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A posteriori error covariancesin variational data
assimilation
V. P. SHUTYAEV* F.-X.LE DIMETT and I. Yu. GEJADZE

Abstract — The problem of variational data assimilation for a nonlinear evolution model is formu-
lated as an optimal control problem to find some unknown parameters of the model. The equation for
the error of the optimal solution is derived through the statistical errors of the input data (background,
observation, and model errors). A numerical algorithm is developed to constracpasteriorico-
variance operator of the analysis error using the Hessian of an auxiliary optimal control problem based
on the tangent linear model constraints.

The methods of data assimilation (DA) have become an important tool for anal-
ysis of complex physical phenomena in various fields of science and technology.
These methods make it possible to combine mathematical models, data resulted
from instrumental observations, aadpriori information. The problems of varia-
tional data assimilation can be formulated as optimal control problems (e.qg. [7, 9])
to find unknown model parameters such as initial and/or boundary conditions, right-
hand sides (forcing), and distributed coefficients. A necessary optimality condition
reduces the problem to an optimality system which includes input errors; hence the
error in the optimal solution. The statistical properties of the optimal solution error
are important for estimating the efficiency of data assimilation in terms of reducing
uncertainties in the model parameters and, therefore, in the model output.

The error in the optimal solution can be derived through the errors in the input
data using the Hessian of the cost functional of an auxiliary DA problem. For a de-
terministic case it has been done in [8]. If the errors in the input data are random
and subjected to a normal distribution, then for a linearized problem (tangent linear
approximation of the model) the covariance matrix of the analysis (optimal estima-
tion of the initial condition) error is given by the inverse of the Hessian matrix of
the cost functional (see e.g. [4, 5, 12, 14-16]). This result was given (see e.g. [12])
for a discretized problem. In [3], a similar result was obtained for the continuous
operator formulation. We showed that in the nonlinear @apesterioricovariance
can often be approximated by the inverse Hessian of the auxiliary control problem
(‘H-covariance’) beyond the validity of the tangent linear hypothesis (TLH).
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This paper presents a generalization of the theoretical results reported in [3]
to the case of model errors. The equation for the error of the optimal solution is
derived through the statistical errors of the input data (background, observation,
and model errors). A numerical algorithm is developed to construet@osteriori
covariance operator of the analysis error using the Hessian of an auxiliary optimal
control problem based on the tangent linear model constraints. Different approaches
to model error formulation in 4D-Var are presented in [1, 17] (see also citations in
[1]).

The paper is organized as follows. In Section 1, we give the statement of the
variational data assimilation problem for a nonlinear evolution model to identify the
model parameters. In Section 2, the equation of the error of the optimal solution is
derived through the errors of the input data. In Section 3, we derive the formulas
and the algorithm for constructing the covariance operator of the optimal solution
errors through the covariance operators of the input errors using the Hessian of the
cost functional of the auxiliary control problem.

1. Statement of the problem

Consider the mathematical model of a physical process that is described by the
evolution problem

{ 9 _ F(p,A)+f, te(0,T) (1.1)

u

sl
i}
o

I

where¢ = ¢(t) is the unknown function belonging for aryto a Hilbert space

X, u € X, F is a nonlinear operator mappingx Yy into Y with Y = L»(0, T; X),

|-y = (-,-)\1/2, Yy is a Hilbert space (the space of parameters, or control space),
f €Y. Suppose that for giveme X, f € Y andA €Y, there exists a unique solution

¢ €Y to(1.1). The functiom is assumed to be an unknown parameter of the model.

Let us introduce the functional

(VA = Ao),A = Aoy, + 5(Vo(CO — B, CO — onahvs (1.2

NI

SA) =

whereA, € Y}, is a prior (background) functiomons € Yobs is @ prescribed function
(observational data)yysis a Hilbert space (observation spadg),Y — Yops IS @
linear bounded operatoy; : Yy, — Y, andVa : Yops — Yops are symmetric positive
definite operators.

Consider the following data assimilation problem with the aim to identify the
parametel: find A €Y, and¢ €Y such that they satisfy (1.1), and the functional
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S(A) on the set of solutions to (1.1) takes the minimum value, i.e.

90— F(pA)+f, te(OT)
¢l_o,=u (1.3)
S(A) = inf Yv).

VeYy

We suppose that the solution of (1.3) exists. (Note thatdhability of optimal
control parameter estimation problems has been addressgedin [2, 11].) The
necessary optimality conditiof (A) = 0 reduces problem (1.3) to the optimality
system [13]:

{ % = F($,A)+f, te(0T) (1.4)

‘Mt:o =Uu

{ SO (R8P = CCH— ), tEOT) g
¢*‘t:T =0

V(A = Ao) = (F($,A))"¢" =0. (1.6)
HereF4(¢,A) Y — Y andF; (¢,A) : Yp — Y are the Frechet derivatives Bfwith
respect tap andA, respectively(Fy (¢,A))* 1Y =Y, (Fi(9,A))* 1Y = Y, are their
adjoints, andC* is the adjoint taC defined by(C, @)y,,. = (¢,.C*PY)y, p €Y, €
Yobs-
_ We assume that system (1.4)—(1.6) has a unique solutiorpdSaphatA, =
A+&1, Pops=Co + &2, f = f + &3, whereéy € Yy, & € Yous €3 €Y, andg is the

(‘true’) solution to the problem (1.1) with = A andf = f:

d T ——

{ 9 _F@En 41, te@m) wn
(ﬂt:O =u

The functionséy, &,, &3 are treated as the errors of the input dagagops, f

(‘background’, observation, and model errors, respelgfivéorV;, andV; in (1.2),
one usually ha¥, = Vgl, Vo = Vél, whereV; is the covariance operator of the

corresponding errof.

2. Equation for the optimal solution error

Let us derive the equation for the optimal solution erroptigh input errors. Let
0p=¢ —¢, dA = A —A. Then, from (1.7) and the optimality system (1.4)—(1.6),
we obtain



f’% Fo§ASHp F, §Adr & t OT) 2.1)

opto O

% Fod A ¢ CV,Cé & t OT) (2.2)
¢y =0

Vi(8A — &) — (Fi(¢,4))"¢* =0 (2.3)

whered = +1(p— @), A =A+T(A — A)re[Ol]
Note that) = ¢ + 109, d =P + 3P, A =A +TOA, A = A +6A. The system
(2.1)—(2.3) can be written in the form:

{ %—Fuiaw - gmm‘)m +&+E teOT) o4
t=0 =

{ _051* ~(Fp(#.2)"¢" = ~CVo(C8 ~ &) +&s, te(OT)  (ng
¢ s =0

V1(3A — &) — (F}(#.,2)) ¢* = & (2.6)
where . . _ N _
&= [Fy(B,A) —Fp(#,1)]5 + [F5 (§.A) — F; (§,1)]5A

Ea=[(Fp(0,2) = (F3($,1))19", & =1[(Fi(9,A)" — (F§(8,4))"]¢".

Let us introduce the operatét : Y, — Y, defined by the successive solutions of
the following problems:

{ 9% _E @My = F(FAv te(0T) 2.7)
Y=o = 0
{ -0 (R@N) W = ~CViCY, te(0T) (2.8)
w*‘t:T =0
HV = Viv— (F} (#,4))" ¢ (2.9)

Below we introduce four auxiliary operatoRs, R, Rz, R4. Let Ry = V3. Let us in-
troduce the operatd®; : Yops— Yp acting on the functiong € Yops according to the

formula o
R.g= (F1(9,1))"6 (2.10)
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where8* is the solution to the adjoint problem

{ 98" _(F(§.0)'6° = CVig, e (0.T) 211)
9*‘t:T =0
The operatoR3 : Y — YY) is defined on the functiong€ Y as follows:
P .
O —Fj(§.M)0 = q, te(0T) (2.12)
B0 = 0
09{ F! _)T *OFr = —C*\VL.CO t 0,T
~ %58 — (F(#,4))76; = —C'VsCO, te(0,T) (2.13)
ef‘t:T =0
Redt = (F3 (§.))°6;. (214)
The operatoRy : Y — Y, is defined on the functionisc Y as
00; = \)* 0
{ —C2 — (F3(§.1)65 = h, te(0T) (2.15)
ef‘t:T =0
Reh= (F} (£1))"65. (216)

From (2.7)—(2.16) we conclude that system (2.4)—(2.6) isvadent to the single
equation fordA:

HOA = Ri&1 + Ro&y + Ra(&3+ &3) + Raéa + &s. (2.17)

This is the exact equation f@A . Under the hypothesis thét is invertible, we get

SN = a1+ Tobo+ Ta(&3+ &) + Tals+ Tsés (2.18)

whereTi=H IR, i=1,2,34, Ts=H 1, T1:Yp—=Yp, T2: Yobs—Yp, T3, Ta: Y=Y,

Note, however, that the functiords,)\,(ﬁ,;\ in (2.1)—(2.3) depend 08, &>, &3,
as the result, the ternisés, T4é4, T5&s also depend 08y, &>, &3 (nonlinearly), and it
is not possible to represedi throughé,, &», &3 in an explicit form. To derive from
(2.18) the covariance operator &A, we need to introduce some approximation of
(2.18). Sincep = ¢ +10¢, ¢ =P+ 3¢9, A = A +T1IA, A = A +OA, we assume
that

Taés~0, Tés4~0, Tsés~0 (2.19)

then (2.18) reduces to
OA =Tié1+Taéo+Taés (2.20)

which is equivalent to the system:



{ %9 _R(F1)00 = F(EXOA+E LeOT) o)
0Pli—o = O
{ S0 (@) = —CVa(COP—&). te(OT) 5 on
¢*‘t:T =0
Vi(8A — &) — (F(§,A))"¢" =0. (2.23)

Taking into account the definition @g, &4, &5, it is easily seen that assumption
(2.19) comes from the first-order approximation of the Taylor-Lagrange formula
under the hypothesis thatis twice continuously Frechet differentiable [10]. Using
this formula, the errorgs, é4, és, may be expressed through the second derivatives
of F, and the values of the norms®fés, T4, Ts&s can be estimated, thus giving the
possibility to analyse the approximation error when taking (2.20) instead of (2.18).

The problem (2.21)—(2.23) is a linear data assimilation problem; for fixed
it is the necessary optimality condition to the following (auxiliary) minimization
problem: FinddA andd¢ such that

S —Fi(#,1)80 = F{(§,A)0A +&, te(0,T)
3li—o = 0 (2.24)
S1(8A) = inf Si(v)

where

S1(8A) = S (Va6 — £1),8A — &)y, + 5 (Va(COP — £).C86 — &), (2.25)

The Hessiar of functional (2.25) is defined onec Y, by (2.7)—(2.9). Note that
for &, = 0 the operatoH coincides with the Hessia##” of the original nonlinear DA
problem on the exact solutioh. The Hessiaf acts inY,, as a self-adjoint operator
with the domain of definitiod(H) = Y,,. Moreover, due t&,V,, the operatoH is
positive definite, and hence invertible.

Note that if the tangent linear hypothesis is valid (e.g. [4]), then for sdalbA
we can choose (2.19). However, the transition from (2.18) to (2.20) may not neces-
sarily require the tangent linear hypothesis to be valid.

As follows from (2.20), the influence of the erroés, &», &3 on the value of
the errordA of the optimal solution is determined by the operatars'Ry, H 1R,
H~1Rs, respectively. The values of the norms of these operators can be considered as
sensitivity coefficients: the less is the norm of the oper#itotR;, the less impact on
OA is given by the corresponding err§r This criterion was used for deterministic
error analysis in [6, 8] with the aim to identify the initial condition. Here, assuming



the statistical structure of the errdfs &, &3, we will derive the covariance operator

of the optimal solution (parameter) error through the covariance operators of the
input errors and develop a numerical algorithm to construct the covariance operator
of the optimal solution error using the covariance operators of the input errors.

3. Covariance operator astheinverse Hessian

Consider error equation (2.20), whel® = H !R,i = 1,23, Ty : Yp—Y,,
T2 : Yobs—Yp, T3 : Y=Y, Below we suppose that the erroés, &>, &3 are nor-
mally distributed, unbiased, and mutually uncorrelated. Vi@ywe denote the co-
variance operator of the corresponding egori = 1,2,3, i.e.Vg,- = E[(, &1)v,¢1],
Vg,- = E[(+, &2)vype€2]s Ve,- = E(+, €3)v €3], whereE is the expectation. BY;, we
denote the covariance operator of the optimal solution (analysis) afspr:=
E[(-,0A)y,0A]. From (2.20) we get

Vor = TiVg, T + TV, T+ TaV, T3 (3.1)

To find the covariance operatdg, , we need to construct the operatdpe; T,",
i =1,2,3. We proved in [13] that

TiVe, Ty + TV, Ty =H ™ (3.2)

whereH is the Hessian of the auxiliary data assimilation problem (2.24)—(2.25)
defined by (2.7)—(2.9). Then,

Vsp = H 1+ TaVe, T3 (3.3)

Consider now the operatdg = H ~'Rs. To construct: 3Ve, T3, we need to derive
R;. Forge Y, p €Yy, we have from (2.12)—(2.14):

(R0, P)y, = ((F5 (#,1))*6%, P}y, = —(C*VoCBL, @)y = —(VoCBL,CR)v,,

where 8y, 6; are the solutions to (2.12)—(2.13), apds the solution to (2.7) for
v = p. Further,

(Redl, Py, = —(61,C"V2LCo)y = (9, ¢" )y
andR;p = ¢*, whereg* is the solution to the adjoint problem:
_99" (R (@.2) et = ~CViCo, te(0,T)
ot i) y g Qo = 2L, ) (34)
2 ‘t:T = 0.
Let Q = RaVg,R3 1 Yp — Yp. The operatoQ can be defined as follows: for a given

p €Y, find @ as the solution of (2.7) fov = p, find ¢* as the solution of (3.4),
and forq = Vg, ¢" find 6y, 6] as the solutions of (2.12)—(2.13); then Bz, R; =

(Fx(9,2))"6;.



Therefore, TaVe, T = H™ 'RV, RSH ™1 = HT'QH™1, andQ is defined by the
successive solutions of the following problems (for the gipenY,):

{ 90 _Fi(#2)0 = F{(#.N)p. te(©T) (3.5)
Pli=0 = 0
0 i 3 * ok *

{ ~2E —(F)(§.2) 9" = —C'ViCo, te(0,T) (3.6)

@y =0
OU—Fp(§. M8 = Ve, te(0T) 3.7)

Bilt—0 = 0
T~ (326 = ~CViChr. te(0T) (38)

Gf‘tzT =0

then T
Qp= (F}($.2))°6;. (3.9)

The algorithm (3.5)—(3.9) can be used to compute the ope@tormerically.
Then, from (3.3), we come to the main result of the paper.

Theorem 3.1. The covariance operator gy of the optimal solution error is
given by the formula
Vsy =H 14+ H-IQH? (3.10)

where H is the Hessian of the functional &fined by2.7)—(2.9) and the operator
Q is defined by3.5)—(3.9).

It is not difficult to show thatQ is the Hessian of the following minimization
problem: Findv € Y, such that

S(v) = jnf So(p) (3.11)
where 1
Sa(p) = 5(Ve, @', 9 (3.12)
and¢* is defined througltp by the successive solutions of the following problems:
0 - -
@li=o = 0
a(P* %\ \ % *
{ ot _(Fdl)(d)a)\)*) ¢* = —C'VCp, te(0,T) (3.14)
2 ‘t:T = 0.
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