longwave emissivity and even fewer measured 

material shortwave properties. In the case of glazing systems, manufacturers are relied on 

to provide specific product values. It other cases, such measurements are likely to be 

subcontracted to research institutions or reliance placed on published results from various 

sources. 

 

Thermal conductivity apart, the evidence suggested that organisations concerned with the 

use of thermo-physical property values do not generate the information first hand. This 

raises the question of the quality control of such data. The fact that a standard exists does 

not guarantee that it is actually in use. Standards tend to vary by material and there are, 

for example, hundreds of standards in the USA alone. Any one organisation is likely to 

test only a limited subset of what is possible. A listing, by thermo-physical property, of 

standards that were quoted in the questionnaire returns is given in the Table 1. 

 

While standards evolve – an examination of the BSI and ASTM yearbooks revealed that, 

typically, standards change every 3 to 5 years – a current standard will not affect data 

already in use for some time to come. For example, much of the CIBSE thermal 

properties data-set predated 1970 and several amendments of BS 874 – Methods for 

Determining Thermal Insulating Properties (now withdrawn). Further, particular national 

standards may not cover certain areas and, in any case, a catalogue of standards would 

fail to reveal the use of in-house testing procedures. 
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Table 1: Standards relating to thermo-physical property measurement. 

Thermal Conductivity: 

UK BS 874, BS 1142, BS 3837, BS 3927, BS 4370, BS 4840, BS 5608, BS 

5617 

USA ASTM C-158, ASTM C-177, ASTM C 236, ASTM C 335, ASTM C 

518, ASTM C 687, ASTM C 691 

West 

Germany 

DIN 52612 

Belgium NBN B62-200, NBN B62-201, NBN B62-203 

Density: 

UK BS 874, BS 2972, BS 4370, BS 5669 

USA ASTM C-158, ASTM C-177, ASTM C-209, ASTM C-302, ASTM C-

303, ASTM C-519, ASTM C-520, ASTM C-1622 

Belgium STSO8.82.41, STSO8.82.5 

Specific Heat Capacity: 

UK Yarsley: in-house 

USA ASTM C-351 

East Germany TGL 20475 

Longwave Emissivity: 

UK Draft BS 87/12988 

USA ASTM E-408, Manville: in-house 

Australia CSIRO: in-house 

Shortwave Properties: 

UK BS 87/12988 

USA ASHRAE 74-73 

East Germany Sonntag's Pyranometer 

Vapour Resistivity: 

UK BS 2782, BS 2972, BS 3177, BS 4370: 1973, Part 2, DD 146 

USA ASTM C755, ASTM E96 

West 

Germany 

DIN 52615 

Austria ONORM B 6016 
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Review of Collected Data-sets 

The following observations can be made on the structure and contents of the collected 

data-sets. 

 

• There is no consensus on the manner in which materials are grouped for 

presentation of data to users. What is needed is a common system such as the CIB 

Master List of Materials [1], which integrates thermal properties within a broad 

material classification system. 

• The range of properties for which values are quoted is generally restricted. 

Commonly, the properties are thermal conductivity, density and vapour resistivity, 

as required for simple steady-state heat loss and condensation calculations.   

• Data source is generally not identified and, where it is, little information is 

presented on the underlying experimental conditions. Data merging is therefore an 

uncertain process because it is difficult to ensure compatibility between different 

entries. 

• It is suspected that much of the agreement that does exist between different data-

sets can be attributed to a degree of historical ‘borrowing’. This, in turn, is likely to 

lead to an optimistic assessment of the inherent uncertainty. 

• Many values are quoted without any statement as to whether they correspond to 

single or multiple measurements. A random inspection of several referenced works 

would suggest that values are usually derived from the work of a single researcher 

on the basis of a small sample size. 

• Much of the data is derived from work carried out with non-standard apparatus and 

from a date that precedes modern standards of equipment and operation. 

• No guidance is given on the variation in properties such as density and internal 

structure as inherent in the production of many building materials. 
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• There is no agreement on the procedure for the determination of the thermal 

conductivity of materials in the moist state. 

• There is tacit agreement that the uncertainty within the data is use-context 

dependent. The various calculation methods proposed are clearly expected to yield 

no more than crude estimates of real conditions. 

• For any material, density, moisture content and internal structure are the major 

determinants of its thermal and hygroscopic behaviour. In some cases, the effects of 

temperature and ageing can also be significant. 

 

The following sub-sections consider how and where these properties and environmental 

conditions give rise to uncertainties in the data. A scheme for data classification and 

conflation is subsequently introduced that reflects this uncertainty. 

 

Thermal Conductivity 

Thermal conductivity is correlated with material density. For example, Jakob [2] 

established a relationship between average thermal conductivity and density for 

completely dry building materials. This relationship was later confirmed by work 

undertaken at BRE [3]. With respect to accuracy, Jakob suggested that individual values 

might deviate by up to ±15%. He also suggested that the internal structure of a material 

affected the thermal conductivity according to whether it was amorphous or crystalline. 

This relationship, between the thermal conductivity of dry materials and their density, 

was also examined by Billington [4]. Although the magnitude of the deviations is not 

explicitly discussed, it is implied that deviations of 50% or more are not uncommon. 

Billington also draws attention to the influence of internal structure on thermal 

conductivity, particularly in the case of concretes, but concluded that the conductivity 

depended on whether the material was cellular or granular in structure rather than 
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amorphous or crystalline. The deliberate application of control of internal structure has 

shown that, in the case of concrete, the thermal conductivity can differ by up to 30% for a 

given density. 

 

For fibrous and cellular insulations, the apparent thermal conductivity is a function of 

density and fibre or cell size. In general, a specific combination produces minimum 

thermal conductivity. 

 

Concrete and masonry present a particular problem in that the variable nature of the 

constituents has a strong influence on the thermal conductivity. Several reports give 

correlations of conductivity with density for concrete [5, 6] and for masonry [7,  8]. It can 

be concluded that the prediction of the thermal conductivity of these materials from these 

correlations is approximate, particularly in the case of masonry.  

 

Quite apart from trying to produce predictive algorithms, the inherent scatter in the 

relationship between thermal conductivity and density has important consequences for the 

retrieval of values from a database. Once a material is located, density is invariably the 

key parameter in locating the correct value of thermal conductivity. The essential problem 

is that the location on the thermal conductivity curve of the test sample or samples that 

gave rise to the value held is generally unknown, as is that of the material to be used on 

site. In the worst scenario, the value held may be derived from material with a high 

positive deviation, while the material to be used on site has a high negative deviation. In 

practice the density assumed for thermal conductivity database retrieval will commonly 

be a nominal one supplied by the manufacturer. An error will arise if this deviates 

significantly from the actual density of the product as supplied and installed. A study of 

the properties of lightweight concrete blocks carried out by BRE Scottish Laboratory 

found substantial deviations between the density quoted by manufacturers and the actual 
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mean density of the block samples as measured. Out of seven cases where comparisons 

could be made, four showed differences of around 20% between the actual mean density 

and the quoted value. In addition, the actual spread of densities about the mean was, in 

most cases, substantial as illustrated in Figure 1. The remedy for these problems lies in 

quality control procedures, which can guarantee the delivery of materials to within a 

known density tolerance. Until this is achieved, the error introduced will be an unknown 

quantity. 

 

 

Figure 1: Spread in measured densities and their relation to the quoted density for 

lightweight concrete blocks supplied by two different manufacturers. 

 

The thermal conductivity of a material is also strongly affected by the presence of 

moisture. Jakob proposed that the thermal conductivity of a mineral building material 

containing a known percent of moisture by volume could be obtained by multiplying the 

thermal conductivity in the dry state by a correction factor that depended only on the 

moisture content by volume. This method of correction has been widely used and applied 

to masonry materials [2]. Later thermal conductivity measurements on moist materials by 
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Jespersen showed that the behaviour of different materials was not well represented by a 

single characteristic [9]. He found that both the magnitude of the initial rise at low 

moisture content, and the moisture content at which the relationship between thermal 

conductivity and moisture content becomes linear, are significantly different for different 

groups of materials. He also noted that, in general, there is an initial region, 

corresponding to the transition from dry to the point of hygroscopic equilibrium under 

normal internal environmental conditions, where the thermal conductivity is little affected 

by increasing moisture content. As a result, he concluded that the equilibrium 

hygroscopic moisture content under such conditions – literally defined as ‘laboratory dry’ 

– has little effect on the thermal conductivity of materials. 

 

In considering the rates of change of thermal conductivity with moisture content, 

Jespersen distinguished three kinds of behaviour associated with different material types. 

These were timber products, inorganic lightweight insulating materials and masonry. At 

one extreme, the organic materials proved to be little affected by moisture content, the 

relationship between the thermal conductivity and moisture content being approximately 

linear throughout, with no rapid increase in thermal conductivity observed at low 

moisture contents. Consequently, the use of a single value of conductivity for such 

materials (when determined at the in-use moisture content) should be of adequate 

accuracy. At the other extreme, mineral fibre insulating materials showed a violent 

increase in thermal conductivity with only small increases in moisture content, thereafter 

assuming a linear relationship. Fortunately, such materials contain very small amounts of 

hygroscopic moisture under normal ‘air dry’ conditions so that the value of thermal 

conductivity determined for the dry state, or an appropriately conditioned one, should 

yield the same value. However, should it be suspected that such materials may be 

exposed to conditions that involve, for example, condensation or wetting then the use of 

such thermal conductivity values would be extremely inaccurate. The range of behaviour 
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of masonry materials was found to lie in a broadly defined zone located between the two 

extremes. Since the types of masonry tested were not fully representative, especially of 

concretes, the extent and shape of the zone is conjectural. Given the underlying physical 

processes, it is probable that a subdivision into cellular and granular materials would be 

useful. 

 

Since masonry materials are usually subject to conditions involving significant moisture 

content, it is not surprising that there have been numerous attempts to define their 

behaviour [2, 4, 6, 9, 10, 11]. There is evidence that the relationship between thermal 

conductivity and moisture content can be represented by linear expressions in terms of 

moisture content by volume or by weight. In order to compare published results, it is 

useful to express them as the percentage change in thermal conductivity per 1% change in 

moisture content by volume (or by weight). It is also useful to adopt the convention of 

moisture correction factors such that the thermal conductivity, k, at some percentage 

moisture content, m, is related to that at reference moisture content, mr: 

k/kr  = (1 + C.m) / (1+C.mr ) 

from which it follows that  

(k- kr) / kr (m-mr) = C / (1+C.mr). 

where C is independent of m for linear relationships. Thus, the percentage change in k per 

1% change in m is determined not only by C but also by the choice of mr.  Jespersen 

found significant linear behaviour for all masonry materials between 2% and 10% 

moisture content by volume [9]. Above a reference moisture content of 2%, the upper and 

lower bounds of his curves for the percent change in k with m yield a rate of 6% to 7%. 

For lightweight concrete, his regression equation for k versus m can be rearranged to yield 

C by dividing his coefficient, a, by a reference thermal conductivity consisting of the air-

dry conductivity plus a diffusion conductivity. By using his quoted data and working in 
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the units used by Jespersen, a reasonable mean for the air-dry conductivity is 0.9 BTU 

in/ft2 h °F (equivalent to 0.13 W/m K). 

 

The mean value of a is 0.056 with little variation. The mean value of the reference 

conductivity is close to unity so that an estimate of C is 0.06. These results may be 

compared with the linear change in k per 1% change in m by volume of about 6% given 

by the moisture correction factors in DIN 52612 [10]. By comparison, analysis of the 

non-linear Jakob correction factors for m in the range 2.5% to 10% by volume yields 

mean interval rates of 10% falling to 7%. This suggests that the Jakob corrections are 

atypical, particularly at low moisture contents. Arnold examined the validity of the 

correction proposed by Jakob [7] and from published results produced a curve of the 

thermal conductivity of masonry materials corrected to 1% moisture content against dry 

density. The fit was concluded to be satisfactory. If the Jakob corrections were correct, 

the resulting curve should have reduced, after removing the dependence on moisture 

content, to the same form as the dry thermal conductivity versus density curve with the 

same associated scatter. However, only passing reference was made to the scatter of the 

results but others have examined it in some detail [12]. Whereas a maximum deviation for 

this type of curve of ±15% could be expected [2], the average spread was 15% with 

individual deviations of over 40% and particularly poor agreement below 2% moisture 

content by volume [12]. A linear change in k per 1% change in moisture content by 

weight has been given as 4% for lightweight concrete [11] and 6% for brick [4]. For the 

former material, relationships have been quoted giving C as 0.06 [6]. The respective rates 

of change are 3%-6% and 4%-6% over the range of validity of the latter relationship in 

moisture content and density. Minimum moisture contents quoted for linear behaviour 

have been 1% by volume and 1.5% by weight [11]. Dependence quoted in terms of 

moisture content by weight implies a dependence on density when quoted in terms of 

volume since, with increasing density, the same change in moisture content causes less 
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change in thermal conductivity. This agrees with the finding of Jespersen that lightweight 

materials have the greatest overall sensitivity to changes in moisture content (by volume). 

 

In general, the corrections proposed in DIN 52612 seem more appropriate than those 

proposed by Jakob, particularly if referenced to a moisture content of not less than 1% to 

2% by volume. For relationships expressed in terms of moisture content by weight, there 

is considerable agreement that the factor C lies in the range 0.04 to 0.06 when referenced 

to a minimum moisture content of 1.5% by weight or 1% by volume. 

 

The inherent scatter in results due to experimental error and, just as importantly, to 

differences in internal composition between samples that cannot be eliminated by density 

dependency, means any quest for further accuracy is questionable. The relationship for 

lightweight concrete given by Valore seems credible in current circumstances [6].  The 

question of what moisture contents actually exist in practice is a vexed one. The standard 

moisture contents quoted for design purposes in Section A3 of the CIBSE Guide (as 

current at the time of the project) covered the range 1% to 5% moisture content by 

volume. By contrast, Jakob gives the range as 5% for inner walls and 10% for outer walls 

and draws attention to the possibility of great deviations [2]. The choice of the standard 

moisture contents for the UK was admitted to be based on sparse evidence [7]. Even so, 

the data shows considerable spread. It follows that the uncertainty in specifying the 

moisture content in a real situation could be a major source of error in predicting thermal 

conductivity. In fact, such errors could match or exceed the kind of errors noted in 

connection with the use of the Jakob corrections. 

 

In general, the thermal conductivity of dry materials increases with temperature. The 

changes are small at normal temperatures and are usually neglected. Possible exceptions 
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are the fibrous and porous insulation materials where the apparent conductivity may vary 

significantly in extreme environmental conditions. 

 

The presence of moisture increases the effect of temperature on the thermal conductivity 

of inorganic materials. This is particularly acute for lightweight inorganic insulating 

materials but for any material with a moisture-corrected thermal conductivity of less than 

0.5 W/m K, the effect of temperature will have doubled or more [9]. 

 

Thickness also has an effect on the apparent conductivity of low density fibrous and 

cellular insulations due to radiative heat transfer. According to the ASHRAE Handbook 

of Fundamentals (Chapter 20), the effect is relatively small over thicknesses of 25 mm to 

150 mm.  Measurements at the Electricity Council Research Centre found no evidence of 

a thickness effect in mineral fibre quilt of thickness 90 mm to 360 mm [13]. The evidence 

suggested that neglecting the effect of thickness will result in an insignificant error. 

 

Finally, ageing can be identified as a significant cause of increase in thermal conductivity 

for foamed insulations blown with gas of a thermal conductivity below that of air. In 

time, the gas diffuses away and the thermal conductivity increases. Hence, only values for 

aged insulation should be used.  

 

Specific Heat Capacity 

The seemingly straightforward definition of specific heat capacity as the amount of heat 

energy required to be added or removed to change unit weight of a material by unit 

temperature belies the difficulty of measuring such a value. The difficulty of obtaining 

reliable values for different materials and the absence of a predictive method has been 

well noted in the literature.  One of the difficulties of measurement, particularly for 

materials of low conductivity, is that it is difficult to input or extract heat quickly, making 
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the design of accurate practical experimental apparatus difficult. Perhaps partly because 

of such difficulties, very few of the laboratories that responded to the project 

questionnaire measured this quantity. The test techniques identified included a 

conventional absolute calometric method and an indirect dynamic test method based on 

Fourier's equation and computer regression analysis of test results [14]. Both are in-house 

methods. 

 

Because of the high specific heat capacity of water, the effect of moisture content on the 

specific heat of a material is significant and must be taken into account. In principle, the 

overall specific heat capacity of a material is simply the linear addition of that of the dry 

material to that due to the amount of water present in the material. In practice, this 

requires knowledge of the in-use moisture content. While calculations can be based on 

standard design values, the absence of a practical, non-destructive test method for 

determining on-site moisture content gives rise to an inherent uncertainty in calculating 

values of specific heat capacity for moisture containing materials. This uncertainty is 

compounded when it is realised that it is the volume heat capacity (i.e. the product of 

density and specific heat capacity) that is important in determining thermal capacity. 

Hence, the uncertainty in density, as discussed above, is added to the uncertainty in 

specific heat capacity for volume heat capacity. 

 

A further source of error may arise from the fact that conditions are dynamic in practice. 

In general, materials will be subject internally to temperature and moisture gradients that 

do not correspond to equilibrium distributions. Hence, both the thermal resistivity and 

capacity will vary from point to point within the material. It is also the case that the 

specific heat capacity is a function of temperature.  
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However, given the relatively small range of temperature involved in calculating the 

hygrothermal performance of buildings, the error associated with adopting a single figure 

value will be insignificant compared to the scale of error from other causes.        

 

Water Vapour Transmission 

The behaviour of a material where gaseous diffusion is the vapour transport mechanism is 

relatively simple. Where a material can absorb water, the diffusion process can be 

complemented by other forms of transport, which are capable of causing a considerable 

increase in the permeability of the material [15]. There is a fundamental distinction to be 

made between hygroscopic and non-hygroscopic materials. Fortunately, there exists an 

approach to measuring vapour permeability that can identify and evaluate these 

differences in behaviour [16]. 

 

 

Figure 2: Differential permeability of a 5-ply, 12mm thick sample of exterior quality 

plywood at 20oC [from 17]. 

 

This method has been applied to the measurement of the vapour permeability of plywood 

(strongly hygroscopic) and plasterboard (non-hygroscopic) [17]. The results obtained, as 
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shown in Figures 2 and 3, typify the differences in behaviour between hygroscopic and 

non-hygroscopic materials. In the latter case, the vapour permeability is little affected by 

relative humidity and is adequately represented by a single value. There is the possibility 

of a slight increase with increasing humidity. Where more than one value is quoted, a 

rational way to limit variation and represent real conditions would be to select the value 

obtained under the highest conditions of humidity where this can be identified. 

 

 

Figure 3: Predicted permeability derived from regression analysis of experimental data 

for a 9mm thick sample of gypsum plasterboard at 20oC [from 17]. 

 

The behaviour of hygroscopic materials shows two distinct regions. At low relative 

humidity (RH), where gaseous diffusion dominates, the behaviour is like that of non-

hygroscopic materials. However, above 60% RH the behaviour becomes non-linear with 

vapour permeability showing rapid changes with small changes in humidity. In the tests 

referred to above, the permeability of plywood at 95% RH was found to have increased 

twenty-fold over the low humidity value. The behaviour at high humidity might be even 

more complicated. High moisture content causes plywood to undergo dimensional 

changes and swell; consequently, the pore sizes can increase and reduce the hygroscopic 

effects [18]. A limiting effect on the increase in the permeability of wood based materials 
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could operate at very high humidity. Most quoted data on water vapour transmission 

properties are based on measurements at one or, at most, two values of humidity. While 

this is reasonable for non-hygroscopic materials, it can be seen to be an entirely 

inadequate description of the behaviour of hygroscopic materials above the transition 

point. One result is that there is a wide variation in values quoted for hygroscopic 

materials since they are extremely sensitive to relatively small changes in test conditions; 

as between different national standards for example. A survey of quoted values for 

plywood revealed the highest value to be some forty times the smallest [17]. 

 

The best that can be done with the data is to represent the vapour transmission data for 

hygroscopic materials as a range so that they at least convey some idea of the magnitude 

of the changes to expect beyond 60% RH. This is obviously important in the context of 

choosing values for condensation risk assessment. The vapour permeability of non-

hygroscopic materials can be defined with much greater certainty than for hygroscopic 

materials. It would therefore make sense to distinguish such materials from each other. 

Unfortunately, the data is not of a form to allow such a distinction to be made reliably for 

all the degrees of hygroscopic behaviour displayed by building materials. It is, however, 

possible to attempt a breakdown of materials into groups according to the certainty with 

which their vapour permeability can be established. Clearly timber based products 

(organic and very hygroscopic) are the least certain. Equally clearly, there are materials 

such as metal and glass that are impermeable and have effectively zero permeability. 

Between these two extremes are the inorganic materials that are permeable. These can 

again be broken down into two groups: non-hygroscopic inorganic materials, such as 

mineral fibre insulations, which behave in a simple manner; and masonry materials, 

which are inorganic but display weak to strong hygroscopic behaviour. 
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It is interesting to note that, impermeable materials apart, these groupings correspond 

closely to those used by Jespersen to distinguish the behaviour of moist materials in terms 

of thermal conductivity as can be seen in Figure 4. Masonry materials occupied a broad 

zone, with timber displaying the least variation and lightweight, non-hygroscopic, 

inorganic materials the most. 

 

 

Figure 4: Effect of moisture on the thermal conductivity of different types of materials 

[from 9]. 

 

With regard to the dependence of vapour permeability on temperature, it is only of 

significance in the case of the least permeable membranes [16]. Such membranes would 
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naturally fall under the impermeable grouping adding further to its significance in terms 

of defining behaviour. 

 

Surface Properties: Opaque Materials 

Radiative heat transfer properties are conveniently considered together and, indeed, are 

commonly tabulated together. Unlike the bulk properties considered above, such surface 

properties can be determined with considerable accuracy. The properties are wavelength, 

and therefore source temperature, dependent. For opaque bodies, although emissivity and 

absorptivity are equal to each other at the same wavelength, the difference in the 

spectrums of radiation at normal environmental temperatures and solar temperatures 

results in significantly different values. It is usually considered sufficiently accurate to 

quote a single value for the relatively small range covered by normal environmental 

temperatures. 

 

In practice, one possible source of inaccuracy is to use values of laboratory tested 

materials that compare to a pristine surface state as opposed to the in-use surface state 

after a material has been subject to ageing through weathering, chemical attack and/or dirt 

accumulation. Where possible, values appropriate to an in-use condition should be 

quoted. 

 

Quoted values of emissivity are commonly for the total normal emissivity. The actual 

power emitted depends on the hemispherical emissivity which may differ. For non-

conductors, the hemispherical emissivity may be lower by up to 7% and for highly 

polished metallic surfaces it may be greater by up to 30%. 

 

The hemispherical emissivity can be calculated by multiplying the total normal emissivity 

by 1.2 for bright metal surfaces, by 0.98 for non-conducting rough surfaces and 0.95 for 
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non-conducting smooth surfaces. A casual inspection of the values quoted by various 

sources suggests excellent agreement. Closer inspection revealed the extent of the 

borrowing that underlies this commonality. As an example, a compilation of solar 

absorptivity and emissivity by Penwarden (BRE) borrows extensively from an earlier 

review carried out at the CSIRO and published in 1951 [19]. In turn, many of the solar 

absorptivity values quoted in this earlier review can be traced back to the work carried out 

at BRE (BRS as it was then) and published in 1935 [20]. In a similar way, many 

emissivity values can be traced to a 1941 publication [21]. 

 

The listing by Penwarden includes additional new values and represented the most up to 

date amendment of the historical data on solar absorptivity and emissivity to hand [22]. It 

was therefore adopted as the core data within the project reported here. 

 

Surface Properties: Transparent Materials 

Transparent materials have the added property of transmission in addition to those of 

reflection and absorption. As the sum of the three properties must equal unity, it is only 

necessary to measure two properties. It is universal practice to refer to glazing 

manufacturers for data on the solar optical properties of the various forms of sheet glass 

used in window systems. Unlike many building materials, both the quality control of 

glass and also the precision with which the manufacturers determine the properties of 

their products are high. The general way of treating the data is to provide values of the 

properties including, perhaps, total transmittance at normal incidence. The behaviour at 

other angles of incidence is then supplied in a graphical form that depicts the fractional 

change in properties as a function of the angle of incidence. The value of any property at 

other than normal incidence can then be estimated with good accuracy by adjusting its 

value at normal incidence by the appropriate fractional change indicated by the graph. In 

the case of coated versions of glass, the behaviour at oblique angles of incidence above 
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30° is not so well approximated by the characteristics of the non-coated glass although 

even then the error is only around ±3%. If greater accuracy is required then separate 

graphical corrections will be needed for coated glass. Transparent plastic materials are 

used in a number of speciality glazing applications. Appropriate data on their properties 

may be obtained from manufacturers as for glass.     

 

Review of Test Methods Underlying the Data 

This section reviews the test methods underlying thermal conductivity, water vapour 

transmission, longwave emissivity and solar optical properties as quoted in the acquired 

data-sets. 

 

Thermal Conductivity 

Quoted data are derived from measurements carried out by either the hot-plate or heat 

flow meter techniques. Both are steady-state methods and primarily designed for 

measurements in the dry state. As such, the design and behaviour of equipment had 

already received considerable attention [23]. Tests using the hot-plate method make 

absolute measurements of the conductivity for one dimensional (longitudinal) heat flow. 

It is possible to achieve an accuracy of ±3% although in practice the accuracy is very 

dependent on the operation of the apparatus and the skill of the operator. Schemes, such 

as the one operated by NAMAS (now UKAS the United Kingdom Accreditation Service), 

had been introduced to remedy this by rationalising operation and inspecting equipment. 

Measurements made prior to such schemes may be subject to larger errors. Even so, the 

assumption of accuracy within 5% for later measurements may be misplaced. Inspecting 

agencies have some discretion on uncertainty, and in particular cases the error for some 

materials may rise from 5% to 20% [24]. 
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The heat flow meter technique is a relative technique, which requires the use of 

calibration samples measured by the hot-plate method. As such, the error associated with 

measurements carried out using this technique are about twice that of the hot-plate – that 

is the error in the hot-plate calibration sample measurement plus the heat flow meter 

error. It is, however, simpler to use and less dependent on operator error. Success in use 

depends on the existence of a well defined set of calibration samples. 

 

The behaviour of both sets of apparatus has received considerable analysis and 

improvement, including the development of standard samples for heat flow meter 

calibration [25]. Nevertheless, what is apparent by its omission was any reference to the 

measurement of moist samples. Indeed, at the time, the ISO draft standards on hot-plate 

and heat flow metering simply referred to the matter as complex and considered only 

measurements in the dry state [26, 27]. In principle, this is correct because neither form of 

apparatus is suited to the measurement of moist materials. Since such measurements for 

masonry materials are of such practical importance, the problems are worth considering 

in detail. 

 

The essence of the problem is that the application of a temperature difference to a moist 

specimen results in a moisture gradient, causing moisture to migrate from the higher 

temperature. This affects the spot conductivity through the specimen and thence the 

temperature distribution. It has been observed that the spot thermal conductivity 

decreases more rapidly in the warmer (drier) region than it increases in the colder 

(moister) region. At constant applied temperature difference, the same sample will have 

different moisture gradients for different moisture contents while, at constant moisture 

content, the same sample will have different moisture gradients for different applied 

temperatures. 
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In addition, as the moisture content increases, condensate will appear at the cold side of 

the specimen [12]. This suggests that the measured conductivity will increasingly fall 

below the conductivity for a linear moisture distribution with increasing moisture content. 

 

In the absence of knowledge of the moisture gradient, quoting applied temperatures at 

constant moisture content does not uniquely define the measurement. As such, 

measurements become particular functions of temperature, moisture content, sample 

thickness, sample orientation (up- or down-ward heat flow) and length of measurement 

period. 

 

Such a situation is unsatisfactory and is unlikely to be resolved in terms of test methods 

that are specifically designed for measurement in the dry state. A method of measurement 

involving a much lower applied temperature difference than is required by either the hot-

plate or heat flow meter methods would help reduce the problem of moisture migration. 

One possibility identified as deserving investigation is the thin-heater thermal 

conductivity apparatus. In describing developments with this apparatus, Hager drew 

specific attention to the potential of this method in minimising water vapour migration 

because of the low temperature difference involved [29]. 

 

Water Vapour Transmission 

It was apparent that there was a need to modify wet- and dry-cup techniques to determine 

at least five points on the vapour permeability versus relative humidity curve so that 

differential permeability curves can be generated. This is required not only for 

hygroscopic materials but to identify all the materials that are significantly hygroscopic. 

In the longer term, more realistic results would be obtained if tests could be carried out 

for simultaneous vapour pressure and temperature differences rather than isothermally. 

Such a capability is beginning to emerge from the research phase [28] 
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Moisture Content 

There is a need to establish the true distribution of moisture content in building materials 

in different regions for statistically significant large samples. The UK is a particular case 

in point. Destructive testing in the form of drilling out core samples and weighing them 

would not be acceptable to many building owners and would take a long time. A review 

of alternative methods available at the time was not very optimistic except in promoting a 

capacitance measuring technique [30]. 

 

Longwave Emissivity and Solar Optical Properties 

The techniques of pyrometry and photometry are well established and supported by well 

developed instrumentation (both total and spectral). However, there was a lack of 

standards relating to the measurement of such properties, in particular in relation to in-use 

building surfaces. 

 

Data Classification  

There was little agreement between the collected data-sets in terms of classification 

although all have the common purpose of supporting design calculations carried out to 

ensure compliance with set target values for conditions as specified in building 

regulations and codes. Such calculations only make sense, of course, if they are referred 

to a single database of material properties. As a result, standard lists of values have been 

generated in many countries to support design calculations. The context of such 

calculations is not to simulate real behaviour but to minimise the risk of failure as in 

excessive winter heat loss, summertime overheating or the occurrence of condensation. In 

practice, the choice of calculation procedures, target conditions and associated standard 

lists of material property values reflects the need for robust methods of risk assessment 

that implicitly accept the inherently uncertain nature of building material property values. 
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The disadvantage of such procedures is that they are not capable of providing much 

insight into the detailed hygrothermal behaviour of buildings, particularly where new 

materials, systems or situations may be involved. Nevertheless, the inherent uncertainty 

of present building material property values has to be recognised as also placing a limit 

on the accuracy with which any real situation can be modelled, irrespective of the degree 

of accuracy of the computational model. 

 

The recognition that all predictive methods concerning the behaviour of buildings and 

their components operate within a probabilistic context has been a source of considerable 

interest and concern. A useful overview of the problem has been presented by Keeble 

[31]. Computational techniques also influence the choice of data. Given that design 

calculations have evolved within the context of simplified, steady-state models, the range 

of properties required to be listed has been restrictive and has influenced the range and 

kind of test procedures in use. One aspect of this has been the move towards the steady-

state testing of whole building assemblies, first in North America and latterly in Europe, 

as a preferred option to computing behaviour from individual material constituents. 

 

The 1985 edition of the ASHRAE Handbook of Fundamentals departed from previous 

practice by removing tables of calculated U-values for building assemblies in favour of 

placing reliance on U-values determined by calibrated or guarded hot-box tests. The 

justification was based on the difficulty of calculating the thermal performance of heat-

bridged assemblies. Irrespective of the merits of the argument, current hot-box test 

methods provide only steady-state values of overall heat conductance for particular 

assemblies not materials. This suggests that testing procedures may be less helpful in 

providing data to meet the needs of dynamic building performance modelling.    
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Data Classification and Conflation 

From consideration of the use context of the materials (e.g. insulants are normally used in 

the air-dry state while masonry is often wetted by rain) and the reliability/scope of their 

underlying test procedures (e.g. the more moisture a material contains, the greater the 

difficulty of enacting the test procedure), the material thermo-physical property data were 

conflated and organised within four material type categories as follows. 

 

Category 1: Impermeables 

This category contains materials that act as a barrier to water in the vapour and/or liquid 

states and do not alter their hygrothermal properties by absorbing or being wetted by 

water. 

 

Category 2: Non-Hygroscopic 

Lightweight insulants, such as mineral wools and foamed plastics, that display water 

vapour permeability, zero hygroscopic water content and an apparent thermal 

conductivity, and which operate under conditions of air-dry equilibrium normally 

protected from wetting by rain. 

 

Category 3: Inorganic-Porous 

Masonry and related materials that are inorganic, porous and may contain significant 

amounts of water due to hygroscopic absorption from the air or wetting by rain, which 

affects their hygrothermal properties and their thermal conductivity in particular. 

 

Category 4: Organic-Hygroscopic 

Organic materials such as wood and wood based products that are porous and strongly 

hygroscopic and which display a highly non-linear water vapour permeability 

characteristic. 
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Such a classification system is strongly related to the reliability of the test procedures, 

with the certainty decreasing from Category 1 to 4. For example, the vapour permeability 

of Category 4 materials is underestimated in the databases for materials at high humidity. 

A complete listing of the conflated data-set is available from esru@strath.ac.uk. 

 

In order to generate a robust data-set for use by practitioners, reduction rules were 

established and applied to the conflated data-set: 

1. removal of duplicates; 

2. removal of non-consensual values where disagreements existed; and 

3. removal of materials with missing parameters (except where it is the only entry of 

its type). 

 

This gave rise to the data as now incorporated in Appendix 3.A7 of Section 3 of CIBSE 

Guide A and which first appeared in the 1999 edition. With respect to this data-set, it is 

important to note that: 

 not all materials have a complete set of data, especially in relation to vapour 

diffusivity and surface absorptivity/emissivity; 

 the set is also incomplete in that it does not include materials that have entered the 

market since the study was concluded; 

 the set includes only materials that are common within the European construction 

industry – the original data-set may be consulted where more esoteric materials are 

the target; 

 some of the entries correspond to test procedures that predate current standards – 

such materials should be retested and, where appropriate, their data replaced; and 
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 materials in the organic-hygroscopic category continue to present a challenge in 

relation to the production of reliable and applicable data. 

 

Concluding Discussion 

Major sets of material thermo-physical properties were gathered, organised and conflated 

as a function of the expected reliability of the underlying test procedures. Reduction rules 

were then used to produce a robust sub-set of data for incorporation within Section 3 of 

CIBSE Guide A. The process highlighted the deficiency of the information available at 

the time of the project and the inconsistencies in the underlying test methods as 

summarised above in the section ‘Review of Collected Data-sets’.  Progress towards 

resolving these deficiencies and inconsistencies as evidenced in international and regional 

standards introduced since the project is now examined for some important areas. 

 

With regard to the thermal performance of materials, the guarded hot plate and heat flow 

meter methods continue to be the basis for measurement standards with the aim of 

determining heat transfer properties in the steady state for materials of either low-to-

medium thermal resistance or of medium-to-high thermal resistance, with a further 

subdivision of the latter by thickness [32, 33, 34]. For materials of low-to-medium 

thermal resistance, measurements on moist materials are covered albeit limited to within 

the hygroscopic range (i.e. no moisture movement) and subject to the explicit advice that 

‘routine measurements should, as far as possible, be carried out on dry materials’ [32]. 

The Standard contains considerable discussion on measurement limitations such 

as set by inhomogeneous materials with a relatively large aggregate or pore size 

and, in the case of moist materials, acknowledges that substantial errors can occur. 

One source of error is that the temperature difference needed to maintain a uniform 

moisture distribution across a test specimen falls below that recommended to minimise 
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errors in temperature-difference measurement. As noted at the time of the project, the 

thin-heater apparatus [29] offers an alternative method of measurement that could avoid 

this problem. This apparatus now has its own Standard [35]. In the particular case of 

moist masonry, the conclusion of the project that a 6% change in thermal conductivity per 

percent change in moisture content by volume was a reasonable approximation is 

reflected in European Standard EN 1745:2002 (Masonry and masonry products – 

methods for determining design thermal values).   

 

With regard to the thermal performance of building materials when assembled into 

building envelope components, the hot box method of testing was noted as gaining 

acceptance at the time of the project. This method has been, and continues to be, 

developed as a preferred method of testing assemblies, especially where complicated 

forms of heat flow take place.  The introduction of an international standard for hot box 

testing of insulating materials and insulated structures [36] has been followed by the later 

introduction of standards for masonry [37] and for window and door assemblies [38, 39].  

All hot box methods are directed at the determination of steady state thermal transmission 

properties. 

 

While reviewing the data on thermal performance, an associated problem concerning the 

relation of quoted densities to actual product densities was identified in the case of 

masonry.  This is can be seen as part of a broader issue of the quality control and 

assurance of the properties of masonry products.  Within the European Union, for 

example, this issue has been addressed through the introduction of harmonised standards 

for the specification and testing of masonry units, namely the multi-part standards EN 

771 – Specification for masonry units and EN 772 – Methods of test for masonry units.   
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Water vapour transmission was another property reviewed in the project where the 

difference in the behaviour of materials as determined by whether a material was 

hygroscopic or non-hygroscopic was not adequately represented in the collected data.  

This was deemed problematic, particularly for condensation risk assessment, since many 

building materials are hygroscopic and display highly non-linear water vapour 

permeability characteristics with changing ambient relative humidity. It was suggested 

that the water vapour transmission data for such materials should be represented over a 

range of relative humidity.  Subsequently, such data have been quoted in the ASHRAE 

Handbook of Fundamentals (Chapter 25) for several such building materials with 

reference to their use in condensation risk assessment and the modelling of transient 

hygrothermal behaviour. Another source, however, continues to quote two point results 

only [40]. While standards for wet and dry cup test methods have come into existence 

since the time of the project [41, 42], care in the use of data so derived needs to be 

exercised since agreement should not be expected between results obtained by different 

methods: a value obtained under one set of conditions may not be representative of the 

value under a different set of conditions [42].  In fact, as acknowledged in EN ISO 13788 

[43] and reinforced in CIBSE Guide A, moisture transfer is a complex process where 

many sources of error can affect calculations given the current state of knowledge of 

moisture transfer mechanisms. In recent times Yik and Chau [44] have explored the 

possibility of improving on the standard cup test method in terms of accuracy and speed 

by utilising a surface air dew-point probe. They concluded that the accuracy required for 

the measurement of the air dew point in the case of low permeability materials was 

unattainable. Phillipson et al [45] provide a useful overview of current methods 

and new approaches to  moisture measurement in building materials. 
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From the above discussion, it can be concluded that progress has been made on one of the 

recommendations arising from the project: that there was a need for a world-wide set of 

testing standards in order to harmonise material properties for use with building 

modelling tools that do not recognise regional boundaries. The detailed reports now 

required by the international standards for test methods noted above, in conjunction with 

an international standard for determining values under design conditions [46], should 

mean that future data does not have many of the deficiencies and inconsistencies of 

earlier data. 

 

In the meantime, the ASHRAE Handbook of Fundamentals  observation that “it 

can be problematic finding accurate data for all materials in a component” still 

stands. 
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