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ABSTRACT 

Local Binary Patterns (LBP) have been used in 2-D image 

processing for applications such as texture segmentation 

and feature detection. In this paper a new 1-dimensional 

local binary pattern (LBP) signal processing method is pre-

sented. Speech systems such as hearing aids require fast and 

computationally inexpensive signal processing. The practi-

cal use of LBP based speech processing is demonstrated on 

two signal processing problems: - (i) signal segmentation 

and (ii) voice activity detection (VAD). Both applications 

use the underlying features extracted from the 1-D LBP. The 

proposed VAD algorithm demonstrates the simplicity of 1-D 

LBP processing with low computational complexity. It is 

also shown that distinct LBP features are obtained to iden-

tify the voiced and the unvoiced components of speech sig-

nals. 

1. I�TRODUCTIO� 

Local Binary Patterns (LBP) have been extensively used in 

2-D image processing [1] [2]. LBP has been shown in [3] to 

be a computationally simple, discriminative descriptor of 

texture. The motivation for the above applications is that an 

image can be described by a combination of texture patterns. 

We aim to develop a 1-D LBP signal processing framework 

and demonstrate its applicability on a real problem. Real 

time systems such as hearing aids require fast processing of 

the input signal while maintaining low computational com-

plexity. One common process in speech systems is Voice 

Activity Detection (VAD) which attempts to estimate peri-

ods of speech and non-speech. Different flavours of VAD 

base their decisions on statistical techniques [4] [8], energy 

level detection [5] or periodicity measures. VAD perform-

ance is affected by the SNR of the noisy speech and per-

formance depends on computational complexity and pa-

rameter tuning.  

In this paper, a novel 1-D LBP operator is developed as a 

signal processing tool. An LBP code for a neighbourhood of 

sampled data is produced by thresholding the neighbouring 

samples against centre samples of a processing window. This 

procedure is iteratively done across the entire signal and a 

segment of the 1-D signal is alternatively described by a 

sparser occurrence histogram of LBP codes. The paper is 

organized as follows. The novel 1-D LBP operator is pre-

sented in section 2. In section 3, a LBP-based segmentation 

of a 1-D signal is used to illustrate the processing capability 

of the 1-D LBP. A computationally simple LBP-based VAD 

is designed in section 4. This uses the occurrence histogram 

of the underlying signal to identify the voiced, unvoiced and 

non-speech components. The performance of the new VAD is 

demonstrated on a speech sample taken from the TIMIT da-

tabase [6] contaminated with non-stationary noise from the 

NOISEX-92 database [7]. Finally, concluding remarks are 

presented in section 5. 

2. 1-D LOCAL BI�ARY PATTER�S 

The 1-D LBP operator is adapted from the 2-D LBP [3]. It 

examines a neighbourhood of data samples from a signal x[i] 

and assigns an LBP code to each centre sample after thresh-

olding them against the neighbouring samples. The 1-D LBP 

operating on a sample value x[i] is defined as: 
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where the Sign function S[.] is given by: 
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and where the P neighbouring samples are thresholded 

around the centre sample from the neighbourhood of P+1 

data samples from the signal x[i] of length N for i=[P/2 : �-

P/2]. The Sign function S[.] transforms the differences to a 

P-bit binary code. The binomial weight applied to each 

thresholding operation converts the binary code into a 

unique LBP code. 

An illustration of the 1-D LBP operator is given in 

Figure 1 where P is set to 8 and the centre sample C is cir-

cled. As in Eq. (1), the 8 neighbouring samples are thresh-

olded against C to produce a binary code of 1111_0000. This 

code is then multiplied by the binomial weights given to the 

corresponding samples and the obtained values are summed 

to give the resulting LBP code of 15. The LBP codes can 

locally describe the data using the difference between a sam-

ple and its neighbours. For a constant or slowly varying sig-

nal, these differences cluster near zero. At peaks and troughs, 

the difference will be relatively large, whereas at edges, the 

differences in some directions will be larger than those from 

other directions. The local patterns formed from x[i] can be 

described by the distribution of the LBP codes: 
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Figure 1 - Computation of 1-D local binary pattern (1-D LBP) 

 

where k=1..n and n is the number of histogram bins and each 

bin corresponds to an LBP code. δ(i,j) is the Kronecker delta 

function. 

The standard LBPP operator produces 2
P
 different LBP 

codes. Extensions of the LBPP are presented in [3] for rota-

tion invariant patterns LBPP
r
, uniform patterns LBPP

u
, and 

rotation invariant uniform patterns LBPP
r,u

.   LBPP
r
 is pro-

duced by shifting the LBP code for the P neighbouring sam-

ples until its minimum value is found. In this way, LBPP
r
  of 

the processed window produces the same code for all shifted 

versions of that code and it is therefore invariant to rotation. 

A uniform pattern is defined by an LBP code which has at 

most two one-to-zero or zero-to-one transitions. The remain-

ing non-uniform patterns are assigned to a single histogram 

bin and each uniform pattern is assigned to a separate bin. 

LBPP
u 

gives a histogram with P(P-1)+3 bins. LBPP
r,u

 shifts 

the uniform codes until they attain their minimum values and 

results in a histogram with P+1 bins for uniform patterns plus 

one bin for non-uniform patterns. The LBP code evaluated 

earlier in this section is an example of a code that is uniform 

and is already rotation-invariant. The choice of which LBP to 

use depends on the need for either a more resolved represen-

tation or for a sparser histogram. In the presented work, nor-

malized histograms will be used for LBPP
r,u

 resulting in his-

tograms with P+2 bins. 

3. U�SUPERVISED SIG�AL SEGME�TATIO� 

USI�G 1-D LBP 

The 1-D LBP operator is used to produce a histogram of LBP 

codes which can be used as an alternative representation of 

the signal. In signal segmentation, the histogram can be used 

as a non-parametric estimator of the empirical LBP feature 

histogram. Resistor Average Difference (RAD) [2] can be 

used for measuring the similarity of adjacent LBP histo-

grams. RAD is derived from the non-symmetric Kullback-

Leibler Distance (KLD) [2] which is used for measuring the 

difference between two histograms p and q. KLD is given by: 
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where n is the number of histogram bins and p(k) and q(k) 

are the number of occurrences in histograms p and q respec-

tively at bin k. The RAD is defined as: 
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DRAD(p,q) between the two histograms p and q increases 

with dissimilarity and in contrast to KLD, RAD is symmet-

ric [9]. 

 

3.1 �oise Onset Identification 

 

In this example, the onset of noise is detected for a noise 

source switched on at some time τ. The signal x is first split 

into segments xa[j] of length W by applying a window w[j] of 

length W as: 

[ ] [ ] [ ]  for 0 1
a
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where a is the segment number, R<W for overlapping seg-

ments and R=W for contiguous segments. W is chosen to be 

small enough to capture transitions in the LBP feature histo-

grams. DRAD(p,q) is measured for the segments of the adja-

cent histograms and similar segments are merged. When two 

adjacent segments are merged, their histograms are summed 

and normalized to produce the histogram of the new seg-

ment. This procedure continues until the segment does not 

expand and the previously merged segments are considered 

as a component of the signal with similar underlying LBP 

features.  

This procedure was performed for an artificially gener-

ated sinusoidal signal of length 768 samples which was con-

taminated by Additive White Gaussian Noise (AWGN) in the 

middle portion of the signal as shown in Figure 2(a). The 

signal was split up as in Eq. (6) with W=128 and R=128 and 

a rectangular window w[j]. The 1-D LBP8
r,u

 extension was 

used with P=8 to give a LBP histogram with P+2=10 bins as 

shown in Figure 2(b) for each segment. The DRAD values for 

adjacent segments are shown for illustrative purposes. The 

results of the segmentation are shown in Figure 2(c) and 

Figure 2(d). It can be seen that the algorithm exactly sepa-

rates the sinusoidal components from the noise affected por-

tion based on the similarity of the underlying signal features. 

No overlap was used in this example, however overlapping 

the segments will improve fidelity.  

4. VOICE ACTIVITY DETECTIO� USI�G 1-D 

LBP 

Traditional VAD detects speech activity in the presence of 

noise. VAD does not usually distinguish between voiced and 

unvoiced components [4][5][8]. Unvoiced speech contains 

high occurrences of non-uniform patterns and use of the uni-

form LBP extension, LBPP
r,u

, can distinguish between these 

two speech components. The speech utterance  
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 DRAD(p,q)=4x10-4 DRAD(p,q)=0.0159 DRAD(p,q)=0.0122 DRAD(p,q)=0.0141 DRAD(p,q)= 4x10-4  
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Figure 2 - Segmentation of a sinusoidal signal contaminated by AWGN (a) Original noisy signal (b) LBP8
r,u histograms of the 6 seg-

ments formed and DRAD(p,q) measure for adjacent histograms (c) Segmented sinusoidal components (d) Noise affected segment 
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Figure 3 – LBP8
r,u results for clean speech utterance (a) Clean 

speech with unvoiced segments circled (b) Occurrence results in 

non-uniform bin 10 from LBP feature histograms (c) Clean speech 

with voiced segments circled (d) Occurrence results in central 

uniform bin 5 from LBP feature histograms 

 

“Good service should be rewarded by big tips” was taken 

from the TIMIT database [6] and is plotted in Figure 3(a). A 

sampling frequency of 16 kHz was used and the signal was 

segmented according to Eq. (6) with a rectangular window of 

length W=160 samples and no overlap. The LBP8
r,u

 for each 

segment was measured to give LBP histograms with 10 bins.  

Any non-uniform patterns are separated into a single bin. 

Figure 3(b) shows the plot for the non-uniform bin (bin 10) 

for each speech segment. This illustrates that the higher fre-

quency unvoiced speech circled in Figure 3(a) and labelled 

“U” produce higher occurrences of non-uniform patterns. 

Non-uniform patterns occur in other portions of the signal.  

This is due to low-power recording noise from the speech 

sample used. This distinctive non-uniform marker can be 

used to identify unvoiced speech segments of the analyzed 

signal that have an increased number of occurrences in the 

non-uniform histogram bin.  

The lower frequency voiced components are highlighted 

in circles and labelled “V” in Figure 3(c). These produce 

uniform patterns with the resulting plot shown in Figure 3(d). 

This shows the number of occurrences in the central uniform 

bin 5 for the segmented signal. The distribution of the pat-

terns for speech signal shows peak activity in the uniform bin 

5 at segments corresponding to voiced speech. This LBP 

feature relates to a particular rotation-invariant feature of the 

voiced components. It can be seen that during voiced speech 

activity there is significant activity in this central bin. There-

fore, the occurrence histograms of these speech components 

can distinguish these two regions based on their extracted 

LBP features. Noise may contain non-uniform patterns and 

for noisy speech signals, the bin 5 features can also distin-

guish unvoiced speech components from weaker voiced 

speech components that have been more affected by the 

added noise. A higher resolved histogram such as LBPP
u
 can 

be used if this criterion to distinguish unvoiced speech from 

noise or weak speech components affected by noise is re-

quired.  LBPP
u 

distributes the occurrences in the histogram 

over a larger number of bins and thus keeps activity low in 

any particular uniform bin for unvoiced speech.  

Environmental sounds may contain low-frequency noise 

and periodic components whose spectra overlap with the 

voiced components of the speech signal. Therefore, discrimi-

nation of features that produce similar histograms from  
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Figure 4 - VAD results for speech contaminated with F16 cockpit 

noise at 5 dB SNR (a) Noisy speech (b) Voiced speech components 

identified (c) Unvoiced speech components identified 

Figure 5 - VAD results for speech contaminated with  car inte-

rior noise at 5 dB SNR (a) Noisy speech (b) Voiced speech 

components identified (c) Unvoiced speech components identi-
fied 

different sound sources is performed by incorporating a local 

power measure of the analyzed signal segment xa[j] to give 

the joint operator LBPP
r,u

/VARseg where VARseg(xa[j]) is given 

by: 
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4.1 1-D LBP-based VAD algorithm 

The algorithm presented below uses the 1-D LBP to separate 

noisy speech into voiced, unvoiced and non-speech compo-

nents by the following steps: 

 

1. Segment the input noisy speech signal x to give segments 

xa[j] 

2. Perform LBP8
riu2

 for each segment xa[j] to obtain the 

normalized occurrence histogram for that segment 

3. Separate all segments which have the normalized histo-

gram bin p(10)>0.3 and label as unvoiced speech seg-

ments. p(k) is the occurrence probability in histogram bin 

k 

4. Measure VARseg(xa[j])  for each segment and separate the 

LBP features with  VARseg(xa[j])<thresh. Label as non-

voiced speech segments 

5. Label remaining segments as voiced speech segments 

6. Perform final grouping by assigning contiguous speech 

segments T�V < 50 ms to non-voiced speech label 

 

The value of thresh must be chosen to distinguish voiced 

speech from non-speech with similar LBP features. A value 

of 0.003 for thresh was selected empirically from experimen-

tal studies for speech contaminated with different noise types 

ranging down to 0dB SNR. The value of T�V was chosen as 

in [10] to remove the influence of noise intrusion. 

 

4.2 Performance Evaluation 

The 1-D LBP-based VAD algorithm from section 4.1 was 

tested on the previous clean speech utterance from Figure 

3(a) degraded with F16 cockpit noise and car interior noise. 

These noise sources were obtained from the Noisex92 [7] 

database. Figure 4 shows the results obtained for the speech 

utterance contaminated with F16 cockpit noise at SNR level 

of 5 dB with the voiced and unvoiced components labelled 

“V” and “U” respectively. Figure 4(b) and Figure 4(c) dem-

onstrate that the LBP-based VAD algorithm is able to cor-

rectly identify all of the voiced and unvoiced components 

from the noisy speech. Figure 5 shows the results obtained 

for the speech utterance contaminated with car interior noise 

at SNR level of 5 dB. Figure 5(b) and Figure 5(c) demon-

strate that the LBP-based VAD algorithm is able to correctly 

identify all of the voiced speech components. However, it 

does not identify one weak portion of the unvoiced speech 

since its LBP feature was affected by the stronger low-

frequency noise component for low SNR values. The LBP 

feature for this unvoiced portion was not significantly modi-

fied in the previous case with the higher frequency compo-
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nents of the F16 cockpit noise and therefore resulted in cor-

rect identification in that situation.  

5. DISCUSSIO� 

The histogram of the 1-D LBP codes of a signal gives a 

sparser, alternative signal representation. The LBP operation 

is fast and computationally inexpensive. It was shown to be 

a distinctive marker of certain features of the underlying 

signal. This property has been applied in preliminary work 

for simple signal segmentation and fast and accurate VAD. 

The 1-D LBP is able to distinguish the unvoiced and the 

voiced components of speech signals using the distinguish-

ing features of higher activity in certain characteristic histo-

gram bins. The use of an overlapping factor will yield im-

proved results and give better identification of the onset of 

distinct signal features. Future work will involve application 

of the 1-D LBP to signal enhancement and noise estimation 

techniques. Multi-resolution 1-D LBP will be developed to 

achieve improved results, especially for analysis of noisy 

signals.  Further work will also involve the inclusion of a 

joint local variance measure on the samples that produce an 

LBP code to give improved fidelity. 
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