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An adaptive stabilized finite element method

for the generalized Stokes problem

Rodolfo Araya 1 Gabriel R. Barrenechea 2 and Abner Poza 1

Departamento de Ingenieŕıa Matemática

Universidad de Concepción

Casilla 160-C, Concepción, Chile

Abstract

In this work we present an adaptive strategy (based on an a posteriori error estima-
tor) for a stabilized finite element method for the Stokes problem, with and without
a reaction term. The hierarchical type estimator is based on the solution of local
problems posed on appropriate finite dimensional spaces of bubble-like functions.
An equivalence result between the norm of the finite element error and the estima-
tor is given, where the dependence of the constants on the physics of the problem
is explicited. Several numerical results confirming both the theoretical results and
the good performance of the estimator are given.

Key words: Stokes equation, a posteriori error estimator, bubble function,
stabilized finite element method, adapted mesh

1 Introduction

A posteriori error analysis and adaptive finite element methods for prob-
lems in fluid dynamics has been a very active subject of research in the last
decades. For instance, for the advective-diffusive model we can quote the works
[22,17,5,6], among others. Now, for the Stokes problem, the works by Verfürth
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[20,21] and Bank and Welfert [7], laid the basic foundation for the mathe-
matical analysis of practical methods (see also [11] for error estimators in the
nonconforming case). More recently, in [3,2] and [12], a posteriori error esti-
mators rigorously bounding the discretization errors have been addressed. All
previous references deal with stable (in the sense of the discrete inf-sup condi-
tion [9]) discretizations for the Stokes problem. In [18] and [4], an a posteriori
error analysis of stabilized formulations for the Stokes problem was performed,
but the analysis was restricted to the pure Stokes case (i.e., without a reaction
term).

In this paper we introduce and analyze from theoretical and experimental
points of view an adaptive scheme to efficiently solve the generalized Stokes
problem. The scheme is based on the unusual stabilized finite element method
introduced in [8], combined with an error estimator which is based on an
idea from [2], building an auxiliary problem, whose solution is equivalent with
the norm of the finite element error. Since this auxiliary problem is posed
on an infinite dimensional setting, we build a hierarchical estimation for the
solution of this problem, which turns out to be equivalent with the norm of its
solution, and hence the resulting finite element approximation is equivalent to
the original finite element error.

An outline of the paper is as follows. The model problem is stated in Section
2, and the bases of the discrete approximation are settled in Section 3. Next,
in Section 4 we propose the auxiliary problem and prove that we can define
a norm based on the solution of this auxiliary problem, which is equivalent
to the norm of the error. This auxiliary problem is applied to the solution
of the residual equation and hence we state, at the end of Section 4.1, a
first equivalence result between the norm of the error and the solution of the
auxiliary problem (with the residual as right-hand side). As we told before,
the auxiliary problem is posed on an infinite dimensional space, and hence in
Section 5 we define a finite dimensional approximation (based on a hierarchical
idea) of its solution. Finally, in Section 6 we present several numerical results
confirming the theoretical results and showing the good performance of our
estimator, and in Section 7 we give some conclusions.

2 The model problem

Let Ω ⊆ R
2 be a bounded open set with polygonal boundary Γ. We de-

note by Hm(Ω) the usual Sobolev space of order m ≥ 0, with norm ‖· ‖m,Ω

and seminorm |· |m,Ω, respectively (with the convention H0(Ω) = L2(Ω) and
|· |0,Ω = ‖· ‖0,Ω). Then, given f ∈ L2(Ω)2, σ ≥ 0 and ν ∈ R

+, our generalized
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Stokes problem reads: Find a velocity u and the pressure field p such that

(P )





σu − ν∆u + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on Γ.

Let then H :=H1
0 (Ω)2 and Q :=L2

0(Ω) := {q ∈ L2(Ω) : (q, 1)Ω = 0}, where
(· , · )D stands for the inner product in L2(D) (or in L2(D)2, L2(D)2×2, if nec-
essary) be the functional spaces to be used. The weak formulation of the
problem (P) reads: Find (u, p) ∈ H ×Q such that

a(u,v) + b(v, p) + b(u, q) = (f ,v)Ω ∀ (v, q) ∈ H ×Q, (2.1)

where

a(u,v) := σ (u,v)Ω + ν(∇u,∇v)Ω , (2.2)

b(v, q) := −(q, div v)Ω . (2.3)

Furthermore, let c : Q×Q→ R be the symmetric bilinear form defined by:

c(p, q) :=
1

ν
(p, q)Ω.

Using bilinear forms a and c we define the following norms:

‖v‖a := a(v,v)1/2 ∀v ∈ H ,

‖q‖c := c(q, q)1/2 ∀q ∈ Q ,

and the following norm on the product space H ×Q:

‖(v, q)‖ :=

{
‖v‖2

a + ‖q‖2
c

}1/2

∀(v, q) ∈ H ×Q. (2.4)

The following result states the main properties of these bilinear forms.

Lemma 1 Let a and b be the bilinear forms given by (2.2) and (2.3), respec-
tively. Then

|a(v,w)| ≤ ‖v‖a‖w‖a ∀v,w ∈ H , (2.5)

|b(v, q)| ≤
√

2 ‖v‖a‖q‖c ∀(v, q) ∈ H ×Q , (2.6)

sup
v∈H

b(v, q)

‖v‖a

≥ αb

√
ν

σ + ν
‖q‖c ∀q ∈ Q , (2.7)

where αb > 0 is a constant depending only on Ω.
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PROOF. The proof follows from the norms definition and the well-known
properties of these bilinear forms (see Theorem 4.1 in [15]). 2

Then, using the classical theory of Babuska-Brezzi (cf. [15]), we can state the
following result.

Lemma 2 The weak problem (2.1) has a unique solution (u, p) ∈ H ×Q.

3 Notations and preliminary results

Let {Th}h>0 be a regular family of triangulations of Ω and let us denote by
Eh the set of all sides of Th with the usual splitting Eh = EΩ ∪ EΓ, where EΩ

stands for the sides lying on the interior of Ω. Also, for T ∈ Th, we denote by
N (T ) the set of nodes of T and by E(T ) the set of sides of T . Also, for T ∈ Th

and F ∈ Eh we define the following neighborhoods:

ωT :=
⋃

E(T )∩E(T ′) 6=∅

T ′ , ω̃T :=
⋃

N (T )∩N (T ′) 6=∅

T ′,

ωF :=
⋃

F∈E(T ′)

T ′ , ω̃F :=
⋃

N (F )∩N (T ′) 6=∅

T ′.

Next, for T ∈ Th and F ∈ EΩ, let hT be the diameter of T , hF := |F |, and let
us define the following mesh-dependent constants:

θT :=





ν−1/2 hT , σ = 0 ,

σ−1/2 min{hT σ
1/2 ν−1/2, 1} , σ > 0 .

θF :=





ν−1/2 h
1/2
F , σ = 0 ,

ν−1/4 σ−1/4 min{hF σ
1/2 ν−1/2, 1}1/2 , σ > 0 .

In the rest of the paper we will use the notation

a� b⇐⇒ a ≤ K b,

a≃ b⇐⇒ a � b and b � a,

where the positive constant K is independent of h, σ and ν.

Finally, let k, l ∈ N, and let us define the following finite element spaces
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Hh := {ϕ ∈ C(Ω)2 : ϕ|T ∈ Pk(T )2, ∀T ∈ Th} ∩H1
0 (Ω)2,

Qh := {ϕ ∈ C(Ω) : ϕ|T ∈ Pl(T ), ∀T ∈ Th} ∩ L2
0(Ω).

Lemma 3 The following estimates hold for all vh ∈ Hh and σ ≥ 0:

‖∇vh‖0,T �h−1
T θT ‖vh‖a,T , (3.1)

‖∆vh‖0,T �h−2
T θT ‖vh‖a,T . (3.2)

PROOF. If σ = 0 the proof follows from the inverse inequality

‖∇vh‖0,T � h−1
T ‖vh‖0,T ∀vh ∈ Hh , (3.3)

(see Lemma 1.138 in [14]) and the definition of θT . For σ > 0, from the
definition of ‖ · ‖a,T we see that

‖∇vh‖0,T ≤ ν−1/2 ‖vh‖a,T . (3.4)

On the other hand, using the inverse inequality (3.3) we obtain

‖∇vh‖0,T � h−1
T ‖vh‖0,T � h−1

T σ−1/2 ‖vh‖a,T . (3.5)

Then (3.1) arises using (3.4)-(3.5). For the second estimate, (3.3) and (3.1)
lead to

‖∆vh‖0,T � h−1
T ‖∇vh‖0,T � h−2

T θT ‖vh‖a,T ,

and the result follows. 2

Let now Ih : H −→ Hh denote the Clément interpolation operator (cf.
[10,15]). For all T ∈ Th and all F ∈ E(T ) this operator satisfies

|v − Ihv|m,T �hn−m
T |v|n,ω̃T

, (3.6)

‖v − Ihv‖0,F �h
n− 1

2

F |v|n,ω̃F
, (3.7)

for all v ∈ Hn(Ω)2, and all 0 ≤ m ≤ 1, 1 ≤ n ≤ k + 1. The following result
holds for the Clément interpolation operator:

Lemma 4 For all T ∈ Th, F ∈ E(T ), v ∈ H1(Ω)2, there holds

‖v − Ihv‖0,T � θT ‖v‖a,ω̃T
, (3.8)

‖v − Ihv‖0,F � θF ‖v‖a,ω̃F
, (3.9)

‖Ihv‖a,T �‖v‖a,ω̃T
. (3.10)
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PROOF. First and third estimates arise using (3.6)-(3.7), the previous lemma
and the mesh regularity. In order to prove the second one, from [22], Lemma
3.1, we obtain

‖v − Ihv‖0,F � h
−1/2
T ‖v − Ihv‖0,T + ‖v − Ihv‖1/2

0,T |v − Ihv|1/2
1,T . (3.11)

Then, using (3.11) and (3.8) we arrive at

‖v − Ihv‖0,F �h
−1/2
T θT ‖v‖a,ω̃T

+ ν−1/4θ
1/2
T ‖v‖a,ω̃T

�
[
h
−1/2
T θT + ν−1/4θ

1/2
T

]
‖v‖a,ω̃T

.

Finally, since the mesh is regular

h
−1/2
T θT + ν−1/4θ

1/2
T = ν−1/4 σ−1/4 min{hTν

−1/2σ1/2, 1}1/2 ×
[
1 + min{1, h−1

T ν1/2σ−1/2}1/2

]

� θF ,

and the second estimate follows. 2

Corollary 5 For all φ ∈ H, the following estimates hold

∑

T∈Th

θ−2
T ‖φ − Ihφ‖2

0,T � a(φ,φ),

∑

F ∈EΩ

θ−2
F ‖φ − Ihφ‖2

0,F � a(φ,φ) .

PROOF. First, from (3.8) and the mesh regularity we obtain

∑

T∈Th

θ−2
T ‖φ − Ihφ‖2

0,T �
∑

T∈Th

θ−2
T θ2

T ‖φ‖2
a,ω̃T

� a(φ,φ) .

Next, from (3.9) and the mesh regularity we obtain the second estimate. 2

4 The auxiliary problem

Let (e, E) ∈ H ×Q, and let us define (φ, ψ) ∈ H ×Q as the solution of the
weak problem:

a(φ,v) + c(ψ, q) = a(e,v) + b(v, E) + b(e, q) ∀(v, q) ∈ H ×Q. (4.1)
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The well-posedeness of this problem arises from the fact that a and c are
elliptic bilinear forms on H and Q, respectively.

Let ||| · ||| : H ×Q→ R be the mapping defined by

(e, E) 7−→ |||(e, E)||| :=
{
‖φ‖2

a + ‖ψ‖2
c

}1/2

, (4.2)

where (φ, ψ) is the solution of (4.1).

Lemma 6 The mapping (4.2) defines a norm on H ×Q.

PROOF. Since ‖ · ‖a and ‖ · ‖c are norms on H and Q, respectively, we only
have to prove that |||(e, E)||| = 0 implies (e, E) = 0. If |||(e, E)||| = 0, then

a(e,v) + b(v, E) + b(e, q) = 0 ∀(v, q) ∈ H ×Q . (4.3)

If we consider v = 0 in (4.3), then e ∈ Ker(div ). Next, if q = 0 and v = e,
then b(e, E) = 0 and hence a(e,e) = 0, which implies e = 0. Finally, since
e = 0, we have

(E, div v)Ω = 0 ∀v ∈ H ,

and, since div : H −→ Q is a surjective operator, there exists v ∈ H , such
that div v = E. Hence E = 0. 2

The next result shows the equivalence between ||| · ||| and (2.4).

Theorem 7 There exists a positive constant K2, independent of σ and ν,
such that

1

4
|||(e, E)|||2 ≤ ‖e‖2

a + ‖E‖2
c ≤ K2

(
σ + ν

ν

)2

|||(e, E)|||2 ,

for all (e, E) ∈ H ×Q.

PROOF. Upper bound: Using (2.7), q = 0 in (4.1), Cauchy-Schwarz’s in-
equality and (2.5), we have

αb

√
ν

σ + ν
‖E‖c ≤ sup

v∈H

|b(v, E)|
‖v‖a

= sup
v∈H

|a(φ,v) − a(e,v)|
‖v‖a

≤ ‖φ‖a + ‖e‖a ,
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and then

‖E‖c ≤ α−1
b

√
σ + ν

ν

{
‖φ‖a + ‖e‖a

}
. (4.4)

Now, considering q = −E, v = e in (4.1), using (2.5), Cauchy-Schwarz’s
inequality and (4.4), we obtain

‖e‖2
a = a(e,e)

= a(φ,e) − c(ψ,E)

≤‖φ‖a‖e‖a + ‖ψ‖c‖E‖c

≤
{
‖φ‖a + α−1

b

√
σ + ν

ν
‖ψ‖c

}
‖e‖a + α−1

b

√
σ + ν

ν
‖ψ‖c‖φ‖a

≤ 1

2

{
‖φ‖a + α−1

b

√
σ + ν

ν
‖ψ‖c

}2

+
1

2
‖e‖2

a +

1

2

σ + ν

α2
bν

‖φ‖2
a +

1

2
‖ψ‖2

c

≤‖φ‖2
a +

σ + ν

α2
bν

‖ψ‖2
c +

1

2
‖e‖2

a +
1

2

σ + ν

α2
bν

‖φ‖2
a +

1

2
‖ψ‖2

c

≤C
σ + ν

ν

{
‖φ‖2

a + ‖ψ‖2
c

}
+

1

2
‖e‖2

a,

which leads to

‖e‖2
a ≤ C

σ + ν

ν

{
‖φ‖2

a + ‖ψ‖2
c

}
. (4.5)

Hence, from (4.4) and (4.5), we have

‖e‖2
a + ‖E‖2

c ≤ K2

(
σ + ν

ν

)2

|||(e, E)|||2 .

Lower bound: Taking v = φ, q = 0 in (4.1) and using (2.6), we obtain

‖φ‖2
a = a(φ,φ) = a(e,φ) + b(φ, E) ≤ ‖e‖a‖φ‖a +

√
2 ‖φ‖a‖E‖c ,

and then, dividing by ‖φ‖a we obtain

‖φ‖a ≤ ‖e‖a +
√

2 ‖E‖c. (4.6)

Next, taking v = 0, q = ψ in (4.1) and using (2.6), we obtain

‖ψ‖2
c = c(ψ, ψ) = b(e, ψ) ≤

√
2 ‖e‖a‖ψ‖c ≤ ‖e‖2

a +
1

2
‖ψ‖2

c ,

which leads to
‖ψ‖2

c ≤ 2 ‖e‖2
a . (4.7)

Hence, from (4.6) and (4.7), we finally obtain

|||(e, E)|||2 ≤ 4 {‖e‖2
a + ‖E‖2

c} ,
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and the result follows. 2

Remark 8 It is worth remarking that if we are dealing with a “pure” Stokes
problem, i.e., if σ = 0, then the previous result gives an equivalence result with
constants independent of ν (of course, ν is present in the definition of ‖· ‖a

and ‖· ‖c).

4.1 Application to the residual equation

The finite element method to be considered in this paper is the following
stabilized finite element method for (2.1) (cf. [8]): Find (uh, ph) ∈ Hh × Qh

such that:

Aδ((uh, ph), (vh, qh)) = Fδ(vh, qh) ∀(vh, qh) ∈ Hh ×Qh , (4.8)

where

Aδ((uh, ph), (vh, qh)) := a(uh,vh) + b(vh, ph) + b(uh, qh)

−
∑

T∈Th

δT (σuh − ν∆uh + ∇ph, σ vh − ν∆vh + ∇qh)T ,

and
Fδ(vh, qh) := (f ,vh)Ω −

∑

T∈Th

δT (f , σ vh − ν∆vh + ∇qh)T .

If σ > 0, the stabilization parameter δT is given by:

δT :=
h2

T

σ h2
T max{λT , 1} + 4 ν/mk

, (4.9)

where

λT :=
4 ν

mk σ h2
T

,

mk := min
{

1

3
, Kk

}
, (4.10)

and Kk is the positive constant appearing in the inverse inequality

Kk h
2
T ‖∆vh‖2

0,T ≤ ‖∇vh‖2
0,T ∀vh ∈ Hh,

which depends only on k and the mesh regularity. If σ = 0, we recover the
GLS method [16] with δT = h2

Tmk/8ν.

Remark 9 The choice of a continuous finite element space for the pressure
is made only for simplicity of the presentation. Discontinuous spaces for the
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pressure may be also be considered, but in that case appropriate jump terms
on the interelement boundaries should be added (see [13] for a discussion on
the subject and [4] for a residual a posteriori error analysis for a stabilized
method using discontinuous pressures).

Next, let e and E be the errors in approximating the velocity and pressure,
respectively, i.e.

e := u − uh ,

E := p− ph .

Then, with this choice for (e, E), the variational problem (4.1) reads:

a(φ,v) + c(ψ, q) = (f ,v)Ω − a(uh,v) − b(v, ph) − b(uh, q) , (4.11)

for all (v, q) in H ×Q, or, written in another way

a(φ,v) + c(ψ, q) = Rh(v, q) ∀(v, q) ∈ H ×Q , (4.12)

where Rh : H ×Q −→ R stands for the residual functional given by

Rh(v, q) := (f ,v)Ω − a(uh,v) − b(v, ph) − b(uh, q) .

This auxiliary problem is clearly uncoupled. Indeed, defining the linear bounded
operators A : H → H ′ , Au(v) := a(u,v), and C : Q → Q′ , Cp(q) := c(p, q),
then (4.12) may be rewritten as:



A 0

0 C







φ

ψ


 =



R1

h

R2
h


 , (4.13)

where R1
h ∈ H ′ and R2

h ∈ Q′ are given by

R1
h(v) := (f ,v)Ω − a(uh,v) − b(v, ph) ,

R2
h(q) := −b(uh, q) .

Remark 10 Considering v = 0 in (4.11), we have

∫

Ω
(ν−1ψ − div uh) q dx = 0 ∀q ∈ Q ,

and hence, since ν−1ψ − div uh ∈ Q, we can see that

ψ = ν div uh ,

and then we know the explicit solution for ψ.

10



Now, from the previous remark, in (4.13) we only need to solve

Aφ = R1
h,

which is equivalent to the following variational equation:

a(φ,v) = R1
h(v) ∀v ∈ H . (4.14)

In order to give a more precise (and useful in what follows) expression for R1
h,

denoting εh := ν∇uh − ph I (where I stands for the R
2×2 identity matrix),

integration by parts leads to

R1
h(v) =

∑

T∈Th

(RT ,v)T +
∑

F∈EΩ

(RF ,v)F , (4.15)

where RT ∈ L2(T )2 and RF ∈ L2(F )2 are given by

RT := (f − σuh + ν∆uh −∇ph)|T ,

and
RF := −

[[
εh · n

]]

F
,

[[
v
]]

F
being the jump of v across F . Note that in our case ph is a continuous

function, and then RF reduces to −
[[
ν∇uh · n

]]

F
.

Finally, we remark that if (φ, ψ) is the solution of (4.12), then ψ = ν div uh,
and hence, applying Theorem 7 we see that

‖φ‖2
a + ν ‖div uh‖2

0,Ω � ‖e‖2
a + ‖E‖2

c �
(
σ + ν

ν

)2 [
‖φ‖2

a + ν ‖div uh‖2
0,Ω

]
.

Based on this remark in the next section we will build an a posteriori error
estimator for φ.

5 The hierarchical error estimator

Let W h be a finite element space such that Hh ⊆ W h ⊆ H . Let us suppose
that there exist M subspaces H i of W h such that

W h = H0 +
M∑

i=1

H i ,

where H0 := Hh. Associated with each subspace H i there exists a projection
operator Pi : H −→ H i given by the solution of the local problem

a(Piv,wi) = a(v,wi) ∀wi ∈ H i , Piv ∈ H i .

11



Using these notations we define our hierarchical a posteriori error estimator
ηH by

ηH :=

{
M∑

i=1

a(Piφ, Piφ)

}1/2

,

where φ is the solution of (4.14). Let us recall that Piφ is the solution of the
local problem: Find Piφ ∈ H i such that

a(Piφ,vi) = R1
h(vi) ∀vi ∈ H i .

We remark that, if H i is local enough and of small dimension, then the com-
putation of Piφ is easy and cheap. In which follows, we will define a space H i

associated to each element T ∈ Th and each side F ∈ EΩ. In this way, our a
posteriori error estimator ηH reduces to:

ηH =





∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PF φ, PF φ)





1/2

. (5.1)

These finite element spaces H i may be spanned by appropriate bubble func-
tions. Let us define the finite dimensional spaces Hb, called bubble function
spaces, by

Hb =





Hb
T for each T ∈ Th,

Hb
F for each F ∈ EΩ ,

with the restriction Hb
T ⊂ H1

0 (T )2 and Hb
F ⊂ H1

0 (ωF )2. Moreover, we will sup-
pose that these bubble spaces are affine-equivalent to fixed finite dimensional
spaces on a reference configuration, so that the following estimate holds

‖b‖2
0,T � h2

T |b|21,T , (5.2)

for all b ∈ Hb, and all T ∈ Th.

Finally, we will suppose that these bubble function spaces satisfy the following
inf-sup condition (LBB): There exists β > 0, independent of h, σ and ν, such
that

sup
BT ∈H

b

T

(BT ,RT )T

aT (BT ,BT )1/2
≥ β θT‖RT‖0,T ∀T ∈ Th ,

sup
BF ∈H

b

F

(BF ,RF )F

aωF
(BF ,BF )1/2

≥ β θF‖RF‖0,F ∀F ∈ EΩ ,

where aD(· , · ) stands for integration over D ⊆ R
2.

Remark 11 Later, in Appendix B, we will give a concrete example of bubble
function spaces satisfying (LBB).
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Lemma 12 If (LBB) holds, then

R1
h(v) �

∑

T∈Th

a(PT φ, PT φ)1/2θ−1
T ‖v‖0,T

+
∑

F∈EΩ

[
a(PF φ, PF φ)1/2 +

∑

T ′⊂ωF

a(PT ′φ, PT ′φ)1/2
]
θ−1

F ‖v‖0,F ,

for all v in H.

PROOF. We first note that from (4.15) and Cauchy-Schwarz’s inequality we
arrive at

R1
h(v) �

∑

T∈Th

‖RT‖0,T‖v‖0,T +
∑

F∈EΩ

‖RF‖0,F‖v‖0,F .

Next, using Cauchy-Schwarz’s inequality, (LBB) condition and the definition
of PT φ we obtain

θT‖RT‖0,T ≤ 1

β
sup

BT ∈H
b

T

(BT ,RT )T

aT (BT ,BT )1/2

=
1

β
sup

BT ∈H
b

T

R1
h(BT )

aT (BT ,BT )1/2

=
1

β
sup

BT ∈H
b

T

a(PT φ,BT )

a(BT ,BT )1/2

≤ 1

β
a(PT φ, PT φ)1/2 . (5.3)

Moreover, for each F ∈ EΩ we have

θF‖RF‖0,F ≤ 1

β
sup

BF ∈H
b

F

(BF ,RF )F

a(BF ,BF )1/2

=
1

β
sup

BF ∈H
b

F

R1
h(BF ) − ∑

T ′⊂ωF
(RT ′ ,BF )T ′

a(BF ,BF )1/2

≤ 1

β
sup

BF ∈H
b

F

a(PF φ,BF )

a(BF ,BF )1/2
+

1

β
sup

BF ∈H
b

F

∑

T ′⊂ωF

‖RT ′‖0,T ′‖BF‖0,T ′

a(BF ,BF )1/2

� a(PF φ, PF φ)1/2 +
∑

T ′⊂ωF

θT ′‖RT ′‖0,T ′ ,

since, on each T ′ ⊂ ωF there holds

‖BF‖2
0,T ′

aT ′(BF ,BF )
� θ2

T ′ .

13



In fact, if σ > 0, applying (5.2) and the definition of θT yields to

‖BF‖2
0,T ′

aT ′(BF ,BF )
=

∫
T ′ BF · BF

σ
∫
T ′ BF · BF + ν

∫
T ′ ∇BF : ∇BF

�
∫
T ′ BF · BF

σ
∫
T ′ BF · BF + ν h−2

T ′

∫
T ′ BF · BF

� 1

σ + ν h−2
T ′

� σ−1

max{1, ν σ−1 h−2
T ′ }

�σ−1 min{1, ν−1 σ h2
T ′}

� θ2
T ′ .

The result for σ = 0 follows in an analogous way. 2

Up to now we have not used any particular feature of the stabilized finite
element method (4.8). The following technical result, whose proof may be
found in Appendix A, will be useful in the proof of the reliability of our error
estimator (5.1) (see Lemma 14 below).

Lemma 13 For all vh ∈ Hh there holds

R1
h(vh) �

∑

T ∈Th

θT ‖RT‖0,T‖vh‖a,T .

Lemma 14 Let φ be the solution of (4.14). Then, if (LBB) holds, then

a(φ,φ) � η2
H .

PROOF. From Lemma 12 applied to v = φ − Ihφ, Cauchy-Schwarz’s in-
equality and Corollary 5 we obtain
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R1
h(φ − Ihφ) �

∑

T∈Th

a(PT φ, PT φ)1/2θ−1
T ‖φ − Ihφ‖0,T

+
∑

F∈EΩ

[
a(PF φ, PF φ)1/2 +

∑

T ′⊂ωF

a(PT ′φ, PT ′φ)1/2
]
θ−1

F ‖φ − Ihφ‖0,F

�




∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PF φ, PF φ)





1/2

×




∑

T∈Th

θ−2
T ‖φ − Ihφ‖2

0,T +
∑

F ∈EΩ

θ−2
F ‖φ − Ihφ‖2

0,F





1/2

�




∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PF φ, PF φ)





1/2

‖φ‖a.

Hence, from Lemmas 12, 13, (5.3), (3.10) and Cauchy-Schwarz’s inequality we
obtain:

a(φ,φ) = R1
h(φ)

=R1
h(φ − Ih φ) + R1

h(Ihφ)

�




∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PF φ, PF φ)





1/2

‖φ‖a +

∑

T ∈Th

θT ‖RT‖0,T‖Ihφ‖a,T

�




∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PF φ, PF φ)





1/2

‖φ‖a +

∑

T ∈Th

a(PT φ, PT φ)1/2‖φ‖a,ω̃T

�




∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PF φ, PF φ)





1/2

‖φ‖a ,

and the result follows from the definition of ‖· ‖a. 2

Using the previous results we can state the following equivalence theorem:

Theorem 15 Let φ be the solution of (4.14). If (LBB) holds, then

a(φ,φ) ≃ η2
H ,

where ηH is given by (5.1) and the equivalence constants are independent of
h, σ and ν.
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PROOF. The upper bound has already been stated in Lemma 14. For the
lower bound, for simplicity let us write

∑

T∈Th

a(PT φ, PT φ) +
∑

F∈EΩ

a(PF φ, PF φ) =
M∑

i=1

a(Piφ, Piφ) ,

for some positive integer M . From the definition of Piφ and Cauchy-Schwarz’s
inequality we have

[
M∑

i=1

a(Piφ, Piφ)

]2

=

[
M∑

i=1

a(φ, Piφ)

]2

=

[
a(φ,

M∑

i=1

Piφ)

]2

≤ a(φ,φ) a(
M∑

i=1

Piφ,
M∑

i=1

Piφ) . (5.4)

Using Cauchy-Schwarz’s inequality once more we arrive at

a(
M∑

i=1

Piφ,
M∑

i=1

Piφ) =
M∑

i=1

∑

j∈Ii

a(Piφ, Pjφ)

≤
M∑

i=1

∑

j∈Ii

{
1

2
a(Piφ, Piφ) +

1

2
a(Pjφ, Pjφ)

}

≤Kmax

M∑

i=1

a(Piφ, Piφ) , (5.5)

where Ii denotes the set of spaces Hj which are neighbors of H i, i.e.

Ii := { j : ∃vj ∈ Hj and vi ∈ H i such that a(vi,vj) 6= 0} ,

and where Kmax is the maximum number of neighbors, i.e.

Kmax := max{card(Il) : 1 ≤ l ≤M} ,

which is uniformly bounded from the mesh regularity. Hence, from (5.4) and
(5.5) we obtain

M∑

i=1

a(Piφ, Piφ) ≤ Kmax a(φ,φ) ,

and the result follows. 2

Finally, from the discussion at the end of the last section and Theorem 15, we
can prove the following main result.
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Theorem 16 Let (u, p), (uh, ph) and φ be the solutions of (2.1), (4.8) and
(4.14), respectively. If (LBB) holds, then the following equivalence holds

∑

T ∈Th

η̃2
H,T � ‖u − uh‖2

a + ‖p− ph‖2
c �

(
σ + ν

ν

)2 ∑

T ∈Th

η̃2
H,T ,

where

η̃H,T :=



a(PT φ, PT φ) +

1

2

∑

F ∈E(T )∩EΩ

a(PF φ, PF φ) + ν ‖div uh‖2
0,T





1/2

.

Remark 17 It is worth remarking that the above results hold supposing only
the (LBB) condition, which is simpler to verify than the saturation assump-
tion. In fact, Appendix B is devoted to show a concrete example of bubble
function spaces satisfying the (LBB) condition.

6 Numerical results

In this section we report some results obtained for the standard Stokes problem
(i.e. σ = 0), and the generalized one (σ 6= 0). In both cases we show the
ability of the adaptive scheme based on our a posteriori error estimator to
generate adapted meshes and to improve the discrete solution without using
a highly refined uniform mesh. We first test the theoretical results concerning
the reliability and efficiency of the a posteriori error estimator given by (5.1)
using an analytical solution as reference and comparing the exact finite element
error and the estimated error. Afterward, we test the adaptive finite element
scheme in test cases for which we do not know the exact solution, but we have
some a priori information about the location of singularities and/or boundary
layers. All the numerical results of this section have been obtained using equal-
order [P1]

2 × P1 elements, and from now on d.o.f. will denote the degrees of
freedom associated with a particular mesh.

The adaptive procedure consists of solving problem (4.8) on a sequence of
meshes up to finally attain a solution with an estimated error within a pre-
scribed tolerance. To attain this purpose, we initiate the process with a quasi-
uniform mesh and, at each step, a new mesh better adapted to the solution
of problem (2.1) is created. This is done by computing the local error estima-
tors η̃H,T for all T in the “old” mesh Th, and refining those elements T with
η̃H,T ≥ θmax{η̃H,T : T ∈ Th}, where θ ∈ (0, 1) is a prescribed parameter. In
all our experiments we have chosen θ = 1

2
.

We have used the mesh generator Triangle. This generator allows us to create
successively refined meshes based on a hybrid Delaunay refinement algorithm.
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This process provides a sequence of refined meshes that form a hierarchy of
nodes, but not a hierarchy of elements (for details, see [19]).

6.1 The Stokes problem (σ = 0)

6.1.1 An analytical solution

For this test case, the domain is taken as the square Ω = (0, 1)× (0, 1), ν = 1,
and f is set such as the exact solution of our Stokes problem is given by

u1(x, y) = −256x2(x− 1)2y(y − 1)(2y − 1) ,

u2(x, y) = −u1(y, x) ,

p(x, y) = 150(x− 0.5)(y − 0.5) .

In order to test our a posteriori error estimator in Figure 1 we depict the error,
in the norm defined in (2.4), and the estimator η̃H as h→ 0. We can observe
that both values are in good accordance, which is confirmed in Table 1 where
we show the effectivity index

Ei :=
η̃H

‖(u − uh, p− ph)‖
,

which remains bounded as h → 0. Finally, in order to study the sensitivity
of the effectivity index as ν → 0, we present in Table 2 the behavior of η̃H

and ‖(u − uh, p − ph)‖ for a fixed mesh and for ν = 1, 10−1, . . . , 10−6. We
observe that, as was predicted by Theorem 16, the estimator η̃H follows the
same pattern of ‖(u − uh, p − ph)‖, and hence, the effectivity index remains
bounded independently of the value of ν (as a matter of fact, even if we observe
that the actual effectivity index varies, its variation can not be compared to
the variation of ν).
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Fig. 1. Exact error and the a posteriori error estimate.

d.o.f ‖(u − uh, p − ph)‖ η̃H Ei

39 6.641955 5.216376 0.785367

123 3.292848 2.873238 0.872569

435 1.671618 1.523188 0.911205

1635 0.838908 0.775193 0.924050

6339 0.419710 0.392412 0.934960

24963 0.209854 0.197351 0.940422

99075 0.104919 9.900770e-02 0.943655

Table 1
Exact error, a posteriori error estimator and effectivity index.
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ν ‖(u − uh, p − ph)‖ η̃H Ei

1 0.209854 0.197351 0.940422

1e-01 6.643132e-02 6.244997e-02 0.940068

1e-02 2.309899e-02 2.105384e-02 0.911461

1e-03 3.123896e-02 2.392909e-02 0.766001

1e-04 9.655438e-02 7.305909e-02 0.756662

1e-05 0.305260 0.227342 0.744750

1e-06 0.965315 0.645566 0.668762

Table 2
Sensitivity of the estimator to ν.

6.1.2 The lid-driven cavity problem

For this case we use the same domain as in previous section, we set f = 0, and
the boundary conditions u = 0 on [{0}× (0, 1)]∪ [(0, 1)×{0}]∪ [{1}× (0, 1)]
and u = (1, 0)t on (0, 1) × {1}. We show in Figure 2 the initial mesh and
the adapted one obtained using our error estimate. In Figure 3 we depict the
discrete pressure field obtained using the initial and adapted meshes where
we note the improvement in the quality of the computed solution since the
singular nature of the pressure is better captured in the adapted mesh.

Fig. 2. Initial and adapted meshes.
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Fig. 3. The pressure in the initial and adapted meshes.

6.1.3 The backward facing step problem

This test case is posed on the backward facing step configuration. The step is
located at (x, y) = (2.5, 0), the entry of the channel is at x = 0 and the exit
of the channel at x = 22. The channel width is 1 at entry and 2 at exit. The
boundary conditions are inflow parabolic profiles and free outflow. We assume
f = 0. In this case a singularity arises at the step from the re-entrant corner.
Hence we can expect the meshes to be locally refined around the corner. In
Figure 4 we depict the initial mesh, and in Figure 5 we show a zoom of the
adapted mesh where we can observe the local behavior of the adapted mesh.
Isovalues of the vertical component of the velocity are depicted in Figure 6
for both meshes. We remark the improvement in the quality of the discrete
solution if we use the adapted mesh.

Fig. 4. Initial mesh.
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Fig. 5. A zoom, near the singularity, of the adapted mesh.

Fig. 6. A zoom, near the singularity, of the vertical velocity in the initial and the
adapted meshes.

6.2 The generalized problem (σ 6= 0)

6.2.1 An analytical solution

For this test case we consider Ω = (0, 1) × (0, 1), and with the aim of testing
our approach using non-polynomial solutions, we set f such that the exact
solution of our generalized Stokes problem is given by

u1(x, y) = sin(πx) sin(πy) ,

u2(x, y) = cos(πx) cos(πy) ,

p(x, y) = 150(x− 0.5)(y − 0.5) .

In Figures 7 and 8 we present the behavior, when ν = 1 and σ = 1, 106, of the
true error and the error estimate when h goes to 0. In Tables 3 and 4 we show
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the same kind of information plus the effectivity index. Note that this case
is not covered by our theoretical results since condition (F) is not satisfied.
Nevertheless, the exact error follows the same pattern of our a posteriori error
estimator.

η

‖(u − uh, p − ph)‖

d.o.f

e
rr

o
r

10000010000100010010

10

1

0.1

0.01

Fig. 7. Exact error and the a posteriori error estimate (ν = 1 and σ = 1).

d.o.f ‖(u − uh, p − ph)‖ η Ei

39 5.883058 1.207587 0.205265

123 2.351148 0.552966 0.235189

435 0.995980 0.264470 0.265538

1635 0.447907 0.129655 0.289470

6339 0.211081 6.438188E-02 0.305009

24963 0.102311 3.209443E-02 0.313694

99075 5.035011E-02 1.602415E-02 0.318254

Table 3
Error, a posteriori error estimator and effectivity index (ν = 1 and σ = 1).
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Fig. 8. Exact error and the a posteriori error estimate (ν = 1 and σ = 106).

d.o.f ‖(u − uh, p − ph)‖ η Ei

39 58179.411175 171.910627 2.954836E-03

123 18164.167330 52.292356 2.878874E-03

435 4778.880002 14.550425 3.044735E-03

1635 1210.276370 3.799917 3.139710E-03

6339 303.836382 0.944739 3.109368E-03

24963 76.196100 0.217320 2.852117E-03

99075 19.142527 4.566340E-02 2.385442E-03

Table 4
Error, a posteriori error estimator and effectivity index (ν = 1 and σ = 106).

6.2.2 The lid-driven cavity problem

Again, we consider the problem described in Section 6.1.2, but in this case we
assume ν = 1 and σ = 106. In Figure 9 we depict the initial and final adapted
meshes. We note that our a posteriori error estimate is able to detect correctly
the boundary layer of the solution. In Figure 10 we show a vertical cross section
of the first component of the velocity field. This cross section shows us the
quality of the discrete solution computed using the adapted mesh. Note that
the exponential boundary layer is clearly captured.
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Fig. 9. Initial and final adapted meshes.
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Fig. 10. A cross section of the tangential velocity at x = 1
2 .

7 Concluding remarks

An adaptive finite element scheme for the generalized Stokes equation has been
introduced and analyzed. This scheme is based on a stabilized finite element
method combined with an a posteriori error estimator. This error estimator is
cheap and easy to calculate once we have chosen the bubble function spaces to
be used. The equivalence between the estimator and the finite element error
has been proved using a general hypothesis on the auxiliary bubble function
spaces, thus avoiding the use of a saturation assumption, and we have provided
a concrete pair of bubble spaces satisfying this requirement.

Even if the theoretical results concerning the estimator include constants de-
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pending on the physics of the problem, we remark that, for the pure Stokes
problem, they provide equivalence constants which are independent of the vis-
cosity. We also note that this dependence arises from the auxiliary problem
posed on the continuous setting, and not from the hierarchical approach.

Finally, it is worth remarking that, even if the basic idea is closely related
to the idea from [3] (see also [18]), our presentation is more general and the
actual error estimator is quite different, and easier to compute. The extension
of this idea to the Oseen and to the fully nonlinear Navier-Stokes equations
will be the subject of future research.

A The proof of Lemma 13

First, we give the following result concerning the stabilization parameter δT .

Lemma 18 Let T ∈ Th and let δT be given by (4.9). Then, the following
estimates hold

ν δT ≤ 1

12
h2

T , (A.1)

σ δT ≤min{hT ν
−1/2 σ1/2, 1}. (A.2)

PROOF. In order to prove the first estimate we use (4.9) and (4.10) to obtain

δT ≤ h2
T

4 ν/mk

≤ 1

12
ν−1 h2

T ,

estimate which is valid independently of the value of σ. Second estimate is
obvious if σ = 0, hence we will suppose from now on that σ > 0. First, we use
(4.9) to get

σ δT ≤ 1

max{λT , 1}
≤ 1 . (A.3)

On the other hand, we know from (A.1) that δT ≤ 1
12
ν−1 h2

T , and then

σ δT ≤ 1

12
h2

T ν
−1 σ . (A.4)

Taking then the geometric mean of (A.3) and (A.4), we have

σ δT ≤ 1√
12
hT ν

−1/2 σ1/2. (A.5)

Finally, from (A.3) and (A.5), we obtain (A.2). 2
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Now, we are ready to prove Lemma 13. We will prove the result only for the
case σ > 0, the other one being completely analogous. From the definition of
R1

h, using (4.8) with qh = 0, we have

R1
h(vh) =

∫

Ω
f ·vh − a(uh,vh) − b(vh, ph) =

∑

T ∈Th

∫

T
δT RT (σ vh − ν∆vh) .

Next, from Cauchy-Schwarz’s inequality, (3.2) and (A.1), we obtain

νδT

∫

T
RT ∆vh ≤ νδT

∫

T
|RT ||∆vh|

≤ h2
T

12
‖RT‖0,T‖∆vh‖0,T

� θT ‖RT‖0,T‖vh‖a,T .

On the other hand, using (A.2), Cauchy-Schwarz’s inequality and the defini-
tion of θT we obtain

σ δT

∫

T
RT vh ≤min{ν−1/2σ1/2 hT , 1} ‖RT‖0,T ‖vh‖0,T

≤ θT ‖RT‖0,T ‖vh‖a,T ,

and the result follows.

B Bubble function spaces satisfying (LBB) condition

For each element T ∈ Th we define the element bubble function bT by

bT := 27
∏

x∈N (T )

λx, (B.1)

where λx denotes the barycentric coordinate associated to node x. Following
Verfürth [22], let T̂ be the standard reference element, of vertices (1, 0), (0, 1)
and (0, 0). Given any number α ∈ (0, 1] let us denote by Φα : R

2 → R
2 the

transformation which maps (x, y) onto (x, αy). Let

T̂α := Φα(T̂ ),

and let us denote by λ̂1,α, λ̂2,α and λ̂3,α its barycentric coordinates (see Figure
B.1).
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(0, 0) (1, 0)

T̂

(0, 1)

(1, 0)

(0, α)

(0, 0)

T̂α

λ̂1,α

λ̂2,α

Φα(T̂ )

λ̂3,α

Fig. B.1. Triangles T̂ and T̂α.

Set

b
F̂ ,α

:=





4 λ̂3,αλ̂1,α on T̂α,

0 on T̂ \ T̂α,

where F̂ := {(t, 0) ∈ R
2 : 0 ≤ t ≤ 1}. Let F ∈ EΩ and let us denote by T1, T2

two triangles which have F in common. Let GF,i, i = 1, 2, be the orientation
preserving affine transformation which maps T̂ onto Ti and F̂ onto F (see
Figure B.2).

(0; 0)

(0; 1)

(1; 0)
T̂
F̂

T1F T2GF;2
GF;1

Fig. B.2. Affine transformation GF,i, i = 1, 2.

Set

bF,α :=





b
F̂ ,α

◦G−1
F,i on Ti, i = 1, 2,

0 on Ω \ ωF .
(B.2)

Let Π̂ := {(x, 0) : x ∈ R} and let Q̂ : R
2 → Π̂ be the orthogonal projection

from R
2 to Π̂. We introduce the lifting operator P̂F̂ : Pk(F̂ ) → Pk(T̂ ) by

P̂F̂ (ŝ) = ŝ ◦ Q̂.

Let Ti ⊆ ωF and let GF,i be the affine transformation defined in Figure B.2.
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We define the lifting operator PF,Ti
: Pk(F ) → Pk(Ti) by

PF,Ti
(s) = P̂F̂ (s ◦GF,i) ◦G−1

F,i.

Using these notations, we can define a lifting operator

s ∈ Pk(F ) −→ PF (s) :=





PF,T1
(s) in T1 ,

PF,T2
(s) in T2 ,

and, for s = (s1, s2) ∈ Pk(F )2, we denote

P F (s) = (PF (s1), PF (s2)) .

Finally, for all F ∈ EΩ let αF be the positive parameter given by

αF :=





min{ν1/2 σ−1/2 h−1
F , 1} , σ > 0 ,

1 , σ = 0 .

Theorem 19 Let k ∈ N. For all σ ≥ 0, the following estimates hold

‖v‖2
0,T � (v, bT v)T ,

‖s‖2
0,F � (s, bF,αF

s)F ,

‖bT v‖a,T � θ−1
T ‖v‖0,T , (B.3)

‖bF,αF
P F (s)‖a,ωF

� θ−1
F ‖s‖0,F , (B.4)

for all T ∈ Th, F ∈ EΩ, and every polynomial v, s of degree k defined in T
and F , respectively.

PROOF. The first two inequalities are proved (for the scalar case) in [22],
Lemma 3.3. To prove the latter ones, let us first suppose that σ > 0. Using
the inverse inequality (3.3) and the fact that bT ≤ 1,

‖bT v‖2
a,T = ν ‖∇(bT v)‖2

0,T + σ ‖bT v‖2
0,T

� (ν h−2
T + σ) ‖v‖2

0,T

�σ (ν σ−1 h−2
T + 1) ‖v‖2

0,T

�σ max{ν1/2 σ−1/2 h−1
T , 1}2 ‖v‖2

0,T

�σ min{ν−1/2 σ1/2 hT , 1}−2 ‖v‖2
0,T ,

and (B.3) follows. To prove (B.4), we first see that
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‖bF,αF
P F (s)‖2

0,ωF
=

∑

Ti⊂ωF

‖bF,αF
P F (s)‖2

0,Ti

�
∑

Ti⊂ωF

h2
Ti
‖b

F̂ ,αF

P̂ F̂ (ŝ)‖2
0,T̂

(B.5)

Now, Lemma 3.3 in [22] applied to the vectorial case leads to

‖b
F̂ ,αF

P̂ F̂ (ŝ)‖
0,T̂

�√
αF ‖ŝ‖

0,F̂
, (B.6)

‖∇̂(b
F̂ ,αF

P̂ F̂ (ŝ))‖
0,T̂

�
√

αF +
1

αF

‖ŝ‖
0,F̂

, (B.7)

and hence, using (B.5),(B.6) and the mesh regularity, we obtain

‖bF,αF
P F (s)‖2

0,ωF
� αF h

2
F ‖ŝ‖2

0,F̂
� αF hF ‖s‖2

0,F .

Moreover

σ hF αF = ν1/2 σ1/2 min{1, ν−1/2 σ1/2 hF}
≤ ν1/2 σ1/2 min{1, ν−1/2 σ1/2 hF}−1 = θ−2

F ,

and then
σ ‖bF,αF

P F (s)‖2
0,ωF

� θ−2
F ‖s‖2

0,F . (B.8)

On the other hand, from (B.7) and αF ≤ 1, it holds

‖∇(bF,αF
P F (s))‖2

0,ωF
=

∑

Ti⊂ωF

‖∇(bF,αF
P F (s))|20,Ti

�‖∇̂(b̂F,αF
P̂ F̂ (ŝ))‖2

0,T̂

�α−1
F ‖ŝ‖2

0,F̂

�h−1
F α−1

F ‖s‖2
0,F ,

and using that ν h−1
F α−1

F = θ−2
F , we obtain

ν ‖∇(bF,αF
P F (s))‖2

0,ωF
� θ−2

F ‖s‖2
0,F . (B.9)

Hence, the result for σ > 0 follows from (B.8) and (B.9). The proof for σ = 0
follows in an analogous way. 2

In order to satisfy the (LBB) condition we need to impose the following con-
dition on f :

(F) f is a piecewise polynomial function, i.e., there exists a positive integer
t such that

f ∈ {g ∈ L2(Ω)2 : g|T ∈ Pt(T )2 , ∀T ∈ Th} .
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Remark 20 One possibility to overcome condition (F) above is to split the
error between the error due to data approximation and the error due to the
numerical method, as it has been done, for instance, in [1]. In any case, we
remark that, since the degree t of the polynomial from condition (F) is not
upper bounded, the error between f and its local projection onto the piecewise
polynomial space may be seen as a higher order term.

Next, we define the following bubble function spaces:

Hb
T := 〈{bT RT}〉 ∀T ∈ Th ,

Hb
F := 〈{bF,αF

P F (RF )}〉 ∀F ∈ EΩ ,

where bT and bF,αF
are the bubble functions given by (B.1) and (B.2), respec-

tively.

Remark 21 We remark that this definition of bubble functions allows us use
any polynomial order to approximate the velocity and the pressure. In fact,
for every k, l ≥ 1 the bubble function bT RT belongs to Pmax{t,k,l−1}+3(T ) and
bF,αF

P F (RF ) belongs to Pk+1(T ). Hence, Hb
T and Hb

F are not subspaces of
Hh.

Since bT RT ∈ Hb
T , using Theorem 19 we arrive at

sup
BT∈H

b

T

(RT ,BT )T

θT ‖RT‖0,T aT (BT ,BT )1/2
≥ (RT , bT RT )T

θT ‖RT‖0,T aT (bT RT , bT RT )1/2

� ‖RT‖2
0,T

θT ‖RT‖0,T θ−1
T ‖RT‖0,T

� β .

The same analysis may be carried out for every F ∈ EΩ. In fact, we have

sup
BF∈H

b

F

(RF ,BF )F

θF ‖RF‖0,F aωF
(BF ,BF )1/2

≥ (RF , bF,αF
RF )F

θF ‖RF‖0,F aωF
(bF,αF

P F (RF ), bF,αF
P F (RF ))1/2

� ‖RF‖2
0,F

θF ‖RF‖0,F θ−1
F ‖RF‖0,F

� β .
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