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ABSTRACT 
The take-up of heat pump technologies in the UK 
domestic sector has lagged far behind other countries in 
Europe and North America due primarily to the ready 
availability of cheap natural gas; this has led to the 
predominance of gas central heating systems in UK 
housing. However, with recent gas price volatility 
along with the depletion of the UK’s natural gas 
reserves interest in heat pump technology, particularly 
Air source heat pumps (ASHPs) is growing as they 
have the potential to be a direct, low-carbon 
replacement for existing gas boiler systems. However, 
to-date there have been few detailed, simulation-based 
performance studies of ASHP systems.   

In this paper a robust, dynamic simulation model of an 
ASHP device is described. The ASHP model has been 
integrated into a whole-building model and used to 
analyse the performance of a retro-fit domestic ASHP 
heating system. The simulation results were then 
compared to field trial data.  

INTRODUCTION 
The UK’s international greenhouse gas reduction 
commitments and national greenhouse gas reduction 
targets are driving increasingly stringent building 
regulations such as net “zero carbon” homes (this 
excludes appliance use) in England and Wales by 2016 
(DCLG, 2007) and a target for whole-life zero-carbon 
homes in Scotland by 2030 (Sullivan, 2007) and an 
expectation for an 80% cut in CO2 emissions by 2050 
(DECC, 2009a). In parallel, increasing fuel price 
instability (BBC, 2008), particularly in the price of 
natural gas is forcing a re-think in the provision of 
space and water heating in the domestic sector.  Close 
to 80% of the UK’s domestic water and space heating 
demands are met using gas boilers (Shorrock and 
Uttley, 2008) and it is highly unlikely that the UK’s 
emissions reduction targets could be achieved if this 
state-of-affairs persists. Hence, there is increasing 
interest in meeting the heat and power demands of 
buildings using low or zero-carbon (LZC) technologies 
such as biomass boilers, micro-renewables and heat 

pumps. Heat pumps are (belatedly) attracting increasing 
interest in the UK in that they complement major 
changes occurring at the larger scale in electricity 
production: the UK is currently embarking on the 
development of huge quantities of onshore and offshore 
wind generation.  Heat pumps offer the potential for 
low or zero carbon heating as the carbon content of grid 
electricity reduces into the future. Air source heat 
pumps (ASHPs) are of particular interest in that they 
have the potential to directly replace gas boilers in 
existing buildings and can operate in high-density 
housing (e.g. flats and terraced dwellings). High 
density housing comprises approximately 40% of the 
UK housing stock (Shorrock and Utley, ibid) and so the 
potential for retro-fitting of the technology is 
significant.   

Whilst there is an extensive literature on the 
performance of ground source heat pumps in the 
domestic sector (e.g. Healy and Ugursal [1997], 
Kummert and Bernier [2008] in Canada; and 
Underwood and Spitler [2007], Jenkins et. al. [2009a] 
in the UK) the literature on ASHP performance is far 
more sparse. Most modelling work focuses on specific 
aspects of device performance (e.g. Lui et al [2003], 
Yao [2004]) rather than integrated performance. In 
those performance studies that exist, Cockroft and 
Kelly (2006) used a low-resolution model to determine 
that in a UK context ASHPs could achieve significant 
carbon savings in comparison to the domestic heating 
technologies, including condensing gas boilers. Jenkins 
et al. (2009b) looked at the carbon savings potential of 
ASHP in office buildings and concluded that the 
technology did not guarantee emissions savings under 
all circumstances; this study used a performance map 
model of the ASHP and hourly predictions of heating 
and cooling from a simulation tool.   

This paper builds on previous performance studies, 
specifically attempting to ascertain the magnitude of 
the achievable carbon savings when ASHPs are retro-
fitted into social housing. However, in this case the 
modelling and simulation is done at a high level of 
resolution using a detailed model of a dwelling 
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map (a series of parametric equations linking the inputs 
of the model to the outputs). In this case the COP of the 
ASHP is represented as a 2nd-order polynomial function 
of the heating system return water temperature and the 
external ambient temperature difference. 

)( ambientreturn TTfCOP −=  (1) 

The performance map was augmented with algorithms 
to calculate the defrost status of the device and to 
modulate the return water temperature set point based 
on outside temperature. The predicted heat output from 
the performance map volume was passed to a lumped-
capacitance thermal model, featuring two thermal 
control volumes; these were added to enable the 
transient thermal performance of the device and 
coupled heat exchange equipment (condenser and 
evaporator heat exchangers) to be adequately modelled. 
The general form of the energy balance for these 
elements is as follows. 
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(2) 

Where Mici is the thermal capacity of volume i (J/K); T 
is its temperature (oC) and Q(t)1…n are individual heat 
fluxes at time t e.g. heat loss from the volume to 
environment; heat flux from another volume; heat lost 
to coolant, etc. 

CALIBRATION 
The ASHP model functional block was calibrated using 
data from independent laboratory performance tests 
conducted on the ASHP device conducted by BRE 
Ltd.; these gave performance characteristics over a 
broad range of condenser and evaporator temperatures. 
The lumped capacitance elements of the model were 
calibrated using an iterative parametric identification 
technique described by Ferguson (2009) with high 
resolution start-up data from the field trial data. 

METHODOLOGY 
The simulation of the ASHP system comprised several 
stages of work 1) the model predictions were compared 
against the field trial data 2) the model was simulated 
over a full year and performance data extracted 3) the 
performance of the ASHP was compared to an annual 
simulation of a gas boiler system.  

Simulations were run over a 1-year time period at a 
resolution of 1-minute intervals. This resolution was 
employed to adequately capture the dynamic 
performance of the heating system featuring the heat 
pump, particularly with regards to the operation of the 
control system and operations such as defrost and 
on/off cycling. Other researchers notably Hawkes and 

Leach (2007) have indicated that such high resolution 
modelling is required in order to adequately 
characterise performance.  Finally, as no long-term 
climate data existed for the Westfield site, simulations 
were run with an equivalent Scottish climate data set 
that was representative of the field trial location. 

 

Figure 4 calibrated COP characteristics of the ASHP 
device.    

VERIFICATION WITH FIELD TRIAL 
DATA  
Before simulating performance of the ASHP system 
when integrated into the Westfield dwelling, the 
integrated model’s predictions were compared to the 
performance data from the field trial. Figure 5a shows 
the predictions of COP vs ambient air temperature from 
the simulation of the ASHP device against the average 
COP vs ambient air relationship emerging from the 
field trials; this average relationship was derived from 
the measured COP values from eight of the monitored 
houses will be used as representing typical ASHP 
performance in these types of houses. This averaged 
relationship represents typical operating conditions for 
the monitored properties under varying conditions of 
occupancy. It offers a suitable comparison metric for 
the results of the simulation model in that the climate 
and assumed occupancy for the simulation model will 
differ from the exact conditions experienced during the 
field trials. A temporal comparison of simulation and 
monitored results would therefore not be appropriate 
under these circumstances. Comparing the simulation 
results to the averaged COP relationship allows a 
comparison of operating characteristics rather than 
temporal match to be undertaken. 

Comparing the simulation output to the field trial COP 
relationship (Figure 5a) it is evident that the scatter in 
the ASHP model output is predominantly above the 
average COP line: these points are indicative of the 
dynamic nature of the model and represent periods 
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when the heating system and building are warming up 
and where the resulting low heating system flow and 
return temperatures produce a temporarily high COP. 
However, the highest density of points is close to the 
average performance line; corresponding with periods 
in which the heat pump was operating with the return 
water temperature close to the set point (45oC). 

However, the simulation results clearly diverge from 
the monitored data at higher ambient air temperatures. 
Subsequent investigation revealed that the temperature 
compensation facility on the heat pump had not been 
enabled on the Westfield installations due to an 
installer error. Consequently, a second annual 
simulation was conducted with the temperature 
compensation disabled on the ASHP model. Figure 5b 
shows the comparison for this simulation and shows 
that the highest density of simulated results lie on or 
close to the average COP characteristic from the field 
trial; this demonstrates that the ASHP device in the 
ESP-r model operating in under similar conditions to 
those experienced at Westfield. 

RESULTS ANALYSIS  
The annual simulation data (with temperature 
compensation enabled) was further analysed to give an 
indication of likely annual ASHP performance when 
retro-fitted into the Westfield dwelling. Figure 6 is a 
typical example of the high resolution data extracted 
from the simulations and shows the living room air 
temperature, heat pump heat output, power 
consumption and return water temperature during part 
of a typical winter day. 

 

Figure 5a predicted COP vs Westfield average. 

 

Figure 5b predicted COP (no temperature 
compensation) vs Westfield average. 

Annual performance metrics were extracted from the 
high resolution data: the average annual COP for the 
device was approximately 2.7. The estimated energy 
annual electricity consumption for the ASHP was 2261 
kWh (8.14 GJ).   

A further simulation was undertaken where the ASHP 
heating system model was replaced with a model of a 
gas condensing boiler heating system. Other than the 
re-sizing of the radiator components to account for a 
higher supply temperature of 75oC, the system details 
are the same as those for the ASHP-based system 
shown in Figure 2. The nominal efficiency of the boiler 
device model used was 91%, which is typical of a 
modern boiler being installed in the UK at present. 
Note that the simulated system efficiency was lower 
due to parasitic losses. 

 

Figure 6 typical winter day results from the simulation. 

Analysis of the simulation results indicated an annual 
gas consumption of 7515 kWh (27.05 GJ or 691.8 m3) 
to meet the dwelling space heating load. 

Table 2 shows the annual energy consumptions, cost, 
and CO2 emissions emerging from the simulations for 
the simulated house heated using the ASHP (with 
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weather compensation enabled), and the alternative 
retro-fit option of a condensing gas boiler. Note that 
CO2 emissions are based on carbon intensities of 0.19 
kg/KWh for natural gas and 0.54 kg/KWh for grid 
electricity (DEFRA, 2009). 

The results indicate that an ASHP installation would 
produce approximately 15% less CO2 than a 
condensing gas boiler installation. This reduction 
would be greater if grid decarbonisation occurs, 
however it should be noted that the trend in UK grid 
electricity carbon intensity has been upwards in recent 
years rising from 0.52 kg/kWh in 2001 to the current 
value of 0.54 (Carbon Trust, 2009). 

With current UK gas and electricity prices, annual 
space heating costs using the ASHP are approximately 
8% higher than a gas condensing boiler system (£334 
in comparison to £309). In this case the ASHP system 
could only become cost competitive if the 
electricity/gas price ratio dropped below 3.32 compared 
to the current level of 3.55 (DECC, 2009b). 

It should be noted that both systems would be 
significantly less expensive to run than the direct 
electric and coal fired systems replaced prior to the 
study. For example, direct electric heating would result 
in an annual space heating bill of approximately £660, 
whilst space heating using a coal fired room heater 
would cost approximately £530 per year, assuming a 
device efficiency of 63% (Hens et al., 2001). 

CONCLUSIONS 
A combination of simulation and field trial data has 
been used to assess the annual performance of a 
domestic ASHP heating system when integrated into 
social housing in Westfield, Scotland. 

A detailed ASHP device model has been developed on 
the ESP-r platform based on the work of Ferguson et al. 
(2009) and calibrated using laboratory data. This model 
was integrated into a whole building ESP-r model of 
one of the Westfield dwellings.  

The model was compared to data emerging from the 
Westfield field trial; the simulation model was seen to 
suitably replicate the ASHP operating conditions 
observed in the field trial.  

Comparison of simulation results with field trial data 
indicated some installation problems with the ASHP 
device in that temperature compensation has not been 
activated. Additionally there was some evidence that 
some householders were employing secondary heating 
– despite the ASHP installation maintaining adequate 
comfort conditions. 

Simulations were undertaken to estimate the annual 
energy performance of the ASHP device and an 
equivalent gas condensing boiler system when retro-
fitted into a typical Westfield dwelling. These indicated 
that: 

• The ASHP offered approx. 15% carbon savings in 
comparison to a gas condensing boiler system 
using 2009 UK CO2 emissions coefficients for 
electricity and gas.  

• ASHP running costs were 8% higher using 2009 
UK average electricity and fuel prices than a 
standard gas condensing boiler system. 

FURTHER WORK 
The work reported in this paper represents the initial 
stages of the detailed modelling of domestic ASHPs in 
the UK. A range of additional simulations are being 
undertaken as part of several follow-on projects to 
gauge the performance of ASHP devices in a broader 
range of dwelling types and with respect to future more 
rigorous insulation building standards. 
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Table 1: Westfield house types 
Storeys Type Date of 

construction 
Bedrooms Roof Windows Number of 

houses 
1 Semi-detached 1969 1 Concrete tile double glazed 1 

1 4-in-a-block 
flat 

1938 3 Natural slate double glazed 2 

2 End terrace 1938 3 Natural slate double glazed 1 

2 End-terrace 1967 3 Concrete tile double glazed 2 

2 Mid terrace 1967-1969 3 Concrete tile double glazed 4 

 

Table 2: comparison of ASHP and gas condensing boiler system 
Heating system Price of fuel Annual Energy 

use  
(space heating only) 

Annual Cost  
(space heating only) 

Annual 
CO2 
emissions 

p/kWh kWh £ Kg 

ASHP 12.11 2,261 334 1,221 

Gas 
condensing 
boiler 

3.41 7,515 309 1,429 

 


