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On-Line Conditional Anomaly Detection in

Multivariate Data for Transformer Monitoring
V. M. Catterson, Member, IEEE, S. D. J. McArthur, Senior Member, IEEE, G. Moss

Abstract—Retrofitting condition monitoring systems to aging
plant can be problematic, since the particular signature of normal
behavior will vary from unit to unit. This paper describes
a technique for anomaly detection within the context of the
conditions experienced by an in-service transformer, such as
loading, seasonal weather, and network configuration. The aim is
to model the aged but normal behavior for a given transformer,
while reducing the potential for anomalies to be erroneously
detected. The paper describes how this technique has been
applied to two transmission transformers in the UK. A case
study of twelve months of data is given, with detailed analysis of
anomalies detected during that time.

Index Terms—Power transformers, Monitoring, Fault diagno-
sis

I. INTRODUCTION

POWER transformers in the transmission network tend to

be a focus for condition monitoring research and appli-

cation, being expensive assets crucial to network operation.

The anticipated return on condition monitoring comes from a

reduction in maintenance costs and delayed replacement, but

these benefits can only be realized by accurate, timely health

information that truly reflects the current state of the plant.

To date, monitoring of transformers largely concerns single

sensors, such as temperature [1], vibration [2], [3], or furan

analysis [1]. In some cases, multiple sensors of the same type

are used for corroboration and location of signals, including

radio frequency (RF) sensors for partial discharge monitoring

[4], [5]. Dissolved gas analysis (DGA) is a commonly em-

ployed technique for transformer health monitoring, which re-

quires sampling of the transformer oil to determine constituent

levels of key gases [6]. In all these cases, health analysis is

based on the interpretation of a single type of data, using

engineering expertise directly or through automated systems

to find meaning in the data.

Multivariate data interpretation may increase the accuracy

of health analysis, as it can offer corroboration across datasets.

More diagnostic information can be gleaned from the co-

occurrence or otherwise of events in, say, temperature and

vibration data than in either set alone. However, extra data in-

creases the complexity of the diagnostic task, as the interaction

of different types of data may not be fully understood.

As an example application, two transmission transformers

at a UK transmission substation are at the end of their design

life, but it is hoped they can be kept in service with inten-

sive condition monitoring. A combination of on-line sensors
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including temperature, vibration, current, and dissolved gas

sensors are installed on both units.

This multivariate monitoring scenario has certain features

that mean diagnostic monitoring is not straight-forward. Sen-

sors have been retrofit to both units, meaning that there is

no historical body of data that can be used to help interpret

new measurements. However, it is known that over the years

of operation each unit has developed its own particular data

signature that is different from a new unit. This includes a

moderately high level of hydrogen in the DGA profile (which

has remained static in recent years and is therefore not due to

an ongoing problem). This means that both transformers have

known, prior faults that have left residual low levels of fault

indicators, while not requiring any immediate maintenance.

This situation is common. Condition monitoring is often ap-

plied towards the end of life when critical faults are expected;

but by that stage years of operation have led to a particular

‘fingerprint’ representing normal behavior for one unit, which

could be considered faulty behavior if it suddenly manifest in

another. The key is to recognize changes in behavior, which

can be more indicative of faults developing in older units than

absolute values of measurements.

Anomaly detection techniques are a way of recognizing

changes in plant behavior. Rather than simply matching pat-

terns of expected faults, a model of behavior specific to

each transformer under study can be trained to represent the

normal operation of that particular asset. New measurements

can be compared against the model to quantify how likely or

anomalous they are. This allows for the natural differences

between normal behavior in different transformers, and low

level fault behavior can be trained into the model as normal

for that unit. The combination of anomaly detection with fault

classification can enhance the diagnosis of faults, by reserving

fault classification for situations where an anomaly is detected,

thus reducing the volume of data engineers must examine [7].

This paper describes the technique of Conditional Anomaly

Detection, and details how it has been applied to the applica-

tion transformers. This represents a new approach to condition

monitoring, by considering normal and abnormal behavior in

the context of plant operating conditions. The application is

described in Section II, with an overview of anomaly detection

techniques in Section III. Details of Conditional Anomaly

Detection are given in Section IV, with some parameter

requirements outlined in Section V. Section VI reports a case

study of the technique applied to twelve months of transformer

data, with the structure of the on-line anomaly detection

software described in Section VII, and conclusions following.
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TABLE I
SENSORS ON THE MORE-AGED T1 AND LESS-AGED T2

Subsystem Sensors

T1 main tank temperature (4), vibration (4), 3-phase current

T1 oil top & bottom temperature and moisture, TRANSFIX

T1 pumps, fans vibration (6) and load current

T1 tap changer temperature, vibration, load current

T2 main tank temperature (2), vibration (2), 3-phase current

T2 oil top and bottom oil temperature

T2 pumps, fans vibration (4)

T2 tap changer temperature and vibration

II. APPLICATION DESCRIPTION

Two 275/132kV, 180MVA transformers have been in oper-

ation at a UK transmission substation for the span of their

design life. One is showing more signs of aging than the

other, and has been fitted with a Kelman TRANSFIX on-line

dissolved gas analyzer1 for over a year. A project was initiated

to install a large number of sensors—primarily temperature,

vibration, and current—at different locations on the main tanks

and auxiliary systems, in order to investigate which techniques

can assist with this particular health assessment need.

Table I shows the number and types of sensors on each

transformer component. The majority of the sensors are lo-

cated on the more-aged transformer, with a subset on the

less-aged. Most of these sensors are externally fitted, with the

oil temperature and moisture measured internally. This meant

most sensors could be deployed without needing an outage.

In addition to the transformer sensors, the substation envi-

ronment is monitored by a weather station, which measures

parameters such as ambient temperature, rainfall duration, and

wind speed. Network parameters such as tap position are

recorded separately, giving a complete view of the conditions

under which the transformers are operating.

The dissolved gas analyzer takes nine separate measure-

ments every hour. Management and storage of this data

has been outsourced to a data warehousing company, which

records the gas data for all of the utility’s transformers.

Operational data is recorded through the SCADA system, and

controlled by the utility. All the other parameters are measured

once every five minutes, and collected and stored by a second

data warehousing company.

Since the first data warehouse and the SCADA data is highly

commercially sensitive, access to this data is tightly controlled.

Data relating to this site can be extracted and downloaded

manually by the utility engineers as needed. The data stored

in the second data warehouse relates only to this site, and

is less sensitive. Automated off-site access to this data was

available through a web service interface (described further in

Section VII), allowing download of data by all partners.

This installation was intended for investigating how moni-

toring of transformers could keep them in service for longer

as they reach the end of life. Known problems with the

design family meant that hydrogen levels were relatively high,

and fault diagnosis using Rogers’ Ratio [6] indicated a low

temperature thermal fault. However, gas levels had remained

1This unit measures oil levels of hydrogen, methane, ethane, ethylene,
acetylene, oxygen, carbon dioxide, carbon monoxide, and water.

static for a few years, and it was believed there was low risk

in continued operation.

Any changes to the normal parameter values should be

considered more significant than absolute levels, since it may

signify the inception of a new problem. Techniques such as

Rogers’ Ratio would be of little use in recognizing new fault

types, since the diagnosis would be skewed by the pre-existing

moderate levels of hydrogen. Instead of diagnosis, anomaly

detection was required. Further, the anomaly detection system

should be on-line to ensure anomalous behavior is detected at

the earliest opportunity. On-line analysis is key in evaluating

the risk of keeping these aged assets in operation.

III. ANOMALY DETECTION

Anomaly detection, sometimes called novelty detection, is

a general term for distinguishing outliers and unusual values

from normal or expected data. Chandola et al [8] define three

types of anomaly: point anomalies, contextual anomalies, and

collective anomalies. The first is simply outlier detection: is a

parameter at a point in the measurement space where it has

not been seen before? This could be the case if data generally

falls into one of two clusters, but a point is measured that falls

outside of either cluster.

Contextual anomalies take into account the context of

a measurement before deciding on its anomalousness. For

example, the top oil temperature in a transformer may be

significantly higher on one day of a month. This would appear

to be a point anomaly, but if the weather conditions were

particularly hot on that same day, the context suggests that

the oil temperature is high because of external conditions, and

is not an anomaly when viewed in context. Similarly, a top oil

temperature which is normal for the height of summer may

be considered anomalous when measured during winter.

The third type is a collective anomaly, where a collection

of linked data points are out of place. The linkage may be in

time (consecutive measurements in time series data) or space

(neighboring measurements within a location). An example

of time series data would be top oil measurements taken

throughout one day; this could be expected to increase through

the morning, reach a peak in the afternoon, then decrease

through the evening and night, due to weather and load. Oil

temperature would be more static throughout a day of an

outage, but the ambient temperature would still cause the same

pattern of behavior. Temperatures that remained fixed or even

decreased during the day would be an anomalous collection

of data, even if the specific temperature at any point in the

day is normal, and may indicate a sensor failure.

Condition monitoring systems within the power domain tend

to be point anomaly detection systems, allowing engineers to

set thresholds and limits on expected values. This includes

commercial systems such as the Kelman TRANSFIX dissolved

gas analyzer. Work on diesel generators showed how thresh-

olds could be extracted from a small set of training data when

no historical data exists [9].

However, the most interesting of approaches for plant

condition monitoring is contextual anomaly detection. There

are many factors that could provide context for parameter
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Fig. 1. CAD compares the likelihood of transformer indicator data against
environmental conditions to detect anomalies.

changes, including load, aging of components, harmonics on

the network, and seasonal and day-to-day weather variations.

Considering the context of monitoring data should provide a

means of limiting the number of false alarms generated by a

monitoring system, while also being sensitive to values which

are within normal thresholds, but unusual given other factors.

Considering the case study application outlined above and

the need for on-line operation, the contextual data that can be

accessed by an automated system is the weather and load data

recorded in the second data warehouse. The ambient substation

environment and the current load provide the context in which

the transformers are operating, and so the specific technique

for anomaly detection chosen for this application has to be

capable of incorporating multiple weather and transformer data

parameters. The selected technique is Conditional Anomaly

Detection.

IV. CONDITIONAL ANOMALY DETECTION

Conditional Anomaly Detection (CAD) is a contextual

anomaly detection technique based on the likelihood of indi-

cator parameter values occurring at the same time as environ-

mental parameter values [10]. Applied to the transformer mon-

itoring application, indicator parameters are those measured

from the plant under study, indicative of plant health, while

environmental parameters are those measuring the weather in

the substation and transformer load. The likelihood of indicator

values being seen under given environmental conditions can be

calculated from a CAD model, which comprises separate mod-

els for the statistical behavior of the plant and environment,

and probabilistic links between the two (shown in Figure 1).

Since the statistical models of plant and environment be-

havior are separate, they could be used individually for point

anomaly detection. The plant model can be used to calculate

the probability of new transformer measurements; a low prob-

ability indicates anomalous values that are not likely to occur.

However, the probabilistic link between the plant and the

environment models provides the contextual reasoning ability

about whether or not measurements are truly anomalous.

As an example, consider an environment model of ambient

temperature and transformer load current, with an indicator

model of top oil temperature. Viewed simplistically, the en-

vironment could be summarized as high load/hot day; high

load/cold day; low load/hot day; or low load/cold day. Each

of these four modes of operation will have associated likely

ranges of top oil temperature. In order to decide if a given

value of top oil temperature is anomalous or not, the current

mode of operation is assessed based on the environment

model, and the likelihood of the top oil temperature given these

operating conditions is calculated. With this model, anomalies

could be flagged in cases such as:

1) The environment model gives a high probability of high

load/hot day operation, and top oil temperature is higher

than normal for this case; or,

2) The environment model gives a high probability of

low load/cold day operation, and top oil temperature

is higher than normal for this case (but may be within

normal range for high load/hot day operation).

However, an anomaly would not be flagged if, say, a heat-

wave caused the ambient temperature to be so unusually high

that there is a low probability of being in any of the four

modes of operation. Intuitively, in such a case we may expect

top oil temperature to be unusually high as well, and so low

probability indicator values will not be defined as anomalous.

Considering this case in terms of the probabilistic models,

if the training data is very unlike the current environmental

conditions, then the coverage of the models does not extend

to the current situation, and we can make no firm judgement

about how likely or not the indicator values are. It is better to

label it as neither normal nor abnormal, than to flag something

as anomalous when the coverage of the model does not provide

information to support this. This approach will reduce the

number of false anomalies reported to engineers.

The modeling technique suggested by Song et al in [10]

for the environment and plant models is Gaussian mixture

modeling. This is described below.

A. Gaussian Mixture Modeling

Some datasets can be represented by a set of Gaussian

(normal) distributions, mixed together in different proportions.

The set of Gaussian components and their mixing proportions

constitute a probabilistic model of the dataset. The parameters

of the model are Θ = 〈θ0, θ1, . . . , θk〉 for k components.

Each θ comprises the Gaussian parameters 〈µ,Σ, π〉 for mean,

variance, and mix proportion.

An example follows. Figure 2 shows a histogram of wind

direction from the first two weeks of September 2008, mea-

sured from the on-site environment. The x-axis denotes the

values of maximum direction in degrees, while the y-axis is

the number of times the corresponding value was seen, scaled

to a probability of occurrence. The distributions overlaid on

the histogram are the Gaussian components of a mixture model

trained on the data. It can be seen that peaks in the data

correspond with means of distributions, or peaks in the sum

of overlapping components.

This mixture of Gaussian components is a model of the

training data, and so may be expected to be generally represen-

tative of this parameter. New measurements of wind direction

can be assessed for likeliness by comparing them with the

probability density function of the above model. From the

model graph, it can be seen that a measurement of 350◦

has probability 0.005 and is fairly likely to occur, while a

measurement of 100◦ has probability 0.0013 (the sum of three

components) and is less likely to occur. This can be calculated

from the probability density function (PDF):
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Fig. 2. Histogram of wind direction as probabilities with components of a
GMM overlayed. The fifth component is not visible on this scale, due to its
large σ5 and small π5.

fGMM (x) =

k
∑

n=1

πnP (x|θn) (1)

P (x|θn) =
1

σ
√

2π
exp

(

− (x − µn)2

2σ2
n

)

(2)

where σ is the standard deviation, and variance is σ2.

This example describes the single parameter case, where

Gaussian means are a single value. Gaussian mixture modeling

may also be applied to the multi-dimensional case, where

the means become vectors and variance translates to a co-

variance matrix. The probability density function in the multi-

dimensional case is:

fGMM (x) =
k

∑

n=1

πnP (x|θn) (3)

P (x|θn) =

1

((2π)d det |Σ|) 1

2

exp
(

− 1

2
(x − µ)T

Σ
−1(x − µ)

)

(4)

where d is the dimension of the data.

The remaining question is how to learn the parameters of

Θ that characterize the model. A common technique is to use

the Expectation Maximization algorithm, detailed below.

B. Expectation Maximization

This is an iterative technique that converges towards a

locally optimal set of values for unknown model parameters,

that maximize the likelihood of the overall model [11]. It can

be applied to a variety of learning problems, and is used three

times in Conditional Anomaly Detection: once each for train-

ing the environment and indicator Gaussian mixture models,

and once for learning the probabilistic mapping between the

models. The fit of a model to the training data can be assessed

by calculating the log likelihood of the model, which increases

with a more accurate fit.

There are two stages to the algorithm: an Expectation (E)

step, where values of the model parameters are fixed and

the resulting likelihood of the model is calculated; and a

Maximization (M) step, where this likelihood is used to update

the model parameter values. Each step is run alternately, and

the new model likelihood compared at the end of every E-step

with its previous value. The algorithm terminates when the

change in likelihood is smaller than a given tolerance, or after

a set number of iterations. The output model is the one with

the highest log likelihood generated by the training process.

For the Gaussian mixture model case, the E-step of the al-

gorithm involves computing γij , the probability that datapoint

i was generated by (comes from distribution) component j,

for all i up to N , and j up to k. The equation for this is:

γij =
det |Σj |−1/2 exp

(

− 1

2
(xi − µj)

T
Σ

−1

j (xi − µj)
)

∑k
l=1

det |Σl|−1/2 exp
(

− 1

2
(xi − µl)

T Σ
−1

l (xi − µl)
)

(5)

From this set of probabilities, the log likelihood of the

model can be computed:

log(L(Θ|X)) =

N
∑

i=1

log

k
∑

j=1

πjγij (6)

Finally, the M-step of the algorithm computes updated

values for all 〈µj ,Σj , πj〉:

π′

j =
1

N

N
∑

i=1

γij (7)

µ′

j =

∑N
i=1

xiγij
∑N

i=1
γij

(8)

Σ
′

j =

∑N
i=1

(xi − µ′

j)(xi − µ′

j)
T γij

∑N
i=1

γij

(9)

C. Learning the CAD Model

The process of learning the Conditional Anomaly Detection

model has three steps [10]. The first is to learn a Gaussian

mixture model U of the environmental parameters. The second

is to learn a Gaussian mixture model V of the indicator

parameters, in this case the transformer parameters. The third

is to learn the mapping function between U and V , which is

formulated as an Expectation Maximization problem.

The E-step is to calculate all bkij , the probability that envi-

ronment datapoint xk was generated by component Ui while

indicator datapoint yk was generated by component Vj , given

that Ui was the generating component in the environment. The

equation for this is:

bkij =
fGMM (xk|Ui)πi fGMM (yk|Vj)p(Vj |Ui)

∑nU

t=1

∑nV

h=1
fGMM (xk|Ut)πt fGMM (yk|Vh)p(Vh|Ut)

(10)

where nU and nV are the numbers of components in U and

V respectively.

The M-step maximizes the p(Vj |Ui) terms:

p(Vj |Ui)
′ =

∑N
k=1

bkij
∑N

k=1

∑nV

h=1
bkih

(11)
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As with training Gaussian mixture models, the log likeli-

hood is used to assess the fit of the model. This is calculated

by:

log(L(Θ|X,Y )) =
N

∑

k=1

log fCAD(yk|Θ,xk) (12)

where the fCAD function is:

fCAD(yk|Θ,xk) =
nU
∑

i=1

fGMM (xk|Ui)πi
∑nU

t=1
fGMM (xk|Ut)πt

·∑nV

j=1
fGMM (yk|Vj)p(Vj |Ui)

(13)

D. Detecting Anomalies

After the Gaussian mixture models and mapping probabili-

ties have been learned, they constitute the CAD model which

can be used for anomaly detection. This section describes the

method for anomaly detection proposed in the original Song et

al paper, explains why it is not directly applicable to the case

of transformer monitoring, and proposes a more appropriate

technique for this application.

Detection of anomalies involves calculating fCAD for new

measurements (eqn. 13). This function can be summarized in

English as the probability of indicator parameters having their

measured values, given the likelihood of seeing the current

environment parameter values. fCAD values decrease in the

presence of an anomalous indicator and a normal environment.

Song et al expected Conditional Anomaly Detection to be

applied to datasets which contain predominantly “normal”

behavior, that is, the data had been gathered during situations

where no major faults or deviations were observed, and

therefore it can be assumed to be representative of normality.

However, the reason for applying unsupervised learning to the

problem is that the contents of the dataset are unknown, and it

may therefore contain low level, non-critical anomalies such

as aging trends and slow fault inception. In order to allow

outliers in the training data to be recognized as anomalies

when encountered in the future, Song et al suggest picking a

threshold value of fCAD based on the percentage of points in

the training dataset that are expected to be anomalous.

For example, if it is thought that 1% of training mea-

surements are anomalous, the fCAD values of each training

datapoint should be sorted, and the lowest 1% examined.

The highest fCAD of this subset becomes the threshold for

detecting anomalies: any future measurement with an fCAD

value less than this threshold is deemed anomalous.

This threshold requires careful selection: if it is set too high,

the technique will be too sensitive to anomalies and engineers

may be overwhelmed with spurious alarms; but if set too

low, anomalies may be missed. In the case of the transformer

monitoring project, labeling 1% of data as anomalous would

result in 3 measurements per day being raised as anomalous,

seriously overestimating the true likelihood of an anomaly that

would be of interest to engineers. Visual analysis of site data

from the month of September revealed nothing anomalous,

indicating that the threshold for anomalous data in the training

dataset may be 0%. Therefore, another technique for setting

the anomaly threshold was required.

One way of approximating an appropriate threshold is to

select a reasonable value based on some test data, and refine

the estimate with more operational experience. Results of this

method applied to a case study are described in Section VI.

Additionally, through experimentation with site data it was

found that additional information can be extracted from the

CAD model which aids with the detection of “true” anomalies.

The most anomalous situations are indicated when fCAD =
0. It can be seen from eqn. 13 that this could be caused

when the probability density function of either U or V renders

a zero probability of the measurement, that is, when either

∀i fGMM (xk|Ui) = 0 or ∀j fGMM (yk|Vj) = 0. This would

mean that either the environmental conditions or the indicator

conditions differ so greatly from the training dataset that there

is no chance of one of the learned components covering those

values.

However, the meaning of these two cases is very different.

In the first case, the environment is so unusual compared with

the training examples that its probability is zero. This situation

ought to be considered non-anomalous, since an anomaly

in the environment means it cannot be predicted what the

indicator values should normally be, as the situation has not

been encountered in the training data. If this is the case, it

means a result of fCAD = 0 should not automatically be

labelled as an anomaly.

The second case, where ∀j fGMM (yk|Vj) = 0, is a true

anomaly. This result means that the indicator parameters are so

far outside expected values that the probability of them being

generated by the model is zero. As long as the environment

values have a non-zero probability of being generated, this is

a truly anomalous situation.

As a result, a novel means of using the CAD model to detect

anomalies is proposed:

1) Select an approximate threshold of fCAD value for rec-

ognizing anomalies, τ , either by Song et al’s percentage

method, or through experimentation;

2) Calculate fCAD for a new measurement;

3) If fCAD > τ , it is not anomalous;

4) If 0 < fCAD <= τ , it is anomalous;

5) If fCAD = 0, inspect the independent probabilities of

the environment and indicators:

p(env) =

nU
∑

i=1

fGMM (xk|Ui)πi (14)

p(ind) =

nV
∑

j=1

fGMM (yk|Vj)πj (15)

6) If p(env) = 0, it is not anomalous;

7) If p(ind) = 0, it is anomalous.

V. MODEL PARAMETER SELECTION

Careful selection of the input parameters to CAD is required

to gain best results. Since the environmental and indicator pa-

rameters are to be modeled as Gaussian mixtures, an accurate
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(a) Before binning, showing equal probabilities

(b) After binning, showing varying probabilities

Fig. 3. Section of a histogram before and after binning.

model requires that they truly look like a mixture of Gaussian

distributions. Further, if there is a linear dependency between

two model inputs, i.e. they are highly correlated, the Gaussian

mixture model collapses and cannot be trained. This is because

linear dependency results in a singular covariance matrix, yet

training requires the inverted covariance matrix in eqn. 5.

These requirements immediately discount the use of some

of the site parameters in the CAD model. For example, the

values of maximum, minimum, and average wind speed are

highly linearly dependent, meaning a model of environmental

parameters could not contain all three. Similarly, the three-

phase load currents are highly correlated, so only one phase

could be used in a model.

Many of the transformer parameters that could form the

indicator model look highly non-Gaussian. Histograms of

parameters such as the temperature of the tank at the neutral

end (“Neutral end tank temp”) show many measurement values

with single occurrences, which makes them unsuitable for

Gaussian mixture modeling. However, these occurrences often

have approximately the same values that differ only in the third

or fourth significant figure (see Figure 3(a)).

Rather than discounting these parameters from modeling,

the data was preprocessed to make it more suited to Gaussian

components. This was done by binning each measurement:

sorting datapoints into 400 equal-width bins per parameter.

The result is that the measurements differing by low significant

figures were counted as the same value for the purposes of his-

togram calculation, which in turn suits Gaussian components

better (Figure 3(b)). For consistency, this process was applied

to all parameters selected for modeling.

VI. CASE STUDY RESULTS

This section presents a case study of Conditional Anomaly

Detection applied to the site under study. Nine months of

operation of the more-aged transformer is considered, with

detail of the model training, test results, and analysis of the

anomalies observed.

An engineer’s visual inspection of site data from September

2008 concluded that the transformers were operating normally

during that time. No significant deviations in transformer

behavior were seen during October, although the ambient tem-

perature and other weather parameters were rather different.

As a result, data from September and October 2008 were used

as training data representing normal behavior and conditions.

The environment model was trained on ambient tempera-

ture, the load current of the yellow phase, solar radiation, wind

speed, and wind direction. Gaussian Mixture Models ranging

in size from five to 17 components were trained, with the log

likelihood and visual inspection guiding selection of the best

fit model. The 16-component model was chosen.

For the transformer behavior indicator model, parameters

relating to the transformer oil were chosen. This subsystem

is presented here for detailed study; however, it is only one

of a set of indicator models trained for different transformer

subsystems. For the application as a whole the parameters were

split into subsystems in order to support the engineer during

on-line operation, and this is discussed further in the following

section. This section describes one particular model in detail.

Bearing in mind the requirement of low linear dependency

between parameters in the model, only one of top and bottom

oil temperature, and top and bottom oil moisture could be

selected, so the model parameters were chosen to be top

oil temperature, bottom oil moisture, and hydrogen levels.

Gaussian Mixture Models ranging from five to 17 components

were trained on these parameters, and the 14-component model

was found to be the best fit.

After selecting the best environment and indicator models,

the CAD model was trained. The same training set of two

months of data was used, to find the correlations between

environment and indicator conditions.

The test set of data comprises the twelve months of oper-

ation following the training data, 1st November 2008 to 31st

October 2009. Based on the results of this testing, the threshold

for anomaly detection was set at 1 × 10−20. The full test set

results are summarized in Table II.

The results from the month of March are most informative.

Figure 4 shows the values of fCAD, p(env), and p(ind) for

the measurements taken every five minutes throughout March

2009.

The most obvious outlier in this graph is measurement

8378, corresponding to 19:25 on March 30th, where the
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TABLE II
ANOMALIES DETECTED BY CAD MODEL IN THE 12 MONTH TEST SET

fCAD value Cause of fCAD = 0
Month 0 < f < 10−20 f = 0 p(env) p(ind) Anomalies

Nov 0 2 2 0 0

Dec 3 11 0 11 14

Jan 0 0 0 0 0

Feb 1 3 3 0 1

Mar 4 39 38 1 5

Apr 0 4 4 0 0

May 0 30 30 0 0

Jun 0 0 0 0 0

Jul 0 1 0 1 1

Aug 0 0 0 0 0

Sep 0 0 0 0 0

Oct 0 0 0 0 0

Fig. 4. CAD model output from March 2009, showing p(ind) has a higher
likelihood than p(env) for most of the month, with fCAD in between.

environmental conditions have a very low probability. Ambient

temperature, solar radiation, and load current are all within

normal ranges, but wind speed and direction are both abnor-

mally high at 1012.3◦ and 21m/s respectively. This suggests

temporary sensor failure as the cause. Since the environment

is very abnormal while the indicators are relatively normal, no

anomaly is detected.

Four outliers in fCAD can be seen, corresponding to un-

likely transformer conditions while the environment is rela-

tively normal (detailed in Figure 5). These are diagnosed as

anomalous, since fCAD falls below the anomaly threshold.

The exact times of these points are 14:35 on 4th, 13:15 on

5th, and 13:50 and 13:55 on 6th March. In all four cases, the

anomaly is due to very low bottom oil moisture levels between

0.1 and 10.1ppm, while normal levels are 55–95ppm. Top oil

temperature and hydrogen levels are within normal ranges.

Considering that these moisture measurements occur be-

tween normal readings, it is likely that these are due to sensor

problems. For example, at five minute intervals between 13:00

and 13:30 on 5th March, moisture levels are reported as 66.8,

64.8, 62.8, 10.1, 61.8, 62.8, and 64.8, which strongly suggests

the value at 13:15 is erroneous. Furthermore, an anomalously

low level of moisture is less of a concern that anomalously

high levels, especially since the top oil temperature is be-

tween 15 and 20◦C at these anomalous points. As a result,

these datapoints do not represent a serious problem with the

transformer.

Not shown in Figure 4 due to the scale of the graph is the

datapoint where the transformer indicator conditions have a

zero probability. This occurs at 14:30 on 4th March. All three

transformer parameters have highly anomalous values: top oil

temperature is recorded as −95◦C, moisture is −30.0ppm, and

hydrogen is −125.0ppm. As with the previous cases, this is

a problem with the sensors or data logger rather than a true

problem with the transformer.

Finally, the 38 cases of the environmental conditions having

zero probability are also sensor faults. In particular, the ambi-

ent temperature is measured as various unlikely high temper-

atures such as 255 and 19140◦C. No anomaly is diagnosed at

these points since the environmental conditions are so unlikely.

This study shows that the CAD model can identify anoma-

lous values in transformer measurements, while ignoring any

datapoints with anomalous environmental conditions. During

the period under study, 21 anomalies were found. In all cases,

these were found to be due to sensor or logging problems,

and not indicative of true transformer behavior. However,

in some of these cases the sensors returned anomalous but

plausible values, such as oil moisture of 10.1ppm, showing that

CAD accurately models the behavior of the given transformer,

and detects anomalies specific to this unit, which a simple

thresholding technique may not find.

VII. ON-LINE OPERATION

On-line anomaly detection was desirable for the site under

study, in order to gain early warning of potential deviations in

transformer behavior. This section describes the models used

for on-line data analysis, how the on-line system operates, and

what information is presented to engineers about anomalous

behavior.

Since Conditional Anomaly Detection is based on statistical

correlations within datasets, rather than knowledge of the links

between transformer components, it simply returns a value for

fCAD without any explanation of why measurements seem

anomalous. Within an on-line monitoring system, the reason

behind any anomalous behavior is of prime importance, as any

maintenance or operational decisions taken by the engineer

must be based on some rationale. With this in mind, the on-line

operation of Conditional Anomaly Detection aimed to give as

much information to the engineer as possible about potential

reasons for anomalies.

One way of enhancing information is to train and deploy

a suite of CAD models looking at different sub-components

within the transformers under study. The previous section

detailed the case study of a CAD model based on the oil

parameters of the more-aged transformer. By training multiple,

targeted indicator models, such as the oil model, a model of

tank temperatures, and a model of tap changer-related param-

eters, the system provides inherent correlation of anomalies

across subsystems. The engineer can be informed that, for

example, anomalies occurred at the same time in the oil and

tank models, or that an anomaly was isolated to the tank
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Fig. 5. CAD model output shows significant anomalies successfully detected in samples 1039, 1311, 1606, and 1607 from March 2009.

temperatures. This is more informative than anomaly detection

in a single, large CAD model covering all parameters.

One environment model can be reused across all the in-

dicator models of one transformer. The weather and loading

conditions always provide the environment in which the trans-

former is operating, and so training a new CAD model for the

suite involves training the indicator model, and learning the

correlations between it and the existing environment model.

However, loading may differ between units on the same site,

so the environment model should be tailored to the specific

transformer.

After the required suite of CAD models have been trained,

they are run in parallel for on-line anomaly detection. Multi-

agent systems technology [12] provides the software frame-

work for this on-line system, allowing data processing modules

to be flexibly added and upgraded as the system is running.

The system architecture is shown in Figure 6.

The first stage of on-line operation is to collect new mea-

surements as they are recorded. As mentioned in Section II,

data is archived to a data warehouse for long term storage,

which can be accessed on-line through a web service interface

[13]. Every five minutes, the Data Provider Agent connects to

the web service and requests the most recent measurements.

The Data Director Agent filters the site data to find groups

of measurements needed by the CAD Model Agents (that

is, the appropriate weather, load, and transformer parameters

that are inputs to the CAD models). Finally, any identified

anomalies that result from the CAD models are recorded by

the CAD Report Agent, which keeps a record of the number

and frequency of anomalies in the last seven days, and the last

30 days. The output of all analysis is logged with an agent for

archiving.
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Fig. 6. On-line system architecture, showing data processing tasks performed
by separate agents.

The CAD Report Agent performs simple comparisons of

anomalies across multiple CAD models, and also across

multiple transformers in the same substation. The knowledge

of which transformer subsystems recorded anomalies simul-

taneously can help the engineer assess the cause and risk;

and a comparison of the two sister units can be similarly

informative. If anomalies are detected on both transformers at

the same time, the cause may be network-related or substation-

wide, whereas problems confined to one transformer suggest

a change in that unit.

In addition to detecting and recording anomalies, the in-

formation must be presented to engineers. This is achieved

through the interface agent, which populates a web-based

engineer’s interface with site information. At the first level,

engineers are presented with a table of the current CAD mod-

els, and whether any anomalies have been detected recently



IEEE TRANSACTIONS ON POWER DELIVERY, VOL. X, NO. Y, NOVEMBER 200X 9

by one or more of them. By selecting one of the models, the

engineer can see histograms of anomalous behavior during the

last seven and 30 days, giving an indication of the frequency

of anomalous behavior. Finally, the most detailed level of

information allows investigation of the CAD model output,

showing each parameter of the environment and indicator

models in graphical form, and the position and probability

of a given measurement. These three levels of information

allow the engineer to find correlations between anomalies in

sub-components, investigate whether anomalous behavior is

increasing in frequency, and visualize exactly which parame-

ters are behaving anomalously.

VIII. CONCLUSIONS

This paper describes the technique of Conditional Anomaly

Detection, and how it can be applied to transformer monitor-

ing. A particular application is given, where two in-service

transformers are being monitored by a range of temperature,

vibration, and other sensors. The results of applying CAD to a

twelve month set of site data showed that 21 anomalies were

detected. Analysis of these anomalies found that they were all

attributable to sensor faults giving anomalous measurements.

The utility’s analysis concurs with this assessment, as no

transformer faults were found during this time. This indicates

that the CAD technique can be applied to on-line monitoring

of transformers, and can detect unusual behavior. Finally, the

system for on-line anomaly detection is described, with detail

of the system components needed to provide a solution that

supports engineers in decision making.

While previous work presented a method of automatically

learning thresholds for point anomaly detection [9], this paper

shows how to provide contextual anomaly detection, with the

potential to reduce “false alarm” anomalies due to unusual

operating and environmental conditions. Further work will

investigate two avenues. The suite of CAD models can be

increased to cover new types of sensor as they are added to

plant, and in particular, a model of the transformer’s insulation

would be beneficial for end-of-life monitoring. Secondly,

the potential of collective anomaly detection techniques for

transformer monitoring will be studied. Such techniques learn

patterns of plant behavior over time, and can detect when a

change in parameter value is anomalous, compared to contex-

tual anomalies which occur when a value is anomalous given

other parameters. A type of collective anomaly detection has

recently been applied to a single parameter: partial discharge

data [7], and a multivariate version of this technique teamed

with CAD could enhance the information about anomalies

presented to engineers.
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