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Abstract 

 

The effect of autofrettage on the stress level in thick-walled cylinders with a radial cross-

bore is investigated by applying inelastic Finite Element Analysis (FEA) with cyclic 

pressure loading. A macro is created in ANSYS to calculate the equivalent alternating 

stress intensity, Seq, based on the ASME Boiler and Pressure Vessel Code. The value of 

Seq is used to evaluate the fatigue life of the vessel. For a specific cyclic load level, a 

distinct optimum autofrettage pressure is identified by plotting autofrettage pressure 

against the number of cycles from design fatigue data. The fatigue life of the 

autofrettaged vessel with such an optimum pressure is significantly increased compared 

with the case where no autofrettage is used.  
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Nomenclature 

a   inner radius 

b   outer radius 

c   cross-bore radius 

E   Young’s Modulus 

Nf   number of cycles to failure 

Pauto   autofrettage pressure  

Sij   stress differences 

Seq   equivalent alternating stress intensity 

Salt ij   alternating stress intensity 

σn ij  normal stresses 

σnm   mean Stress 

σy   yield stress 

υ   Poisson’s Ratio 
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Figure captions 

Figure 1 Fluctuating Stress Pattern 

Figure 2 The thick-walled cylinder with a radial cross-bore 

Figure 3 Finite element analysis model 

Figure 4 Variation of Seq with Pauto, b/a=1.75 and c/a=0.2 

Figure 5 Variation of Nf with Pauto, b/a=1.75 and c/a=0.2 

Figure 6 Variation of Seq with Pauto for b/a=1.5 

Figure 7 Variation of Seq with Pauto for b/a=1.75 

Figure 8 Variation of Seq with Pauto for b/a=2 

Figure 9 Variation of Seq with Pauto for c/a=0.05 

Figure 10 Variation of Seq with Pauto for c/a=0.1 

Figure 11 Variation of Seq with Pauto for c/a=0.15 

Figure 12 Variation of Seq with Pauto for c/a=0.2 

Figure 13 Variation of Seq with Pauto for c/a=0.25 

Figure 14 Fatigue life comparison for b/a=1.5 

Figure 15 Fatigue life comparison for b/a=1.75 

Figure 16 Fatigue life comparison for b/a=2 

 

Listing of table 

Table 1 Limit and first yield pressures. 
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Introduction 

In the autofrettage process, thick-walled cylinders are partially yielded by means of a 

hydrostatic pressure. This produces a larger strain at the inner surface of the cylinder, 

compared to the outer surface, and so it begins to yield from the inner bore. The size of 

the autofrettage pressure determines the amount of yielding and therefore the amount of 

the material at the bore that plastically deforms. When the autofrettage pressure is 

removed, there is residual compressive stress at the bore and residual tensile stress at the 

outer surface of the cylinder. This residual compressive stress can serve to reduce tensile 

stress developed as a result of further applied internal pressures. The process of 

autofrettage is therefore very useful in improving the fatigue life of cylinders because of 

the reduction in stress.  

Texts such as that of Hill [1], Lubliner [2] and Brownell & Young [3] and design Codes 

such as ASME B&PV Code Division 3 Alternative Rules for High Pressure Vessels [4] 

give the basis for calculating initiation and spread of plastic deformation during loading, 

the residual stress upon unloading and the “combined” residual plus operating stress 

when subsequently loaded to operating pressure. However, optimum autofrettage 

pressures based on thick cylinder theory are of limited applicability in pressure vessel 

design, as most real cylindrical vessels incorporate stress raising features which increase 

the complexity of the stress distribution and cause local stress concentration. Cross-holes 

in the vessel, such as fluid entry/exit bores, bursting cap ports, etc., give rise to complex 

stress and strain concentration effects in the vicinity of the hole [5-7]. As the cross hole 

configuration is not amenable to an accurate analytic solution of the autofrettage process, 

“Numerical elastic-plastic analyses or experimental techniques…” [4] are required to 

establish the autofrettage residual stresses. In this paper the optimum autofrettage 

pressure of a range of thick cylinders with cross holes is determined using 3D elastic-

plastic finite element analysis. The optimum autofrettage pressure is defined here as that 

leading to optimum fatigue life according to the ASME VIII Div. 3 Article KD-3 Fatigue 

Evaluation [4] for a design pressure equal to half the limit pressure of the vessel. The 

1998 version of the Code is used as this was the current available version when the work 

reported was initiated [8]. 
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Autofrettage and fatigue life 

This theory underlying Article KD-3 Fatigue Evaluation proposes that the fatigue life of 

a vessel design is controlled by the Alternating Stress Intensity, Salt, and the Associated 

Mean Stress, σnm, normal to the plane of Salt. These stresses are combined to define the 

Equivalent Alternating Stress Intensity, Seq, which is used with design fatigue curves to 

determine the number of cycles to failure, Nf. 

The alternating stress intensity, Salt, represents the maximum range of shear stress. The 

associated mean stress, σnm, is the mean value of stress normal to the plane subjected to 

maximum alternating stress intensity. These values are demonstrated in Figure 1. 

Three principal stresses, σ1, σ2, σ3 are used to calculate the stress differences, S, at each 

pressure.  

S12 = σ1 - σ2 (1) 

S23 = σ2 - σ3 (2) 

S31 = σ3 - σ1 (3) 

Sij is used to represent any one of these differences. The largest and smallest algebraic 

stress differences (Sij max, Sij min) for the design cycle were then identified. 

The alternating stress intensity is given by: 

Salt ij = 0.5(Sij max - Sij min) (4) 

The stresses normal to the plane of the maximum shear stress, associated with the three 

alternating stress intensities (Salt ij) are given by: 

σn 12 = 0.5(σ1 + σ2)  (5) 

σn 23 = 0.5(σ2 + σ3)  (6) 

σn 31 = 0.5(σ3 + σ1) (7) 

σn ij is used to represent any one of the three normal stresses. The largest and smallest 

normal stresses (σn ij max, σn ij min) for the whole design cycle is identified. The associated 

mean stress, σnm, was determined by: 

σnm ij = 0.5(σn ij max + σn ij min)  (8) 
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The value of the associated mean stress is limited to a value not less than zero. Using the 

values obtained for the alternating stress intensity and the associated mean stress, the 

equivalent alternating stress intensity can be calculated. 

Seq ij = Salt ij (1/ (1- β σnm ij / S’a)) (9) 

From the above relationship S’a is the allowable amplitude of the alternating stress 

component when σnm = 0 and N =106 cycles. This was taken as 131N/mm2 from the 

design fatigue curves. The value of β is a constant value of 0.2. The value of β σnm ij / S’a 

was limited to a maximum of 0.9 if it exceeded this value. 

Three values of Seq ij are obtained for the design cycle. The largest of these is used in 

combination with the design fatigue curve to determine the maximum number of cycles 

to failure. The largest value is used, as it will be the main driver towards failure.  

In the autofrettage process, the location of maximum stress may differ at different parts of 

the cycle, as will the maximum stress ranges, etc. It was therefore necessary to monitor 

the stress at all nodes in the vicinity of the cross hole, where the significant stresses 

generally occurred. A macro was written to incorporate all the fatigue calculations at 

nodal level and give an output of the equivalent alternating stress intensity, Seq. 

Modeling and analysis 

The thick cylinder with radial cross-bore is illustrated in Fig. 2. A one-eighth model of 

the cylinder was constructed in ANSYS 8.1 [9] with three-dimensional SOLID45 

elements. Based on the mesh study, the finer mesh was created around the cross-bore 

where maximum stress occurred, as shown in Fig. 3. There are 20 elements in thickness 

and circumference direction of the cylinder and 22 elements in the direction of the cross-

bore’s circumference. Symmetry boundary conditions were applied to three surfaces in 

order to show one-eighth symmetry. The end of the cylinder remote from the cross-bore 

was constrained in order to keep the plane section flat and an axial thrust was applied 

simulating closed end conditions. For the size of cross holes and cylinders considered, 

cross hole end thrust has a negligible effect on limit pressure and stress distribution [7] 

and is neglected. The internal pressure was applied to the inner surface of the bore as well 

as the inner surface of the cross-bore. The internal pressure load cycle consists of loading 
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from zero to the autofrettage pressure, unloading to zero pressure then reloading to design 

pressure. The specified design pressure in all cases is half the limit load of the vessel. A 

range of autofrettage pressures (between yield pressure and limit pressure) was 

considered for each vessel. 

The material chosen for all models was a typical low alloy steel as used in standard 

pressure vessels. It was assumed to be elastic perfectly plastic in behaviour and follow the 

Von Mises yield criteria. The Bauschinger effect is not considered. The material 

properties used are yield stress, σy = 300 MPa , Young’s Modulus, E = 200 GPa  and 

Poisson’s Ratio, υ = 0.3. 

The internal radius of the cylinder was kept constant at a = 0.01m. Three cylinder radius 

ratios, b/a, were analyzed 

b/a = 1.5, 1.75,2 

and five cross-bore radius ratios, c/a, were analyzed for each cylinder radius ratio. 

c/a = 0.05, 0.1, 0.15, 0.2, 0.25 

The model length is 0.35m which ensures that the stress distribution at the end remote 

from the cross bore has no effect on the stress distribution near the cross-bore. 

In order to define the design pressure and the range of possible autofrettage pressures, 

limit analysis is performed for each model (autofrettage only occurs between the yield 

and limit pressures, as the cylinder will only plastically deform within these bounds). By 

loading the cylinder up to autofrettage pressure then unloading it to zero pressure the 

residual stress distribution can be seen. If the cylinder is then loaded up to design 

pressure the operating stress distribution is obtained.  

For the models where the ratio b/a varies, new autofrettage ranges had to be found, which 

meant finding a new limit pressure and therefore the design pressure changed. The design 

pressure was kept specific to the particular geometry of the design (1/2 limit pressure). 

The limit and first yield pressures for all configurations investigated are listed in table 1. 

The limit pressures reported are slightly higher than reported by Dixon and Perez [10]. 

Example is the case of b/a=2 and c/a=0.2, the limit pressure is 220 MPa, but based on 

Dixon’s Remaining Strength Factor (RSF) the value, the limit would be about 200 MPa. 



 8 

In the case where the cross-bore size was being investigated there is little difference in 

the limit pressure and the design pressure doesn’t change much as well.  

The same analysis was performed for each of the cylinder radius, and cross-bore, ratios 

when autofrettage was not used. This allowed comparisons to be made between the two 

situations. 

Results 

For the model with b/a=1.75 and c/a=0.2, the range of autofrettage pressure was found to 

be between 45 MPa and 176 MPa, which leads to a design pressure of 88 MPa. The 

autofrettage pressure, Pauto, is plotted against the maximum equivalent alternating stress 

intensity, Seq, as shown in Figure 4. The curve shows a distinct dip indicating an optimum 

Pauto of around 115 MPa. If the standard design pressure was applied without 

autofrettage, the resultant value of Seq would be 177 MPa. (This is the ideal elastic 

analysis case: in practice the vessel would be subject to a hydro-test at 1.25 times design 

pressure, 110MPa, which would effectively autofrettage the vessel). Comparing with the 

value of Seq (148 MPa) at optimum Pauto shows a reduction of 16.4% in stress through the 

autofrettage process. It is clear from Code Design Fatigue Curves [7] that the increase in 

Seq will result in decrease in the number of cycles to failure. The lowest Seq at optimum 

Pauto, therefore, will correspond to a maximum number of cycles to failure as shown in 

Figure 5. This figure shows the relationship between the numbers of cycles to failure, Nf, 

against Pauto for non-welded parts made from low alloy steel. 

Effect of cross-bore ratio 

For each radius ratio there were five cross-bore ratios investigated, the graphs of 

autofrettage pressure against Seq were plotted in Figures 6-8 for three different radius 

ratios. All the curves have the same characteristics and follow the same trends, showing a 

clear resemblance to previous work done on the effect of autofrettage on plain thick-

walled cylinders [3]. 

There was little change in Seq if the autofrettage pressure applied is less than the design 

pressure. As Pauto increases past design pressure, the stress values decrease rapidly to the 

optimum pressure and then start to rise slowly. The optimum autofrettage pressures for 
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all cross-bore ratios were found to be very close to each other. For R=1.5 the optimum 

Pautos are around 85 MPa and in the range of 62.5%-69.6% limit pressures (1.35–1.39 

design pressures). For R=1.75 the optimum Pautos are in the range of 110MPa-120MPa, 

i.e. 60.1%-66.7% limit pressures. For R=2 the optimum Pautos are in the range of 

140MPa-150MPa, i.e. 60%-69.4% limit pressures. 

When the autofrettage pressure is above the optimum Pauto, the higher cross-bore ratio is, 

the higher Seq indicating shorter fatigue life. The trend is opposite while the autofrettage 

pressure is below the optimum Pauto. The value of Seq at optimum pressure increased as 

the cross-bore ratio was increased. However, this character is not very obvious for larger 

radius ratio, b/a=2. 

Effect of radius ratio 

Increasing the radius ratio will increase the limit pressure, design pressure and the range 

of autofrettage pressure. The effect of radius ratio on Seq was demonstrated in Figures 9-

13 for each cross-bore ratio. These curves clearly show that a higher radius ratio will 

result in a higher optimum autofrettage pressure. The value of Seq at optimum Pauto 

remains very close to a constant value despite the change in radius ratio. This is true for 

all cross-bore ratios. The radius ratio will therefore have little effect on the fatigue life. It 

should be noted that the design pressures for three radius ratios are different in present 

investigation. 

Effect of autofrettage 

The pressure vessel with optimum autofrettage done was compared to that where no 

autofrettage had taken place. Figure 14-16 show plots of Seq (Primary Y axis) and fatigue 

life Nf (Secondary Y axis) against cross-bore ratio for three radius ratios respectively. 

The fatigue life of the vessel is much greater where autofrettage has been used. This is 

more apparent at the smallest cross-bore ratio where a difference of around 490,000 

cycles to failure can be seen for b/a=1.5. This equates to autofrettage improving the 

fatigue life of cylinder by three times that where autofrettage had not been used. For the 

autofrettaged cylinder Seq increases with increasing cross-bore ratio and the fatigue life of 

the autofrettaged cylinder decreases. The number of cycles to failure slowly increases in 

the case where no autofrettage has been used. However, this is not such a clear trend. 
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This along with the decreasing fatigue life of the autofrettaged vessel makes the 

difference become less with increasing cross-bore. Even for the largest cross-bore ratio 

the fatigue life can be improved by around two times the number of cycles to failure. 

Conclusion 

This paper investigated the effects of introducing a radial cross-bore in an autofrettaged 

thick-walled cylinder on fatigue life according to the Fatigue Evaluation guidelines of 

ASME Boiler and Pressure Vessel Code. It is concluded that: 

1. The cross-bore ratio has little effect on the value of optimum autofrettage pressure, 

which is mainly determined by the cylinder radius ratio.  

2. The fatigue life decreases with increasing cross-bore ratio for a specific cylinder 

radius ratio. 

3. The fatigue life of an optimally autofrettaged cylinder stays constant for a specific 

cross-bore ratio regardless of change in the cylinder radius ratio. 

4. The fatigue life can be greatly improved by using autofrettage, especially for smaller 

cross-bore ratios. 
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Figures 

 

 

 
Figure 1 Fluctuating Stress Pattern 
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Figure 2 The thick-walled cylinder with a radial cross-bore 



 14 

  

 

Figure 3 Finite element analysis model 
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Figure 4 Variation of Seq with Pauto, b/a=1.75 and c/a=0.2 
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Figure 5 Variation of Nf with Pauto, b/a=1.75 and c/a=0.2 
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b/a=1.5
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Figure 6 Variation of Seq with Pauto for b/a=1.5 
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Figure 7 Variation of Seq with Pauto for b/a=1.75 



 17 

b/a=2
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Figure 8 Variation of Seq with Pauto for b/a=2 
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Figure 9 Variation of Seq with Pauto for c/a=0.05 



 18 
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Figure 10 Variation of Seq with Pauto for c/a=0.1 
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Figure 11 Variation of Seq with Pauto for c/a=0.15 
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c/a=0.2
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Figure 12 Variation of Seq with Pauto for c/a=0.2 
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Figure 13 Variation of Seq with Pauto for c/a=0.25 
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Figure 14 Fatigue life comparison for b/a=1.5 
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Figure 15 Fatigue life comparison for b/a=1.75 
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b/a=2
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Figure 16 Fatigue life comparison for b/a=2 
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Table 
 

Cylinder radius 

ratio b/a 
 

Cross-bore radius ratio, c/a 

0.05 0.1 0.15 0.2 0.25 

1.5 

Limit pressure 

(MPa) 

136 133 129 125 122 

1.75 189 188 180 176 171 

2 234 232 227 220 216 

1.5 
First yield 

pressure 

(MPa) 

39 38 37 35 32 

1.75 48 48 47 45 43 

2 55 55 53 52 51 

Table 1 Limit and first yield pressures. 

 


