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ABSTRACT

In a previously proposed design method for frequency invari-

ant beamforming, the design for the case of an off-broadside

main beam is not satisfactory. After a detailed analysis, we

propose two methods to overcome this problem: one is to in-

crease the length of the FIR filter attached to each sensor, as

a result, we need to sample the transformed desired response

more densely in the associated direction; the other one is to

design a broadside main beam first, then it is convolved with

appropriate steering delay filters. Design examples show that

the two methods can provide satisfactory results.

1. INTRODUCTION

Recently, the design of beamformers with a frequency in-

variant response has attracted the interest of many researchers.

One of the suggested methods is to optimize the array param-

eters with respect to the desired response using available con-

vex optimization methods [1, 2, 3]. However, for large arrays,

the number of coefficients to be optimized is extremely large.

A systematic method was proposed in [4], which can be ap-

plied to one-dimensional (1-D), two-dimensional (2-D) and

three-dimensional (3-D) arrays, where each array element is

followed by its own primary filter and the outputs of these

primary filters share a common secondary filter to form the

final output. However, beyond the 1-D array case this design

method can be very complicated.

Most recently, a new class of frequency invariant arrays

exploiting the Fourier transform relationship between the ar-

ray’s spatial and temporal parameters and its beam pattern

was proposed [5, 6], where the design can be achieved based

on a simple multi-dimensional inverse Fourier transforms. How-

ever, it has been found that with the same number of array

sensors and array coefficients, the off-broadside main beam

design is not as good as the broadside main beam in terms of

its frequency invariance property.

In this paper we propose two methods to enhance the off-

broadside main beam design. Firstly, we show that an in-

crease of the temporal dimension of the beamformer in com-

bination with a denser sampling grid in the Fourier domain

can achieve the desired result. Secondly, we design a broad-

side main beam in the first step and then achieve an off-broadside

response by time-domain convolution with a series of FIR fil-

ters with appropriate fractional delays [7].

This paper is organised as follows. In Section 2 a review

of the FIB design for linear arrays will be provided, then the

problem for off-broadside main beam design will be high-

lighted. The two solutions will be proposed with correspond-

ing design examples in Section 3 and arising problems will

also be discussed. Conclusions are drawn in Section 4.

2. FREQUENCY INVARIANT BEAMFORMING

2.1. Design for a uniformly spaced linear array

An equally spaced linear array with a sensor spacing of dx is

shown in Fig. 1. The received signal by the m-th sensor is

sampled with a sampling period of T and then processed by

an FIR filter with coefficients d[m, k], m = 0, . . . , M − 1,

k = 0, . . . , K − 1. Then the array’s response can be written

as

R(Ω, θ) =
M−1∑

m=0

K−1∑

k=0

d[m, k] · e−jmµΩ sin θ · e−jkΩ , (1)
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Fig. 1. A uniformed spaced linear array.

where µ = dx

cT , Ω = ωT is the normalised angular frequency

and c the wave propagation speed. With the substitutions

Ω1 = µΩ sin θ and Ω2 = Ω in (1), we have

P (Ω1, Ω2) =
M−1∑

m=0

K−1∑

k=0

d[m, k] · e−jmΩ1 · e−jkΩ2 . (2)

Suppose the desired frequency invariant response is P (sin θ).
By the substitution sin θ = ( Ω1

µΩ2
), we can obtain the response

R(Ω1, Ω2). Sample R(Ω1, Ω2) at the (Ω1, Ω2) plane and then

apply an inverse discrete Fourier transform (IDFT) to the re-

sultant 2-D data, we will obtain the corresponding coefficients

d[m, k] with an appropriate window function to fit the spatial

and temporal dimensions of the array. The precise steps can

be found in [5, 6].

To avoid aliasing in both the spatial and temporal do-

mains, we can choose dx = λmin
2 and T = c

2λmin
, where λmin

is the wavelength corresponding to the maximum frequency

of interest. As a result, we have µ = 1.

2.2. Problems with off-broadside main beam design

Based on the proposed design method in [6], we can design

a frequency invariant beamformer with its main beam in an

arbitrary direction. However, although the design result for a

broadside main beam is very good, for the design with an off-

broadside main beam, given the same number of array sensors

and attached FIR coefficients, it is not as good as the broad-

side main beam case. Here we give two design examples for

an equally spaced linear array with 21 sensors and a digital

filter length of 25. One is for a broadside main beam and one

is for an off-broadside main beam. The resultant beam pattern

for the broadside main beam is shown in Fig. 2, which has a

very good frequency invariant property for Ω > 0.25π.

The example for the off-broadside main beam is shown in

Fig. 3, where its main beam is in the direction of θ = −30◦

and the variation of the response over different frequencies is

clearly visible. This problem can be explained by the con-
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Fig. 2. The designed beam pattern for the linear array with a

broadside main beam (µ = 1).
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Fig. 3. The designed beam pattern of a linear array (µ = 1)

with its main beam at θ = −30◦.
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Fig. 4. A desired frequency invariant beam pattern with off-

broadside main beam.
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Fig. 5. The discontinuity of P (Ω1, Ω2) = F (Ω1
Ω2

) when the

desired main beam is off broadside as shown in Fig. 4.

siderable discontinuity of the periodic function P (Ω1, Ω2)
at Ω2 = · · · ,−3π,−π, π, 3π, · · · , when the main beam is

not pointing to broadside, as shown in Figs. 4 and 5. Be-

cause of the discontinuity incurred when sampling P (Ω1, Ω2)
and subsequently applying the inverse DFT, the response of

P (Ω1, Ω2) around this area cannot be controlled well. This

leads to a poor performance of the proposed method, espe-

cially for frequencies close to π. This problem also occurs,

although less pronounced, even if the main beam is at broad-

side but the beam pattern is non-symmetric with respect to

it.

3. SOLUTIONS TO THE OFF-BROADSIDE MAIN
BEAM DESIGN AND EXAMPLES

Since the problem with the off-broadside main design is due

to the considerable discontinuity of the periodic function P (Ω1,
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Fig. 6. The design example with an off-broadside main beam

(in the direction −30◦) obtained by the first proposed method.

Ω2) at Ω2 = · · · ,−3π,−π, π, 3π, · · · , we can sample the

function P (Ω1, Ω2) in the Ω2 direction more densely and then

permit more coefficients for the corresponding temporal di-

mension of the beamformer after truncation. Alternatively,

for simplicity, we can sample P (Ω1, Ω2) by a large number

in both the directions of Ω1 and Ω2. After the inverse DFT, we

can truncate the results with a rectangular window and leave

much more coefficients in the temporal dimension (FIR filter

length) than in the spatial dimension (sensor number). In the

example shown in Fig. 6, we sampled P (Ω1, Ω2) by 256×256
points and then truncated the IDFT results to 21× 127. Com-

paring this result with Fig. 3, we can clearly see the signifi-

cantly improved frequency invariant property. However, due

to the discontinuity, no matter how many coefficients we keep

for the FIR filters, its performance at Ω = π will never be as

good as the other frequencies.

Another solution to the problem is to design a broadside

main beam first, and then steer the array to the desired direc-

tion by means of appropriate delays implemented by either

some analogue devices or FIR/IIR filters [1, 7]. Thus, the

main beam is shifted to the desired direction. As a special

case, for a delay over the whole normalised frequency range

[0 π], we can use a series of truncated sinc functions. Such a

design example is shown in Fig. 7, where a good frequency in-

variance is achieved. The problem with the frequency Ω = π

is due to the fact that the delay can not be approximated well

by the sinc function at Ω = π. Moreover, comparing this
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Fig. 7. The design example with an off-broadside main beam

(−30◦) obtained by the second proposed method.

example with the one in Fig. 6, we can also observe the big

difference at the sidelobe region between about 40◦ and 90◦.

In the next, we try to give an explanation to this difference.

Suppose the desired off-broadside main beam direction is

θ0 ∈ [−π/2 π/2]. Then after adding the appropriate steering

delays for the direction θ0 to the broadside main beam design

result, the new beam pattern can be expressed as (assume µ =
1)

R(Ω, θ) =
M−1∑

m=0

K−1∑

k=0

d[m, k] · e−jmΩ(sin θ−sin θ0) · e−jkΩ .

(3)

Without loss of generality, we assume θ0 < 0. Then for

−1 < sin θ ≤ (1 + sin θ0), we have

−1 < −1 − sin θ0 < sin θ − sin θ0 ≤ 1 . (4)

Then the beam response of the steered design at θ for −1 <

sin θ ≤ (1 + sin θ0) will be the same as the response of the

original broadside design at

θ̂ = arcsin(sin θ − sin θ0) . (5)

However, for (1 + sin θ0) < sin θ ≤ 1, we have (sin θ −
sin θ0) > 1. Then the shift relationship can not be expressed

as (5) any more and we need to further consider the follow-

ing two cases bearing in mind the periodicity of the function

e−jmΩ:

1. For Ω ≤ π
sin θ−sin θ0

, we have Ω(sin θ − sin θ0) ≤ π,

since (sin θ− sin θ0) > 1, it seems that we can not find

any correspondence between the steered pattern and the

original broadside pattern for this case.

2. For Ω > π
sin θ−sin θ0

, we have

Ω(sin θ − sin θ0) > π . (6)

Then we have

e−jmΩ(sin θ−sin θ0) = e−jmΩ(sin θ−sin θ0− 2π
Ω ) . (7)

If sin θ − sin θ0 − 2π
Ω < −1, i.e.

Ω <
2π

1 + sin θ − sin θ0
, (8)

then we come to the same conclusion as in the first case.

Otherwise, we have

Ω ≥ 2π

1 + sin θ − sin θ0
. (9)

Then we can assume

sin θ̂ = sin θ − sin θ0 − 2π

Ω
. (10)

Then the response of the steered design for this case

will be the same as the response of the original broad-

side design at frequency Ω and direction of arrival angle

θ̂ = arcsin (sin θ − sin θ0 − 2π
Ω ).

Note since (sin θ − sin θ0) > 1, we have

2π

1 + sin θ − sin θ0
>

π

sin θ − sin θ0
. (11)

This is a complicated relationship and not as straightfor-

ward as in the narrowband case. However, there is another

way to understand the relationship between the steered re-

sponse and the original one.

Since θ0 < 0, we have | sin θ− sin θ0| ≤ (1− sin θ0) and

1 − sin θ0 = µ̂ > 1, then (3) can be rewritten as

R(Ω, θ) =
M−1∑

m=0

K−1∑

k=0

d[m, k] · e−jmµ̂Ω
sin θ−sin θ0

µ̂ · e−jkΩ .

(12)

Since | sin θ−sin θ0
µ̂ | < 1, we assume

sin θ̂ =
sin θ − sin θ0

µ̂
. (13)
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Fig. 8. The beam pattern with the inter-element spacing in-

creased by 1.5 and the same set of coefficients as in Fig. 2.

Then (12) changes to

R(Ω, θ) =
M−1∑

m=0

K−1∑

k=0

d[m, k] · e−jmµ̂Ωsin θ̂ · e−jkΩ . (14)

Then the beam response of the steered design at θ ∈ [−π/2 π/2]
will be the same as the response of the original broadside

design at θ̂ ∈ [arcsin(−1−sin θ0
µ̂ ) π

2 ] with the inter-element

spacing increased by µ̂. Now for the example of θ0 = −30◦,

we have µ̂ = 1.5 and arcsin(−1−sin θ0
µ̂ ) ≈ −20◦. We can

draw the response of (14) given the same set of coefficients

for the example of Fig. 2. The result is shown in Fig. 8.

Compared to the beam pattern of Fig. 7, we can see a clear

match (although nonlinear) between Fig. 7 and that of Fig. 8

for θ̂ ∈ [−20◦ 90◦].
Based on the above representative examples, the first so-

lution is generally superior over the first one with its associ-

ated sidelobe problem. However, in the second approach the

required delays can be designed independent of the specific

beamformer, which may potentially provide some advantage

in some applications. Moreover, the sidelobe problem may

not affect the system’s performance if the attenuation in these

areas is high enough.

4. CONCLUSIONS

Two solutions to the design of frequency invariant beamform-

ers with off-broadside main beams have been proposed. The

first approach increases the temporal dimension of the beam-

former in combination with a denser sampling in the Fourier

domain, where a desired response is to be matched. A second

one is to design a broadside main beam first, which is there-

after steered to the desired direction by a series of appropriate

steering delays. Two design examples have been shown re-

vealing the characteristics of the two methods with a detailed

analysis to the effect of the steering delays in the second one.

5. REFERENCES

[1] D. P. Scholnik and J. O. Coleman, “Formulating wide-

band array-pattern optimizations,” in Proc. IEEE Inter-

national Conference on Phased Array Systems and Tech-

nology, Dana Point, California, May 2000, pp. 489–492.

[2] S.F. Yan and Y. L. Ma, “Design of FIR beamformer with

frequency invariant patterns via jointly optimizing spatial

and frequency responses,” in Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing,

Philadelphia, USA, March 2005, pp. 789–792.

[3] H. Duan, B. P. Ng, C. M. See, and J. Fang, “Applications

of the srv constraint in broadband pattern synthesis,” Sig-

nal Processing, vol. 88, pp. 1035–1045, April 2008.

[4] D. B. Ward, R. A. Kennedy, and R. C. Williamson, “The-

ory and design of broadband sensor arrays with frequency

invariant far-field beam patterns,” Journal of the Acoustic

Society of America, vol. 97, no. 2, pp. 1023–1034, Febru-

ary 1995.

[5] T. Sekiguchi and Y. Karasawa, “Wideband beamspace

adaptive array utilizing FIR fan filters for multibeam

forming,” IEEE Transactions on Signal Processing, vol.

48, no. 1, pp. 277–284, January 2000.

[6] W. Liu, S. Weiss, J. G. McWhirter, and I. K. Proudler,

“Frequency invariant beamforming for two-dimensional

and three-dimensional arrays,” Signal Processing, vol.

87, pp. 2535–2543, November 2007.

[7] W. S. Lu and T. B. Deng, “An improved weighted least-

squares design for variable fractional delay FIR filters,”

IEEE Transactions on Circuits and Systems — II: Analog

and Digital Signal Processing, vol. 46, no. 8, pp. 1035–

1040, August 1999.


