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A posteriori error covariances in variational data
assimilation

V. P. SHUTYAEV�, F.-X. LE DIMET†, and I. Yu. GEJADZE‡

Abstract — The problem of variational data assimilation for a nonlinear evolution model is formu-
lated as an optimal control problem to find some unknown parameters of the model. The equation for
the error of the optimal solution is derived through the statistical errors of the input data (background,
observation, and model errors). A numerical algorithm is developed to construct ana posteriorico-
variance operator of the analysis error using the Hessian of an auxiliary optimal control problem based
on the tangent linear model constraints.

The methods of data assimilation (DA) have become an important tool for anal-
ysis of complex physical phenomena in various fields of science and technology.
These methods make it possible to combine mathematical models, data resulted
from instrumental observations, anda priori information. The problems of varia-
tional data assimilation can be formulated as optimal control problems (e.g. [7, 9])
to find unknown model parameters such as initial and/or boundary conditions, right-
hand sides (forcing), and distributed coefficients. A necessary optimality condition
reduces the problem to an optimality system which includes input errors; hence the
error in the optimal solution. The statistical properties of the optimal solution error
are important for estimating the efficiency of data assimilation in terms of reducing
uncertainties in the model parameters and, therefore, in the model output.

The error in the optimal solution can be derived through the errors in the input
data using the Hessian of the cost functional of an auxiliary DA problem. For a de-
terministic case it has been done in [8]. If the errors in the input data are random
and subjected to a normal distribution, then for a linearized problem (tangent linear
approximation of the model) the covariance matrix of the analysis (optimal estima-
tion of the initial condition) error is given by the inverse of the Hessian matrix of
the cost functional (see e.g. [4, 5, 12, 14 –16]). This result was given (see e.g. [12])
for a discretized problem. In [3], a similar result was obtained for the continuous
operator formulation. We showed that in the nonlinear casea posterioricovariance
can often be approximated by the inverse Hessian of the auxiliary control problem
(‘H-covariance’) beyond the validity of the tangent linear hypothesis (TLH).�Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow 119333, Russia
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This paper presents a generalization of the theoretical results reported in [3]
to the case of model errors. The equation for the error of the optimal solution is
derived through the statistical errors of the input data (background, observation,
and model errors). A numerical algorithm is developed to construct ana posteriori
covariance operator of the analysis error using the Hessian of an auxiliary optimal
control problem based on the tangent linear model constraints. Different approaches
to model error formulation in 4D-Var are presented in [1, 17] (see also citations in
[1]).

The paper is organized as follows. In Section 1, we give the statement of the
variational data assimilation problem for a nonlinear evolution model to identify the
model parameters. In Section 2, the equation of the error of the optimal solution is
derived through the errors of the input data. In Section 3, we derive the formulas
and the algorithm for constructing the covariance operator of the optimal solution
errors through the covariance operators of the input errors using the Hessian of the
cost functional of the auxiliary control problem.

1. Statement of the problem

Consider the mathematical model of a physical process that is described by the
evolution problem ( ∂ϕ

∂ t
= F(ϕ ;λ )+ f ; t 2 (0;T)

ϕ
��
t=0 = u

(1.1)

whereϕ = ϕ(t) is the unknown function belonging for anyt to a Hilbert space
X, u 2 X, F is a nonlinear operator mappingY�Yp into Y with Y = L2(0;T;X),k � kY = (�; �)1=2

Y , Yp is a Hilbert space (the space of parameters, or control space),
f 2Y. Suppose that for givenu2X; f 2Y andλ 2Yp there exists a unique solution
ϕ 2Y to (1.1). The functionλ is assumed to be an unknown parameter of the model.

Let us introduce the functional

S(λ ) = 1
2
(V1(λ �λb);λ �λb)Yp + 1

2
(V2(Cϕ �ϕobs);Cϕ �ϕobs)Yobs (1.2)

whereλb 2Yp is a prior (background) function,ϕobs2Yobs is a prescribed function
(observational data),Yobs is a Hilbert space (observation space),C : Y ! Yobs is a
linear bounded operator,V1 : Yp ! Yp andV2 : Yobs! Yobs are symmetric positive
definite operators.

Consider the following data assimilation problem with the aim to identify the
parameterλ : find λ 2Yp andϕ 2Y such that they satisfy (1.1), and the functional
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S(λ ) on the set of solutions to (1.1) takes the minimum value, i.e.8>>><>>>: ∂ϕ
∂ t = F(ϕ ;λ )+ f ; t 2 (0;T)

ϕ
��
t=0 = u

S(λ ) = inf
v2Yp

S(v): (1.3)

We suppose that the solution of (1.3) exists. (Note that the solvability of optimal
control parameter estimation problems has been addressed,e.g., in [2, 11].) The
necessary optimality conditionS0(λ ) = 0 reduces problem (1.3) to the optimality
system [13]: 8<: ∂ϕ

∂ t
= F(ϕ ;λ )+ f ; t 2 (0;T)

ϕ
��
t=0 = u

(1.4)( �∂ϕ�
∂ t

� (F 0
ϕ(ϕ ;λ ))�ϕ� = �C�V2(Cϕ �ϕobs); t 2 (0;T)

ϕ���
t=T = 0

(1.5)

V1(λ �λb)� (F 0
λ (ϕ ;λ ))�ϕ� = 0: (1.6)

HereF 0
ϕ(ϕ ;λ ) : Y !Y andF 0

λ (ϕ ;λ ) : Yp !Y are the Frechet derivatives ofF with
respect toϕ andλ , respectively,(F 0

ϕ(ϕ ;λ ))� :Y!Y; (F 0
λ (ϕ ;λ ))� :Y!Yp are their

adjoints, andC� is the adjoint toC defined by(Cϕ ;ψ)Yobs = (ϕ ;C�ψ)Y; ϕ 2Y;ψ 2
Yobs.

We assume that system (1.4)–(1.6) has a unique solution. Suppose thatλb =
λ̄ +ξ1; ϕobs=Cϕ̄ +ξ2, f = f̄ +ξ3, whereξ1 2Yp; ξ2 2Yobs, ξ3 2Y, andϕ̄ is the
(‘true’) solution to the problem (1.1) withλ = λ̄ and f = f̄ :8<: ∂ ϕ̄

∂ t = F(ϕ̄; λ̄ )+ f̄ ; t 2 (0;T)
ϕ̄
��
t=0 = ū: (1.7)

The functionsξ1;ξ2;ξ3 are treated as the errors of the input dataλb;ϕobs; f
(‘background’, observation, and model errors, respectively). ForV1 andV2 in (1.2),
one usually hasV1 = V�1

ξ1
; V2 = V�1

ξ2
, whereVξ is the covariance operator of the

corresponding errorξ .

2. Equation for the optimal solution error

Let us derive the equation for the optimal solution error through input errors. Let
δϕ = ϕ � ϕ̄; δλ = λ � λ̄ . Then, from (1.7) and the optimality system (1.4)–(1.6),
we obtain



∂δϕ
∂ t

Fϕ ϕ̃ λ̃ δϕ Fλ ϕ̃ λ̃ δλ ξ3 t 0;T)
δϕ t 0 0

(2.1)

∂ϕ
∂ t

Fϕ ϕ λ ϕ C V2 Cδϕ ξ2 t 0;T)
ϕ��

t=T = 0
(2.2)

V1(δλ �ξ1)� (F 0
λ (ϕ ;λ ))�ϕ� = 0 (2.3)

whereϕ̃ = ϕ̄ + τ(ϕ� ϕ̄); λ̃ = λ̄ + τ(λ � λ̄)τ 2 [0;1℄:
Note thatϕ̃ = ϕ̄ + τδϕ ; ϕ = ϕ̄ +δϕ , λ̃ = λ̄ + τδλ ; λ = λ̄ +δλ . The system

(2.1)–(2.3) can be written in the form:(
∂δϕ
∂ t

�F 0
ϕ(ϕ̄ ; λ̄ )δϕ = F 0

λ (ϕ̄ ; λ̄ )δλ +ξ3+ ξ̃3; t 2 (0;T)
δϕ jt=0 = 0

(2.4)( �∂ϕ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�ϕ� = �C�V2(Cδϕ �ξ2)+ξ4; t 2 (0;T)

ϕ���
t=T = 0

(2.5)

V1(δλ �ξ1)� (F 0
λ (ϕ̄ ; λ̄ ))�ϕ� = ξ5 (2.6)

where
ξ̃3 = [F 0

ϕ(ϕ̃; λ̃ )�F 0
ϕ(ϕ̄ ; λ̄ )℄δϕ +[F 0

λ (ϕ̃ ; λ̃ )�F 0
λ (ϕ̄; λ̄ )℄δλ

ξ4 = [(F 0
ϕ(ϕ ;λ ))�� (F 0

ϕ(ϕ̄ ; λ̄ ))�℄ϕ�; ξ5 = [(F 0
λ (ϕ ;λ ))�� (F 0

λ (ϕ̄ ; λ̄ ))�℄ϕ�:
Let us introduce the operatorH : Yp !Yp defined by the successive solutions of

the following problems:(
∂ψ
∂ t

�F 0
ϕ(ϕ̄ ; λ̄ )ψ = F 0

λ (ϕ̄ ; λ̄ )v; t 2 (0;T)
ψ jt=0 = 0

(2.7)( �∂ψ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�ψ� = �C�V2Cψ ; t 2 (0;T)

ψ���
t=T = 0

(2.8)

Hv=V1v� (F 0
λ (ϕ̄; λ̄ ))�ψ�: (2.9)

Below we introduce four auxiliary operatorsR1;R2;R3;R4. Let R1 =V1. Let us in-
troduce the operatorR2 : Yobs!Yp acting on the functionsg2Yobs according to the
formula

R2g= (F 0
λ (ϕ̄ ; λ̄ ))�θ� (2.10)
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whereθ� is the solution to the adjoint problem( �∂θ�
∂ t � (F 0

ϕ(ϕ̄ ; λ̄ ))�θ� = C�V2g; t 2 (0;T)
θ���

t=T = 0: (2.11)

The operatorR3 : Y !Yp is defined on the functionsq2Y as follows:(
∂θ1
∂ t �F 0

ϕ(ϕ̄ ; λ̄ )θ1 = q; t 2 (0;T)
θ1jt=0 = 0

(2.12)( �∂θ�
1

∂ t � (F 0
ϕ(ϕ̄ ; λ̄ ))�θ�

1 = �C�V2Cθ1; t 2 (0;T)
θ�

1

��
t=T = 0

(2.13)

R3q= (F 0
λ (ϕ̄; λ̄ ))�θ�

1 : (2.14)

The operatorR4 : Y !Yp is defined on the functionsh2Y as( �∂θ�
2

∂ t
� (F 0

ϕ(ϕ̄ ; λ̄ ))�θ�
2 = h; t 2 (0;T)

θ�
1

��
t=T = 0

(2.15)

R4h= (F 0
λ (ϕ̄; λ̄ ))�θ�

2 : (2.16)

From (2.7)–(2.16) we conclude that system (2.4)–(2.6) is equivalent to the single
equation forδλ :

Hδλ = R1ξ1+R2ξ2+R3(ξ3+ ξ̃3)+R4ξ4+ξ5: (2.17)

This is the exact equation forδλ . Under the hypothesis thatH is invertible, we get

δλ = T1ξ1+T2ξ2+T3(ξ3+ ξ̃3)+T4ξ4+T5ξ5 (2.18)

whereTi =H�1Ri; i =1;2;3;4; T5 =H�1; T1 :Yp!Yp; T2 :Yobs!Yp; T3;T4 :Y!Yp:
Note, however, that the functionsϕ ;λ ; ϕ̃; λ̃ in (2.1)–(2.3) depend onξ1;ξ2;ξ3,

as the result, the termsT3ξ3;T4ξ4;T5ξ5 also depend onξ1;ξ2;ξ3 (nonlinearly), and it
is not possible to representδλ throughξ1;ξ2;ξ3 in an explicit form. To derive from
(2.18) the covariance operator ofδλ , we need to introduce some approximation of
(2.18). Sinceϕ̃ = ϕ̄ + τδϕ ; ϕ = ϕ̄ + δϕ , λ̃ = λ̄ + τδλ ; λ = λ̄ + δλ , we assume
that

T3ξ̃3 � 0; T4ξ4 � 0; T5ξ5 � 0 (2.19)

then (2.18) reduces to
δλ = T1ξ1+T2ξ2+T3ξ3 (2.20)

which is equivalent to the system:



(
∂δϕ
∂ t

�F 0
ϕ(ϕ̄ ; λ̄ )δϕ = F 0

λ (ϕ̄ ; λ̄ )δλ +ξ3; t 2 (0;T)
δϕ jt=0 = 0

(2.21)( �∂ϕ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�ϕ� = �C�V2(Cδϕ �ξ2); t 2 (0;T)

ϕ���
t=T = 0

(2.22)

V1(δλ �ξ1)� (F 0
λ (ϕ̄ ; λ̄ ))�ϕ� = 0: (2.23)

Taking into account the definition of̃ξ3;ξ4;ξ5; it is easily seen that assumption
(2.19) comes from the first-order approximation of the Taylor–Lagrange formula
under the hypothesis thatF is twice continuously Frechet differentiable [10]. Using
this formula, the errors̃ξ3;ξ4;ξ5; may be expressed through the second derivatives
of F, and the values of the norms ofT3ξ̃3;T4ξ4;T5ξ5 can be estimated, thus giving the
possibility to analyse the approximation error when taking (2.20) instead of (2.18).

The problem (2.21)–(2.23) is a linear data assimilation problem; for fixedλ̄ ; ϕ̄
it is the necessary optimality condition to the following (auxiliary) minimization
problem: Findδλ andδϕ such that8>>><>>>: ∂δϕ

∂ t
�F 0

ϕ(ϕ̄ ; λ̄ )δϕ = F 0
λ (ϕ̄ ; λ̄ )δλ +ξ3; t 2 (0;T)

δϕ jt=0 = 0

S1(δλ ) = inf
v2Yp

S1(v) (2.24)

where

S1(δλ ) = 1
2
(V1(δλ �ξ1);δλ �ξ1)Yp + 1

2
(V2(Cδϕ �ξ2);Cδϕ �ξ2)Yobs: (2.25)

The HessianH of functional (2.25) is defined onv2Yp by (2.7)–(2.9). Note that
for ξ2 =0 the operatorH coincides with the HessianH of the original nonlinear DA
problem on the exact solution̄λ . The HessianH acts inYp as a self-adjoint operator
with the domain of definitionD(H) =Yp. Moreover, due toV1;V2, the operatorH is
positive definite, and hence invertible.

Note that if the tangent linear hypothesis is valid (e.g. [4]), then for smallδϕ ;δλ
we can choose (2.19). However, the transition from (2.18) to (2.20) may not neces-
sarily require the tangent linear hypothesis to be valid.

As follows from (2.20), the influence of the errorsξ1;ξ2;ξ3 on the value of
the errorδλ of the optimal solution is determined by the operatorsH�1R1;H�1R2;
H�1R3, respectively. The values of the norms of these operators can be considered as
sensitivity coefficients: the less is the norm of the operatorH�1Ri, the less impact on
δλ is given by the corresponding errorξi. This criterion was used for deterministic
error analysis in [6, 8] with the aim to identify the initial condition. Here, assuming



the statistical structure of the errorsξ1;ξ2;ξ3, we will derive the covariance operator
of the optimal solution (parameter) error through the covariance operators of the
input errors and develop a numerical algorithm to construct the covariance operator
of the optimal solution error using the covariance operators of the input errors.

3. Covariance operator as the inverse Hessian

Consider error equation (2.20), whereTi = H�1Ri; i = 1;2;3; T1 : Yp!Yp;
T2 : Yobs!Yp; T3 : Y!Yp: Below we suppose that the errorsξ1;ξ2;ξ3 are nor-
mally distributed, unbiased, and mutually uncorrelated. ByVξi

we denote the co-
variance operator of the corresponding errorξi; i = 1;2;3, i.e.Vξ1

�= E[(�;ξ1)Ypξ1℄;
Vξ2

� = E[(�;ξ2)Yobsξ2℄; Vξ3
� = E[(�;ξ3)Yξ3℄, whereE is the expectation. ByVδλ we

denote the covariance operator of the optimal solution (analysis) error:Vδλ � =
E[(�;δλ )Ypδλ ℄. From (2.20) we get

Vδλ = T1Vξ1
T�

1 +T2Vξ2
T�

2 +T3Vξ3
T�

3 : (3.1)

To find the covariance operatorVδλ , we need to construct the operatorsTiVξi
T�

i ;
i = 1;2;3. We proved in [13] that

T1Vξ1
T�

1 +T2Vξ2
T�

2 = H�1 (3.2)

whereH is the Hessian of the auxiliary data assimilation problem (2.24)–(2.25)
defined by (2.7)–(2.9). Then,

Vδλ = H�1+T3Vξ3
T�

3 : (3.3)

Consider now the operatorT3 =H�1R3. To constructT3Vξ3
T�

3 , we need to derive
R�

3. Forq2Y; p2Yp, we have from (2.12)–(2.14):(R3q; p)Yp = ((F 0
λ (ϕ̄ ; λ̄ ))�θ�

1 ; p)Yp =�(C�V2Cθ1;φ)Y =�(V2Cθ1;Cφ)Yobs

whereθ1;θ�
1 are the solutions to (2.12)–(2.13), andφ is the solution to (2.7) for

v= p. Further, (R3q; p)Yp =�(θ1;C�V2Cφ)Y = (q;φ�)Y
andR�

3p= φ�, whereφ� is the solution to the adjoint problem:( �∂φ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�φ� = �C�V2Cφ ; t 2 (0;T)

φ���
t=T = 0: (3.4)

Let Q = R3Vξ3
R�

3 : Yp !Yp. The operatorQ can be defined as follows: for a given
p 2 Yp find φ as the solution of (2.7) forv = p, find φ� as the solution of (3.4),
and forq=Vξ3

φ� find θ1;θ�
1 as the solutions of (2.12)–(2.13); then putR3Vξ3

R�
3 =(F 0

λ (ϕ̄; λ̄ ))�θ�
1 .



Therefore,T3Vξ3
T�

3 = H�1R3Vξ3
R�

3H�1 = H�1QH�1, andQ is defined by the
successive solutions of the following problems (for the givenp2Yp):(

∂φ
∂ t

�F 0
ϕ(ϕ̄; λ̄ )φ = F 0

λ (ϕ̄; λ̄ )p; t 2 (0;T)
φ jt=0 = 0

(3.5)( �∂φ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�φ� = �C�V2Cφ ; t 2 (0;T)

φ���
t=T = 0

(3.6)(
∂θ1
∂ t

�F 0
ϕ(ϕ̄; λ̄ )θ1 = Vξ3

φ�; t 2 (0;T)
θ1jt=0 = 0

(3.7)( �∂θ�
1

∂ t
� (F 0

ϕ(ϕ̄ ; λ̄ ))�θ�
1 = �C�V2Cθ1; t 2 (0;T)

θ�
1

��
t=T = 0

(3.8)

then
Qp= (F 0

λ (ϕ̄ ; λ̄ ))�θ�
1 : (3.9)

The algorithm (3.5)–(3.9) can be used to compute the operatorQ numerically.
Then, from (3.3), we come to the main result of the paper.

Theorem 3.1. The covariance operator Vδλ of the optimal solution error is
given by the formula

Vδλ = H�1+H�1QH�1 (3.10)

where H is the Hessian of the functional S1 defined by(2.7)–(2.9), and the operator
Q is defined by(3.5)–(3.9).

It is not difficult to show thatQ is the Hessian of the following minimization
problem: Findv2Yp such that

SQ(v) = inf
p2Yp

SQ(p) (3.11)

where

SQ(p) = 1
2
(Vξ3

φ�;φ�)Y (3.12)

andφ� is defined throughp by the successive solutions of the following problems:(
∂φ
∂ t

�F 0
ϕ(ϕ̄; λ̄ )φ = F 0

λ (ϕ̄; λ̄ )p; t 2 (0;T)
φ jt=0 = 0

(3.13)( �∂φ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�φ� = �C�V2Cφ ; t 2 (0;T)

φ���
t=T = 0: (3.14)
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