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This article describes a method for estimating the reliability of a system under development that is 

an evolution of previous designs.  We present an approach to making effective use of heritage data 

from similar operational systems to estimate reliability of a design that is yet to realise any data.  

The approach also has a mechanism to adjust initial estimates in the light of sparse data that 

becomes available in early stages of test.  While the estimation approach, known as empirical Bayes 

is generic, we focus on one shot devices as this was the type of system which provided the practical 

motivation for this work and for which we illustrate an application.  

Introduction 

This paper is motivated by the problem of predicting the probability of successful operation for a 

one shot device during its development.  The device is a variant of existing operational systems, and 

hence heritage event data exists, albeit limited.  This work developed from an industrial application 

in which the client and manufacturer were interested in understanding both the overall success 

probability and the current risk drivers in order to support the development process further. Hence a 

model was required to: measure the contributions of events to identify the main drivers of 

unreliability; quantify uncertainties in the estimated success probabilities under different scenarios; 

and update estimates using observations generated from development tests.  In this paper we focus 

upon the first of these objectives, which requires us to estimate the probability of successful 

operation of the system on demand and to identify the contributing events that may drive reliability.  

Classical estimates of reliability use observed data and, especially when sample sizes are small, 

errors in the estimates obtained can be large.  For example, Figure 1 illustrates possible estimation 

errors arising when a traditional approach to estimating the probability of success as the ratio of the 

number of occurrences of success events to the total number of trials.  In this illustration, we 

assume that there have been 50 trials and so the resulting possible estimates of success probability 

will increase from 0 (if we observe 0 successes in 50 trials) to 1 (assuming we observe 50 successes in 

50 trials) in increments of 0.02 (i.e. 1 in 50).  The error is measured as the estimate of the success 

probability minus the true value, which we have assumed to be 0.1.  Figure 1 shows the distribution 

of the probability of error under the assumed scenario where the probability of the errors are 

measured in the height of the bars.  For example, there is a probability of approximately 0.18 that 

we would correctly estimate the probability of a success to be 0.1 and hence have an error of 0.  The 

main point we make is that even with a sample size of 50, which may be larger than will be 

experienced in many practical contexts, the range of the error can be large.  In the case of this 

example, the error ranges from -0.1 to 0.1.  Such error is of particular concern when we seek to 

identify and compare different reliability drivers since it can lead to incorrect prioritisation. 
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Figure 1  Distribution of possible estimation errors for a sample of 50 trials and an assumed 

underlying probability of success set to 0.1 

 

An alternative approach to classical estimation is to use methods which rely on subjective probability 

assessments, such as Bayesian methods; see, for example Martz and Waller (1991).  However 

Bayesian methods require considerable problem structuring to assess uncertainties with all possible 

events and hence formulate a suitable prior distribution. While problem structuring can be beneficial 

since insights gained can inform qualitative reliability assessment, the quantification of an 

engineering expert’s uncertainty can result in a significant cognitive burden and so needs to be 

managed with care.  

While Bayesian priors are usually constructed from subjective beliefs about the value of an event 

probability (Bedford et al 2008), empirical Bayes (Carlin and Louis 2000) provides a means of pooling 

observed data from various sources related to heritage systems to form an empirical prior.  It is 

within an empirical Bayes framework that we anticipate greatest benefit for reliability estimation 

during development using heritage data from similar products.  This is because it allows us to use 

expert judgment to support the qualitative aspects of modelling, such as explicating the differences 

and similarities of the new design with heritage products, but allows us to use relevant historical 

data to implement an empirical Bayes estimation procedure to quantify the probability of success.   

The application of empirical Bayes (EB) within the context of risk and reliability is not new.  For 

example: Martz and Waller (1991) discuss the technique generally; Vesely et al (1994) discuss an 

application to emergency diesel generators for binary data; Vaurio (2002, 2005) uses EB for 

estimating the rate of common cause failures; Ferdous et al (1995) use EB to support inference for 

the Weibull distribution within a software reliability growth context; Grabski and  Sarhan (1996) 

combine spline density estimates for prior distributions with EB for inference with the exponential 

distribution; Vaurio and Jankala (2006) use EB within a Poisson modelling framework; and Sohn 

(1999) makes use of the methodology with response surface modelling of categorical quality 

characteristics of possible designs; Quigley et al (2007) used EB to estimate the probability of low 

frequency, high consequence events in a railway safety model. 
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This paper describes the proposed methods developed to support empirical Bayes estimation for the 

probability of successful operation of a one shot system modelled by a fault tree during its 

development. The full modelling process is illustrated through a (de-sensitised) industrial example.  

The originality of the approach described within this paper is the combination of the elicitation of 

the prior distributions for a new one-shot system by identifying aspects of relevant heritage systems 

using subjective engineering judgment and quantifying the prior distributions with historical data 

through EB.  This reduces the cognitive burden on the engineering experts as well as supporting 

inference on the likelihood of events that have not been experienced by heritage systems.          

Summary of Empirical Bayes Process 

Figure 2 presents the process for constructing the EB estimate.  Since we are concerned with 

success/failure outcomes on test or trial, the probability model that we use to describe the 

variability in the data is a Binomial distribution.  We assume we have m different basic events, each 

with a unique probability of occurrence and we denote the probability of the ith event by ip .  We 

seek to describe the variability of the ip ’s with a distribution, which we estimate by pooling data and 

refer to as the empirical prior distribution.  This is similar the prior distribution in Bayesian analysis 

except that it is not elicited from experts but inferred from observed data, which is made possible by 

the assumption that we have several, i.e. m, independent samples from this prior distribution.   Once 

the prior distribution has been estimated we can use Bayesian updating to estimate a posterior 

distribution for each event, thus we have m different posterior distributions. 

Parametric example 

Let   p  denote the probability density function for an event, chosen at random from the m basic 

events identified, having probability of occurrence p. Assuming that the number of events has a 

Binomial distribution implies that a computationally convenient prior distribution is a Beta 

distribution of the form: 
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Figure 2 Empirical Bayes Process for a one-shot system where there are m basic events in the fault 

tree model 

Given observed data of the form xi events within ni trials and the Beta prior distribution, the 

posterior distribution for basic event i updates to a Beta distribution given by: 
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The point estimate for the probability of the ith basic event being realised at the next opportunity is 

derived from the expectation of the posterior distribution resulting in: 
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Therefore, the estimate of the probability of an event occurring is a weighted average between the 

observed proportion of the individual experience (i.e. xi/ni) and the mean of the pool or prior 

distribution (i.e.  ˆˆ ˆ/   ).  The weight applied to the individual observation tends to 1 as the 

number of opportunities for the event to be realised (i.e. ni) increases. The weight applied to the 

individual experience rather than the pooled experiences is influenced by the heterogeneity within 

the pool.  If the pool consists of a collection of heterogeneous events, (i.e. there is great variation in 

the pi’s) then 
^

  will be small and more weight will be applied to the individual event.  Moreover, if 

greater variation in the data is expected for individual events, then less weight is given to the 

individual experience and more to the pooled experience. 

Illustrative Example 

System and its reliability requirements 

The new system for which reliability is to be estimated is in an advanced state of design, having 

recently had initial tests.  A number of issues have been identified surrounding its reliability since the 

new system is largely based on an existing system which is already in service and for which two 

major problems have been identified that should be removed through the re-design. There are a 

number of additional substantial design changes to the system, implying that some subsystem 

elements are not simple developments of the existing design. 

This study considers only the probability of achieving a successful operation when the decision to 

use the system has been taken and the signal has been transmitted to the system. Since the system 

is still under design, and information such as a FMECA is not available, it has been necessary to 

conduct this study at a fairly high level. This means that the study can highlight areas of concern with 

the model, and provide a broadbrush overview of system reliability. However it cannot include 

detailed modelling of the subsystems. Such a detailed model would not however support the 

purpose of supporting management decisions about the system, as it could only be built in 

retrospect. This implies that the model built here is indicative rather than a hard forecasting model.   

The general steps in model development are as follows: 

 Development of high level fault tree including agreement with engineering team members 

on the structure and on definition of events; 

 Interviews with engineering team members to gain insights into sources, main drivers, 

ownership, potential testing of uncertainties, and agreement about relevant historical data; 

 Construction of spreadsheet model to estimate success probability of the system and 

conduct sensitivity analysis to investigate uncertainties relative to requirements. 

 

Structuring the fault tree 

The approach adopted has been to allow the data collected from stakeholders to ‘speak for itself’ 

and hence ground the model formulation in experience of designing and operating the system. 

Modelling began by gaining agreement about the top event under study. The first draft of the fault 

tree was made by the Strathclyde team on the basis of information gathered from an initial design 
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team meeting. The draft has been discussed in numerous telephone and face-to-face interviews with 

both the client and the manufacturer leading to evolution of the mature fault tree. 

The fault tree developed is relatively “shallow” in the sense that it has not been developed to a deep 

level of complexity and consists largely of ‘OR’ logic gates as there is little redundancy at the level of 

modelling.   The fault tree comprised 31 basic failure events. 

Figure 3 summarises the key steps in the elicitation of the fault tree structure and probability of 

events. Experts were selected from both the manufacturer and client to provide coverage of the 

lifecycle demands upon the system. A formal elicitation proforma was used to structure interviews 

capturing reasons for expert selection. 

Eliciting event probabilities 

Despite the design changes between the system generations, it transpired that many events for the 

new system could be conditioned upon operational experience for earlier generations, since there 

remains commonality between the types of failure mechanisms.  

For those events where historical data are deemed appropriate, the related design(s) are identified 

and the reasons for conditioning upon them noted.  Then the relevant sample size and number of 

observed events are elicited.  For example, the ‘sample size’ relates to the relevant exposure of the 

system to risk of an event.  As a default, this is noted in terms of the number of units exposed to 

operational use and hence having the potential to experience an event.  However, the number of 

parts at risk is also recorded where considered appropriate. Since some failure mechanisms can 

occur only on demand, while others may be latent and hence observed on inspection, the values 

noted for the sample size correspond to the number of systems deemed relevant for each event. 

Conditional upon this definition of event sample size, the observed numbers of failures are noted. 

On occasions where there is uncertainty about the relevance of observed events, as in the case of 

failures that occurred before a modification, then this is noted and used to inform sensitivity 

analysis. 
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When empirical data are not considered relevant, then judgemental data about the uncertainty in 

the basic failure is elicited. The goal is to obtain information about the expected probability of 

realising a basic failure as well as lower and upper bounds on the uncertainty in that probability.  

Practically it is convenient to approach this by considering the number of realisations if 100 (or 1000 

or 10000) systems are in use. This allows statements to the effect that the engineering expert would 

expect X events in 100 units; would be surprised if Y events in 100 units; would be disappointed if Z 

events in 100 units.  From this data, we can extract the average probability of an event as well as 

lower and upper bounds on the uncertainty respectively.  This approach is consistent with the 

fractile method for subjective probability assessments.  Although only three fractiles have been used 

in this case –5%, 50% and 95% – it is deemed appropriate for the accuracy of modelling required.  

Further, the manufacturer experts appeared comfortable with providing expected numbers plus 

surprise limits. Indeed we have adopted their natural language descriptions of our statistical 

fractiles. 

Since the client personnel interviewed were not comfortable in providing subjective judgement 

about the probabilities of basic failures for which they had ownership, the data used for all events is 

based on the manufacturer’s knowledge.  There are two exceptions: the basic failures associated 

with activating the system which was computed by other analysts; and an assessment of human 

Manufacturer 
Ownership? 

Plan group session 

Surface concerns due 
to design changes 

Revise FT 

Populate event 

data 

Organise individual 

interviews 

Investigate 
maintenance and 

usage policies 

Revise FT 

Select experts with 
requisite knowledge 

domains 

Client 

Figure 3. Process to elicit judgements from 
engineering experts  
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error made using the HEART method since this was considered outside the range of expertise of the 

expert group.  

It is assumed that the degree of degradation is not sufficient to impact the reliability during 

operation since the historical evidence from previous generations is that there were no incipient 

failures on routine inspection. 

Of the 31 basic failures, 23 were conditioned upon empirical data for previous designs, 6 were based 

on the manufacturer’s subjective engineering judgement, 1 from generic handbooks and 1 is 

provided from other analysts. For some events it was noted that additional data would be provided 

from the outcome of future tests.  

Most basic failures are described naturally with on-demand probabilities of failure, with the 

exception of three events where data was originally provided in the form of a rate of occurrence 

over the mission.  These data were converted to a probability of an event to ensure commonality of 

the data structures for modelling and estimation.  As these rates are associated to degradation 

processes taking place over an approximately fixed period, there was a natural way to convert these 

rates to probabilities. 

An example of the typical data structures is given in Table 1.  Note that the data presented are for 

illustration of the typical core characteristics only. 

Table 1 Example of typical empirical and judgemental data structures for selection of basic events 

within the fault tree of one-shot system, note that numerical values are for illustration only 

Event No. No. Units 
at Risk 

No. Obs. 
Events 

Lower 
Bound 

Median Upper 
Bound 

Other 
Prob 

1.1 100 0     

1.2 50 0     

1.3   0.0001 0.001 0.005  

2.1 150 2     

2.2 20 1     

2.3   0.00001 0.0001 0.001  

3.1      0.02 

 

Predictions of success probability 

The EB methods derived in the previous section have been implemented within a spreadsheet model 

taking the data structures in Table 1 as input.  An example of (de-sensitised) output is shown in Table 

2. 

Table 2.  Empirical Bayes estimate of probability of success for fault tree top event 
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P(success) 0.92 

Key reliability 
drivers 

 

Event P(failure) Potential accumulated 
improvement in P(success) if 
removed 

3.5 0.03 0.95 

1.4 0.02 0.97 

2.3 0.01 0.98 

1.5 0.005 0.985 

 

Interestingly the key basic failures driving reliability correspond to those where there is a lack of 

empirical historical data and concern has been raised during the review of design changes. 

Through elicitation of the fault tree and the event data, several sources of uncertainty have been 

investigated through sensitivity analysis. These include uncertainties about human reliability, parts 

count and intended actions. The analysis indicated that point estimates were robust for modelling 

conducted at unit and part level, that growth had occurred, and was forecast to continue, through 

development, and the impact of human reliability may be significant in operations. 

Summary and Conclusions 

The approach described in this paper has been extended to include estimates of the uncertainties in 

the estimates so that lower and upper bounds can be generated for the probability of success of the 

top event.  Also, the Bayesian framework supports updating of the estimates in the light of 

observations from tests and analysis on the new system design.  Such extensions are discussed in 

Bedford et al (2007). 

To conclude we examine the benefits and shortcomings with our approach to EB estimation.  

A key strength of this approach has been the acquisition of numerical assessments for prior 

distributions using data rather than stretching the cognitive ability of the engineers outside their 

zone of comfort.  The engineering experts engaged in discussions about potential basic failures for 

the new system, and identified relevant historical data from which a prior could be constructed.  

Identifying the appropriate historical data was not an easy task, as this involved a basic event by 

event analysis of all heritage systems. 

The method provides a numerical estimate of the probability of occurrence for events that have not 

been experienced by heritage systems but potentially could have been.  This is an improvement over 

median based estimation procedures (Bailey, 1997), because the EB estimate is made relative to the 

pool and as such there is calibration to some extent for the collective. 

However, the proposed method could be subject to abuse because the grouping together of basic 

events to form a pool from which EB estimates can be supported provides the potential for 

influencing the outcome.  For example, by identifying basic events that are orders of magnitude 

lower in probability of occurrence than the pool, the overall pool mean will be lowered which 

contributes to the weighted average.  While the proposed method does correct for this - a more 
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heterogeneous pool will put more weight on each basic event individual experience – it could still be 

open to abuse if the integrity of the analysis is not assured.   
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