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Source Bearing and
Steering-Vector Estimation
using Partially Calibrated
Arrays

MINGHUI LI, Member, IEEE
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YILONG LU, Member, IEEE
Nanyang Technological University

The problem of source direction-of-arrival (DOA) estimation
using a sensor array is addressed, where some of the sensors are
perfectly calibrated, while others are uncalibrated. An algorithm
is proposed for estimating the source directions in addition to
the estimation of unknown array parameters such as sensor
gains and phases, as a way of performing array self-calibration.
The cost function is an extension of the maximum likelihood
(ML) criteria that were originally developed for DOA estimation
with a perfectly calibrated array. A particle swarm optimization
(PSO) algorithm is used to explore the high-dimensional problem
space and find the global minimum of the cost function. The
design of the PSO is a combination of the problem-independent
kernel and some newly introduced problem-specific features
such as search space mapping, particle velocity control, and
particle position clipping. This architecture plus properly selected
parameters make the PSO highly flexible and reusable, while
being sufficiently specific and effective in the current application.
Simulation results demonstrate that the proposed technique
may produce more accurate estimates of the source bearings
and unknown array parameters in a cheaper way as compared
with other popular methods, with the root-mean-squared error
(RMSE) approaching and asymptotically attaining the Cramer
Rao bound (CRB) even in unfavorable conditions.
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I. INTRODUCTION

Source direction-of-arrival (DOA) estimation using
a partially calibrated array (PCA) with a mixture of
two types of sensors (calibrated and uncalibrated) is
an important, but challenging problem, which arises in
many practical applications. For example, we want
to augment a well-constructed array by placing a
number of additional sensors to enlarge the aperture.
Since these elements are placed in the field, there is
no opportunity to calibrate them. Another example
is in the situation where one or more array elements
are damaged. Although the defective elements can be
rectified by replacement, calibration of these elements
may be a much more complicated task and the process
might be too time-consuming, especially for arrays
performing critical operations. In these cases, the
response of the additional or replaced elements
may be poorly known or completely unknown due
to amplitude and phase mismatch of the receivers,
inaccurate sensor location, and imperfect sensor gain
or phase characteristics, or a combination of these
effects, while the other elements are well calibrated.
Weiss and Friedlander [1] confirm that the direction
finding performance of a calibrated array can be
enhanced by the addition of completely uncalibrated
elements.
Since almost all high-resolution direction-finding

techniques such as multiple signal classification
(MUSIC), estimation of signal parameters via
rotational invariance techniques (ESPRIT), weighted
subspace fitting (WSF), as well as maximum
likelihood (ML) algorithms [2—5], are sensitive
even to small array manifold model errors and
require perfect array calibration, direct application
of these techniques to PCAs for DOA estimation
seems unrealistic [6]. For completely uncalibrated
arrays, estimation of the steering vectors and signal
parameters is only possible for non-Gaussian signals
by using high-order statistics of the received data
[7]. The problem is sometimes referred to as the
blind estimation problem. However, by introducing
some additional constraints into the problem,
estimation based on second-order moments is
possible. The previous works can be classified
into three categories according to the problem
formulation. Some researchers attempt to estimate
the signal DOAs without jointly exploiting the
knowledge of the unknown manifold parameters
using particular array structures. The rank reduction
estimators (RARE) [8] are developed for partly
calibrated sparse arrays composed of multiple
subarrays with the underlying assumption that
the manifold of each subarray is known exactly
but there is no calibration between subarrays. The
method of [9] is based on the assumption that the
calibrated sensors and the uncalibrated sensors are
well separated.
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The methods in the second category are
derived for estimating the sensor gain and phase
characteristics when certain source parameters are
known exactly. In [10], an algorithm is presented
based on the assumption that the covariance matrix
of the field variables at the sensor locations is known.
In [11], [12] the problems are addressed assuming
that the source DOAs are known. Another main
approach is to jointly estimate the source DOAs and
unknown array parameters with certain constrains. The
method of [13] treats the case of steering vectors with
known gain and unknown phases and uncorrelated
sources. The same model with correlated sources
is discussed in [14]. In [15]—[17], algorithms are
derived under the assumption that the uncalibrated
sensors have unknown angularly independent
gains and arbitrary phases, where the sources are
uncorrelated.
In this paper, we develop an algorithm based

on the ML methodology for joint estimation of
source DOAs and gains and phases of uncalibrated
sensors in a PCA. The cost function is an extension
of the ML criteria that were originally developed for
angle estimation with a perfectly calibrated array.
As in [16], [17], the uncalibrated array elements are
assumed to have unknown angularly independent
gains, and arbitrary and unknown phases. However,
the sources can be correlated, even coherent.
In most of the published works, the estimates of

unknown parameters are computed by optimizing a
nonlinear complicated cost function, and Newton-type
techniques are preferred to global search methods
as the computing tools. The main reason is that
conventional global optimization algorithms are
prone to suffering from slow convergence and require
huge computation [18]. One of the most popular
global search techniques is genetic algorithms (GA),
which are stochastic search algorithms based on
the mechanism of natural selection where fitter
individuals have higher chances to survive in a
competing environment; however, it is also known
as a slow optimization tool [19]. On the other hand,
Newton-type methods intrinsically are local search
techniques, where global convergence cannot be
guaranteed and sufficiently good initialization is
crucial for a success. Furthermore, a Newton-type
method is not always a guarantee of efficiency in
computation.
Instead of using a Newton-type procedure, we

present a more reliable and robust global search
algorithm–particle swarm optimization (PSO)
algorithm for finding the minimum of the cost
function. PSO is a recent addition to evolutionary
algorithms first introduced by Eberhart and Kennedy
in 1995 [20]. The foundation of PSO is based on
the hypothesis that social sharing of information
among conspecifics offers an evolutionary advantage.
Partially inspired by animal social behaviors such

as flocking of birds, PSO originally intends to
graphically mimic the graceful way in which they
find their food sources and save themselves from
predators. PSO is a population-based stochastic
optimization paradigm, in which each agent, named
particle, of the population, named swarm, is thought
of as a collision-proof bird and used to represent
a potential solution. As an emerging technology,
PSO has attracted a lot of attention in recent years,
and has been successfully applied in many fields,
such as direction finding in spatially correlated noise
[21], phased array synthesis [22], electromagnetic
optimization [23], blind source separation [24],
artificial neural network training [25], power flow
optimization [26], task assignment [27], and etc.
Most of the applications demonstrated that PSO could
give competitive or even better results in a faster and
cheaper way, compared with other heuristic methods
such as GA. In addition, PSO appears to be robust to
control parameters.
Due to the multimodal, nonlinear and

high-dimensional nature of the parameter space,
the problem seems to be a good application arena
for PSO, by which the optimal performance of
the ML criteria can be fully explored. The design
of the optimization algorithm is a combination of
the problem-independent PSO kernel and some
newly introduced problem-specific features such
as search space mapping, particle velocity control,
and particle position clipping. This architecture
plus properly selected parameters make the PSO
algorithm highly flexible and reusable, while being
sufficiently specific and effective in the current
application. By pairing PSO with the ML criteria,
the proposed PSO-ML technique achieves some
desired advantages over previous methods: 1) it is less
sensitive to initialization, however, insertion of a good
initial estimate speeds up the computation; 2) it has
better chances to attain the global convergence; 3) it
may offer higher quality estimates of the unknown
parameters; 4) correlated or even coherent sources
can be accurately treated. Via extensive simulation
studies, we demonstrate that with the proposed
technique, the uncalibrated sensors improve the
DOA estimation performance dramatically. PSO-ML
produces more accurate estimates of the unknown
parameters as compared with other popular methods,
which can attain the Cramer Rao bound (CRB)
asymptotically; furthermore, it is more efficient in
computation.
The paper has been organized as follows.

Section II describes the data model. In Section III,
we derive the ML algorithm for DOA and array
parameter estimation. Section IV presents the principle
of PSO, the architecture and implementation of the
PSO-ML estimator and the strategies for parameter
selection. Simulation results are given in Section V,
and Section VI concludes the paper.
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II. DATA MODEL AND PROBLEM FORMULATION

We consider an array of M sensors arranged in an
arbitrary geometry and N narrowband far-field signal
sources at unknown locations. The complex M-vector
of array outputs is modeled by the standard equation

y(t) =A(μ)s(t)+n(t), t= 1,2, : : : ,L (1)

where μ = [μ1, : : : ,μN]
T is the source DOA vector, and

the kth column of the complex M £N matrix A(μ)
is the so-called steering vector a(μk) for the DOA
μk. The ith element ai(μk) models the gain and phase
adjustments (with respect to a reference point) of the
kth signal at the ith sensor. Furthermore, the complex
N-vector s(t) is composed of the emitter signals, and
n(t) models the additive noise.
The vectors of signals and noise are assumed to

be stationary, temporally white, zero-mean complex
Gaussian random processes with second-order
moments given by

Efs(t)sH(s)g= P±ts
Efs(t)sT(s)g= 0
Efn(t)nH(s)g= ¾2I±ts
Efn(t)nT(s)g= 0

(2)

where ±ts is the Kronecker delta, (¢)H denotes complex
conjugate transpose, (¢)T denotes transpose, E[¢] stands
for expectation, and P and ¾2I are the signal and noise
covariance matrices, respectively. Assuming that the
noise and signals are independent, the data covariance
matrix is given by

R= Efy(t)yH(t)g=APAH +¾2I: (3)

We focus on the case where some of the array
sensors are uncalibrated. Without loss of generality,
it is assumed that the first K sensors are calibrated,
while the last J =M ¡K sensors are uncalibrated.
Furthermore, it is assumed that K is larger than N
(known or estimated) as in [9], [17], in order to
guarantee the identifiability of unknown parameters.
We use the following model for A

A=
·
A1(μ)

A2

¸
(4)

where A1(μ) consists of the first K rows of A
corresponding to the K calibrated sensors, and A2
consists of the last J rows of A and associates with
the other J uncalibrated sensors. The (i,k)th element
ai(μk) of A2 has the form

ai(μk) = gie
jÃik , i= 1, : : : ,J , k = 1, : : : ,N (5)

where gi is the element gain term, and Ãik is the
individual phase term given by

Ãik = 2¼fs¿i(μk) +Áik (6)

where fs is the center frequency, ¿i(μk) is the relative
time delay between reference point and the ith sensor
for the kth signal, and Áik is the uncompensated phase
error of the kth signal at the ith sensor.
We assume that the uncalibrated sensors have

unknown direction independent gain gi in (5). The
assumption is suitable for most practical systems,
since the sensor gains do not change much with
direction and a typical change is 1 dB [17]. Although
this assumption appears to restrict the sensors to
be omni-directional, the model can cover the case
of sensors with direction-dependent gains as well
with little modification. Since the phase values Ãik
are treated as free parameters, the expression in (5)
accounts for a relatively broad range of imperfect
array problems including arbitrary sensor position
errors, phase distortion due to, e.g., the near field
effect, and random sensor phase errors.
We define

g= [g1, : : : ,gJ ]
T (7)

[ª ]ik = Ãik, i= 1, : : : ,J , k = 1, : : : ,N (8)

for the unknown sensor gains and phases. The
problem addressed herein is the joint estimation
of μ, g and ª , from a batch of L measurements
y(1), : : : ,y(L).

III. MAXIMUM LIKELIHOOD SOURCE AND ARRAY
PARAMETER ESTIMATION

As a chief systematic approach to most
estimation problems, the ML method is known to
be asymptotically (with large number of snapshots)
unbiased and statistically efficient. This technique
requires a probabilistic setup of the problem at hand.
Under the assumption of additive Gaussian noise and
Gaussian distributed emitter signals, and deterministic
unknown gains and phases of uncalibrated sensors, the
probability density function of the complete data set is
given by

f(y(1), : : :y(L) j μ,g,ª ,P,¾2) =
LY
t=1

1
j¼Rje

¡yH(t)R¡1y(t)

(9)
where j ¢ j denotes the determinant. By ignoring
parameter-independent terms, maximization of (9) is
equivalent to minimizing the following normalized
negative log-likelihood function

I(μ,g,ª ,P,¾2) = log jRj+trfR¡1R̂g (10)

where trf¢g stands for trace, log j ¢ j denotes the natural
logarithm of the determinant, and R̂ is the covariance
matrix of the measured data

R̂=
1
L

LX
t=1

y(t)yH(t): (11)
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It assumes that the asymptotic covariance matrix
R is known in (10). However, this is not the case
in practice. Besides the parameters of interest, the
function (10) also depends on P and ¾2. To reduce
the search dimension, we can solve P and ¾2 as
the functions of μ, g, and ª , and substitute them
back into the likelihood function. Following similar
derivations in [28], the ML estimates of ¾2 and P are
given by

¾̂2(μ,g,ª ) =
1

M ¡N trfP
?
A R̂g (12)

P̂(μ,g,ª ) = Ā(R̂¡ ¾̂2I)ĀH (13)

where Ā= (AHA)¡1AH, PA =AĀ, and P
?
A = I¡PA.

For conciseness, the dependence of A on μ, g, and ª
has been suppressed. Substituting (12) and (13) into
(10), we get (in large samples)

I(μ,g,ª ) = log jAP̂AH + ¾̂2Ij: (14)

The ML estimate of DOAs and sensor gains and
phases is computed by minimizing the cost function
(14) with respect to the N + J +NJ unknown real
parameters. We note that (14) has a similar format
as the stochastic ML DOA estimator in [29], however,
(14) depends on both source and system parameters.
Although the extension is straightforward and not
complicated in mathematics, the resulting estimator
is effective.
The CRB provides a lower bound on the

covariance matrix of any unbiased estimator, and is
expected to be a good performance predictor for large
samples. Weiss and Friedlander’s method [17], or
Weiss’ method in short, is a well-known technique
for joint estimation of DOAs and unknown array
parameters with a PCA. To make the study complete
and for the convenience of evaluating the proposed
technique, Weiss’ method and CRB expressions are
described briefly as follows [17].

1) Weiss’ Method: We consider the
eigendecomposition of the data covariance matrix (3)

R=APAH +¾2I=Us¤sU
H
s +¾

2UnU
H
n (15)

where ¤s = diagf¸1, : : : ,¸Ng is a diagonal matrix
(when the sources are uncorrelated) containing the
N biggest eigenvalues in decreasing order, and the
associated eigenvectors are the columns of Us. Un
contains the remaining M ¡N eigenvectors associated
with the eigenvalues ¸N+1 = ¢ ¢ ¢= ¸M = ¾2. Subtracting
¾2I= ¾2(UsU

H
s +UnU

H
n ) from (15) we get

APAH =Us¡sU
H
s (16)

where ¡s = diagf¸1¡¾2, : : : ,¸N ¡¾2g. This can be
rewritten as

AP1=2 =Us¡
1=2
s Q (17)

where Q is an orthonormal matrix. The
eigendecomposition of the sample covariance matrix

R̂ (11) provides the estimates Ûs and ¡̂n of Us and
¡n, respectively. We can put this together to get the
optimization problem

argmin
μ,g,ª

kAP̂1=2¡ Ûs¡̂ 1=2s Qk2F (18)

whose minimum corresponds to the estimates of
DOAs and steering vectors.
2) The CRB for DOA Estimation:

CRBμ =
1
2L
fRe[(PAHR¡1AP)¯ ( _AHR¡1 _A)T

+ (PAHR¡1 _A)¯ (PAHR¡1 _A)T]g¡1

(19)

where ¯ denotes the Hadamard matrix product, Re[¢]
denotes the real part, and

_A=

"
@A
@μ

¯̄̄̄
μ=μ1

, : : : ,
@A
@μ

¯̄̄̄
μ=μN

#
: (20)

3) The CRB for Gain Estimation:

CRBg =
1
2L
fRe[H[(CPAHR¡1)¯ (CPAHR¡1)T

+ (CPAHR¡1APCH)¯ (R¡1)T]HT]g¡1

(21)
where

C=
·
A1(μ)

Aª

¸
,

[Aª ]ik = e
j[ª ]ik , i = 1, : : : ,J , k = 1, : : : ,N

the J £M matrix

[H]ik =

½
1 if k = K + i

0 otherwise
,

J =M ¡K, and K is the number of calibrated sensors:

4) The CRB for Phase Estimation:

CRBª =
1
2L
fRe[¡[vecfHAgvecTfHAg]
¯ [vN − (PAHR¡1HT)T− vTJ ]
¯ [vTN − (PAHR¡1HT)− vJ ]
+ [vecfHAgvecTf(AHHT)Tg]
¯ [(vNvTN)− (HR¡1HT)T]
¯ [(PAHR¡1AP)− (vJvTJ )]]g¡1 (22)

where vecf¢g is a concatenation of the columns of the
bracketed matrix, − denotes Kronecker product, and
vp stands for a p£ 1 vector of ones.

IV. PARTICLE SWARM OPTIMIZATION FOR
MAXIMUM LIKELIHOOD ESTIMATION

PSO is a stochastic optimization paradigm inspired
by social behavior of organisms such as bird flocking
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Fig. 1. Flowchart illustrating main steps of PSO-ML estimator.

Fig. 2. Flowchart depicting determination of particle fitness.

and fish schooling [21]. As illustrated in Fig. 1,
the algorithm starts by initializing a population of
particles in the “normalized” search space with
random positions x and velocities v constrained
between zero and one in each dimension. The
position vector of the ith particle takes the form
xi = [μ̄1, : : : μ̄N , ḡ1, : : : ḡJ , Ã̄11, : : : , Ã̄JN], where 0< μ̄n,
ḡk, Ã̄kn · 1, n= 1, : : : ,N, k = 1, : : : ,J , N ¸ 1, and
J ¸ 1. The fitness of each particle is computed based
on the flowchart in Fig. 2. At first, the normalized
DOA, gain, and phase values are mapped and scaled
to the desired ranges; then, the steering vector
components corresponding to the calibrated sensors
and uncalibrated sensors are determined; and finally
the fitness of the particle is evaluated using the cost
function (14).
The ith particle’s velocity is updated according to

(23)

vk+1i = !kvki + c1r
k
1¯ (pki ¡ xki )+ c2rk2¯ (pkg ¡ xki )

(23)

where pi is the best previous position of the ith
particle, pg is the best position found by any particle
in the swarm, ¯ denotes element-wise product, k =
1,2, : : : indicates the iterations, ! is a parameter called
the inertia weight, c1 and c2 are positive constants
referred to as cognitive and social parameters,
respectively, and r1 and r2 are independent random
vectors. Three components typically contribute to
the new velocity. The first part refers to the inertial
effect of the movement. The inertial weight ! is
considered critical for the convergence behavior of
PSO [30]. A larger ! facilitates searching new area
and global exploration while a smaller ! tends to
facilitate fine exploitation in the current search area.
In this study, ! is selected to decrease during the
optimization process. Given a maximum value !max
and a minimum value !min, ! is updated as follows:

!k =

(
!max¡

!max¡!min
rK

(k¡ 1), 1· k · [rK]
!min, [rK] +1· k ·K

(24)

where [rK] is the number of iterations with time
decreasing inertial weights, 0< r < 1 is a ratio, and
K is the maximum iteration number. The second and
third components introduce stochastic tendencies
to return towards the particle’s own best historical
position and the group’s best historical position.
Constants c1 and c2 are used to bias the particle’s
search towards the two locations.
Since there was no actual mechanism for

controlling the velocity of a particle, it is necessary
to define a maximum velocity to avoid the danger of
swarm explosion and divergence [31]. The velocity
limit is applied to vi along each dimension separately
by

vid =
½
VMAX, vid > VMAX

¡VMAX, vid <¡VMAX
(25)

where d = 1, : : : ,N + J +NJ . Like the inertial weight,
large values of VMAX encourage global search while
small values enhance local search.
The new particle position is calculated using (26),

xk+1i = xki + v
k+1
i : (26)

If any dimension of the new position vector is less
than zero or greater than one, it is clipped to stay
within this range. It should be noted that, at any
time of the optimization process, two components
representing DOAs in a position vector are not
allowed to be equal. The final global best position
pg is taken as the ML estimates of source and array
parameters. PSO is robust to control parameters, and
some works demonstrate that the performance is not
significantly affected by changing the swarm size P
[32]. More detailed information on the PSO algorithm
and parameter selection strategies is provided in
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TABLE I
Selected PSO Parameters

Parameter c1 c2 P VMAX !max !min r

Value 2.0 2.0 30 0.5 0.9 0.4 0.5

[21], and the analysis of convergence and stability is
presented in [31].

V. SIMULATION RESULTS

This section provides three examples to illustrate
the superior performance of the PSO-ML algorithm,
with a comparison against Weiss’s method [17], which
is chosen because it has the same function and is
based on a similar data model. The root-mean-squared
error (RMSE) of the estimates of source DOAs,
phases of steering vectors, and sensor gains obtained
using the two methods are evaluated and compared,
and against the CRB. The RMSE of μ, g, and ª is
calculated in an average manner as

RMSE=

vuut 1
nNruns

NrunsX
l=1

nX
i=1

[®̂i(l)¡®i]2 (27)

where n equals to N, J and NJ , respectively, Nruns
is the number of runs, ®̂i(l) is the estimate of the
ith parameter achieved in the lth run, and ®i is the
true value of the parameter. We have performed 300
Monte Carlo experiments for each point of the plot.
The signal-to-noise ratio (SNR) is defined at a single
sensor.
The PSO parameters chosen for all the

experiments are summarized in Table I. These
values are determined based on empirical practice
[21, 31—34] and adequate test runs, although a
better optimization performance could be potentially
achieved by fine-tuning the values. The PSO
algorithm starts with a random initialization, and
is terminated if the maximum iteration number is
reached or the global best particle position is not
updated in 50 successive iterations. Weiss’ method
is initialized with the ML DOA estimates obtained
using the calibrated portion of the array. It has been
observed that good initialization is crucial for Weiss’
method to achieve meaningful results, which is a
common drawback for Newton-type procedures.

A. Example 1

In the first example, we consider a uniform
linear array (ULA) of 8 elements with sensor
separation of half a wavelength. The first 6 sensors
are calibrated while the others are not. All the sensors
are omnidirectional with unit gain. Two uncorrelated
equal-power emitters are present at DOAs 80± and 83±

relative to the array end-fire. The number of snapshots

Fig. 3. DOA estimation RMSE versus SNR. Two uncorrelated
sources impinge on eight-element ULA at 80± and 83±. Number

of snapshots is 100.

is 100, and the SNR is varied. Fig. 3 depicts the DOA
estimation RMSE obtained using PSO-ML and Weiss’
method with the PCA. For comparison, the dotted line
shows the RMSE when only 6 calibrated elements are
considered and the uncalibrated elements are ignored,
while the dashdot line illustrates the performance
of a perfectly calibrated ULA of 8 sensors. It is
clear from the figure that uncalibrated sensors
may improve the DOA estimation performance.
PSO-ML outperforms Weiss’ method in the whole
SNR range by demonstrating less RMSE, especially
when the SNR is low. It is interesting to note that
when the SNR is lower than 10 dB, the PCA with
PSO-ML performs as well as a perfectly calibrated
eight-sensor ULA. It seems that the contribution of
the uncalibrated sensors becomes more significant
when the array is forced to operate in less favorable
conditions: low SNR and closely spaced sources.
Fig. 4 shows the RMSE for estimating the phases

of the steering vectors obtained using PSO-ML and
Weiss’ method, and compares them with the CRB.
Fig. 5 illustrates the RMSE of sensor gain estimation
for the same methods and the corresponding CRB.
As can be seen from Fig. 4 and Fig. 5, for both
phase and gain estimation, PSO-ML produces more
accurate estimates than Weiss’ method, with the
RMSE approaching and asymptotically attaining
the CRB. It seems that the accuracy of PSO-ML for
phase and gain estimation is not sensitive to the SNR.
Although Weiss’ method produces asymptotically
efficient estimates, it demonstrates a strong threshold
effect in the phase curve when the SNR is lower than
16 dB.
Fig. 6 depicts the fitness progress curves of

PSO-ML obtained with random initialization and
preestimated DOA based initialization, respectively.
The curves, which are plots of the fitness values
of the global best particles versus the iteration
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Fig. 4. RMSE of steering vector phase estimation versus SNR.
Dashdot line represents theoretic CRB. Two uncorrelated sources
impinge on eight-element ULA at 80± and 83±. Number of

snapshots is 100.

Fig. 5. RMSE of sensor gain estimation versus SNR. Dashdot
line represents theoretic CRB. Two uncorrelated sources impinge
on eight-element ULA at 80± and 83±. Number of snapshots

is 100.

number, are obtained over an average of 300 runs.
The initial DOA estimates are calculated using the
ML algorithm with the calibrated portion of the
array. As can be seen from Fig. 6, PSO achieves fast
convergence with the selected parameters, and the
smooth dropping curve means that the global best
particle is continuously updated in each iteration.
Furthermore, PSO is not sensitive to initial particle
positions, and two initialization methods make almost
the same convergence progress. In this example, the
PSO with random initialization achieves convergence
with an average iteration number of about 200, and
PSO-ML is approximately 15 times more efficient in
computation than Weiss’ method.

Fig. 6. Fitness progress curves of PSO-ML obtained with
random initialization and preestimated DOA-based initialization.
Dimension of problem space is 8; number of DOA estimates is 2.

Fig. 7. DOA estimation RMSE versus SNR. Two correlated
sources impinge on six-element ULA at 90± and 96±, ·= 0:8.

Number of snapshots is 60.

B. Example 2

In the second example, the proposed technique is
examined in more unfavorable conditions. We assume
that two equal-power, correlated signals with the
correlation factor ·= 0:8 impinge on a ULA of 6 unit
gain elements with half-wavelength spacing from 90±

and 96± relative to the end-fire. The first 3 sensors
are calibrated while the others are not. The number
of snapshots is 60. Fig. 7 depicts the DOA estimation
RMSE obtained using PSO-ML and Weiss’ method
with the PCA. The dotted line shows the RMSE when
only 3 calibrated elements are considered, while the
dashdot line illustrates the performance of a perfectly
calibrated ULA of 6 sensors. The PSO-ML algorithm
may treat scenarios involving correlated signals (in
fact, even coherent sources) without difficulties.
Compared with the dotted line obtained using the
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Fig. 8. RMSE of steering vector phase estimation versus SNR.
Dashdot line represents theoretic CRB. Two correlated sources
impinge on six-element ULA at 90± and 96±, ·= 0:8. Number of

snapshots is 60.

Fig. 9. RMSE of sensor gain estimation versus SNR. Dashdot
line represents theoretic CRB. Two correlated sources impinge
on six-element ULA at 90± and 96±, ·= 0:8. Number of

snapshots is 60.

three-element ULA, the uncalibrated sensors with
PSO-ML improve the performance significantly,
and yield good DOA estimates. However, Weiss’
method encounters problems in this scenario, and the
estimates are not accurate even in high SNR.
Fig. 8 shows the RMSE for estimating the phases

of the steering vectors obtained using PSO-ML and
Weiss’ method, and compares them with the CRB.
Fig. 9 illustrates the RMSE of sensor gain estimation
for the same methods and the corresponding CRB.
It is clear from Fig. 8 and Fig. 9 that for both
phase and gain estimation, PSO-ML produces
accurate estimates with the RMSE approaching and
asymptotically attaining the CRB. The RMSE curves
don’t demonstrate strong threshold effect. On the

Fig. 10. Fitness progress curves of PSO-ML obtained with
random initialization and preestimated DOA-based initialization.
Dimension of problem space is 11; number of DOA estimates

is 2.

other hand, due to the existence of correlated signals,
the performance of Weiss’ method is unsatisfactory,
the RMSE curves of both phase and gain estimation
could not approach and asymptotically attain the CRB.
Fig. 10 shows the fitness progress curves of

PSO-ML starting from random initialization and
preestimated DOA based initialization, respectively.
Again, PSO attains fast and smooth convergence,
regardless of the initialization methods. As compared
with the curves in Fig. 6, the fitness progress drops
more gently, because the problem space has a higher
dimension and maybe is more complex in nature. In
this example, PSO-ML is approximately 5 times more
efficient in computation than Weiss’ method, and the
average number of iterations to attain convergence is
about 350.

C. Example 3

In the third example, a different scenario is studied
and the performance of PSO-ML is examined as a
function of snapshots L. We consider a half-radius
uniform circular array (UCA) of 8 elements, 6
calibrated and 2 uncalibrated. The sources are 2
correlated signals with unequal power present at 60±

and 70±, ·= 0:9, p1 = 0:8p2, where p1 and p2 are the
power of the two signals.
Fig. 11 depicts the DOA estimation RMSE

obtained using PSO-ML and Weiss’ method with the
PCA, when SNR is 15 dB and 20 dB, respectively.
The RMSE corresponding to the perfectly calibrated
eight-element UCA is also illustrated for comparison.
Fig. 12 and Fig. 13 demonstrate the RMSE of sensor
phase and gain estimation for the same methods and
SNRs, and compare them with the corresponding
CRB. It is worth noting that for correlated signals
with unequal power, PCA with PSO-ML produces
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Fig. 11. DOA estimation RMSE versus number of snapshots.
Two correlated sources with unequal power impinge on
eight-element UCA at 60± and 70±, ·= 0:9, p1 = 0:8p2.

Fig. 12. RMSE of steering vector phase estimation versus
number of snapshots. Two correlated sources with unequal power

impinge on eight-element UCA at 60± and 70±, ·= 0:9,
p1 = 0:8p2.

DOA estimates almost as accurate as the calibrated
eight-element UCA for various sample sizes and the
two selected SNRs, probably because the uncalibrated
sensors don’t reduce the array aperture significantly;
the threshold effect is observed only when L < 40
and SNR= 15 dB; PSO-ML yields excellent gain
and phase estimates with RMSE approaching the
CRB; and PSO-ML significantly outperforms Weiss’
method, which is obsessed by the correlated signals.
The benefits and advantages of PSO-ML demonstrated
in this example are similar and comparable with
SNR-varying scenarios in the first two experiments.
When L is very small, the covariance matrix R̂ cannot
be estimated accurately, which degrades the DOA and
gain estimation of PSO-ML, especially when SNR
is low; however, it seems that phase estimation is
relatively robust.

Fig. 13. RMSE of sensor gain estimation versus number of
snapshots. Two correlated sources with unequal power impinge on

eight-element UCA at 60± and 70±, ·= 0:9, p1 = 0:8p2.

For comparison, GA [5] is also applied to the
ML problem in the above examples, and it is shown
that PSO-ML is roughly 10—15 times more efficient
than GA-ML. In the simulations, the number of
sources N is assumed to be known. However, this
is often not the practical situation, and N must be
estimated with the calibrated portion of the array. In
general, N can be measured accurately with Akaike’s
information criterion (AIC) and minimum description
length (MDL) techniques [35] except for unfavorable
scenarios. If we want to enhance the performance of
PSO-ML in the threshold region for low SNRs and
short snapshots, a more accurate detection algorithm
that can estimate N in hard conditions must be
selected. The interested reader may refer to [35], [36]
and the references therein.
The superior performance of PSO-ML over Weiss’

method observed in numerical examples can be
explained by the fact that PSO-ML is based on the
statistically optimal ML criteria, while Weiss’ method
is derived from a MUSIC-like spectral decomposition
of the sample covariance matrix, but MUSIC is
known to be a suboptimal estimator more suitable
for favorable conditions involving high SNR, large
sample size, and uncorrelated sources. A common
drawback with ML-based techniques is that they
are computation extensive and tend to suffer local
convergence due to the underlying high-dimensional
multimodal problem space, thus a fast and robust
global optimization tool is critical.

VI. CONCLUSIONS

This paper addresses the problem of source
DOA estimation using a PCA. An interesting but
challenging category of solutions to this problem
is to estimate the source directions in addition to
the estimation of unknown array parameters such
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as sensor gains and phases, as a way of performing
array self-calibration. An algorithm based on
the ML methodology is derived, where the cost
function is an extension of the ML criteria that
were originally developed for angle estimation with
a perfectly calibrated array. A PSO algorithm is
used to explore the high-dimensional complicated
problem space and find the global minimum of the
cost function. The design of the PSO is a combination
of the problem-independent kernel and some newly
introduced problem-specific features such as search
space mapping, particle velocity control, and particle
position clipping. This architecture plus properly
selected parameters make the PSO algorithm highly
flexible and reusable for other applications, while
being sufficiently specific and effective in the current
problem. As a result, PSO achieves fast and robust
global convergence, and careful initialization is not
necessary. Simulation results demonstrate that with the
proposed technique, the uncalibrated sensors improve
the DOA estimation performance dramatically.
PSO-ML produces more accurate estimates of the
unknown parameters in a cheaper way as compared
with another popular method, with the RMSE
approaching and asymptotically attaining the CRB;
furthermore, it works well with correlated or even
coherent sources.
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