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Abstract 

A quantum mechanical extension of the continuous symmetry measures 

(CMS) proposed by Avnir et al. is described. The theoretical framework is 

essentially based in a simple extension of the HMO approach, leading to 

compute molecular CSM energy spectra, constituting a useful step for 

construction of first and higher order CSM terms. This permits in turn to 

connect the general CMS theoretical framework with the fundaments of 

structure-property relationships and allows the evaluation of statistical 

mechanics CMS partition functions and the deduction of CMS 

thermodinamical functions as well.  

 



Introduction 

The symmetry of an object is usually described as a binary measure, i. e., an 

object is either symmetric or not. However, it is very intuitive to think that the 

symmetry can be treated as a continuous scale where some objects are more 

symmetric than others. This idea has been under development by Avnir et al. [1, 2] 

(for reviews see [3, 4]) since the beginning of the 90 of the XX century. They have 

proposed that given a molecule and a asymmetry G  group it is possible to evaluate 

quantitatively the “amount” of G -symmetry contained by such molecule. The 

situation is also found in different contexts where yes-or-not concepts are better 

expressed in the form of quantitative scales. One of such examples is the 

bipartivity of a set of relations usually determined to be either bipartite or not-

bipartite. However, the practical necessity has obligated to define scales in which 

the “amount” of bipartivity of the relationships can be quantified [5-7]. 

The continuous symmetry measure put forward by Avnir et al. have found 

numerous applications across several fields of chemistry [8-16]. This approach can 

be resumed in the following. Let Ω  be the space of all molecular shapes of a given 

dimension, where each shape  is represented by a sequence of n  points P { }n
iiP 1= . 

Let  be a metric on this space defined as follows: d

Rd →Ω×Ω:  
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Then, this metric defines a distance function between every two molecular shapes 

in . Now, let a symmetry transform Ω ( )ST  represent the symmetric shape closest 

to P  in terms of the metric . Then, the symmetry distance of a shape d P  has been 

defined as the distance between  and its corresponding : P ST

( ) ( )( )PSTPdsymS ,=  
 
which can be evaluated by finding the ST P̂  of P  and computing 
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−=
n

i
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n
symS

1

2ˆ1          (1) 

 
The measure given in (1) is known as the continuous symmetry measure 

(CSM),  and represents the square deviation of the shape  from a perfect 

symmetry ( . The continuous symmetry measure can be considered as a first 

order measure of the deviation from perfect symmetry of a given object. The 

definition of the symmetry distance implies invariance to rotation and translation 

and a normalization of the original shape allows for invariance of scale. 

(symS

sym

)

)
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Here it is proposed to interpret this approach in a wider of quantum chemical 

context, as well as to extend this approach to a series of measures, which in some 

way quantify the “distribution” of continuous symmetry across a molecule. 

CSM Graphs 

It is evident that in order to represent the CSM process there are needed two 

graphs for every studied object. For every “real” object P  for which the deviation 

from perfect symmetry is to be studied, one can employ the object  and a 

“virtual” object 

P

P̂ , which represents the perfect symmetry for which the CSM will 

 



be computed. For instance, in the CSM process shown in Fig. 1A there are present 

two objects: a “real” one represented by solid lines and a “virtual” one with perfect 

-symmetry represented by dotted lines. An abbreviated representation of the 

CSM process can be carried out by means of the CSM graph. The CSM graph of a 

CSM process is formed by joining the nodes of the “real” and “virtual” nodes into 

pseudo-nodes, in such a way that two pseudo-nodes are adjacent in the CSM graph 

if, and only if, the corresponding nodes are adjacent in the real and virtual object. 

Fig. 1B represents the CSM graph for the previously mentioned CSM process. 

6C

 

Fig. 1. A) Illustration of the symmetry transform of { }621 ,,, PPP L  to { }621
ˆ,,ˆ,ˆ PPP L  

with perfect -symmetry. B) The CSM graph representing the symmetry 

transform given in Fig. 1A. 
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The necessity for this kind of representation will be evident in the following 

section. An object  can be represented by means of a weighted graph P

( )φ,,, WEV . Here the sets V  and E  are the set of nodes (vertices) and links G =

 



(edges) of the object , which characterize its connectivity or discrete topology. 

The cardinality of these sets are 

P

nV =#  and mE =# , respectively. The set 

( )nW γγγ ,,, 21 L= , where 
2

îii PP −=γ , accounts for the deviations from perfect 

symmetry for every node of the object P . Such deviations are quantified by means 

of the CSM approach. The surjective mapping WV →:φ  assigns a value of iγ  to 

each node. 

The graph ( )φ,,, WE= V

A

G  can be represented through the use of the matrix: 

, where  is the adjacency matrix of the simple graph, whose 

elements  if the nodes i  and 

( ) WAΓ +=G

1=ijA j  are adjacent, or zero otherwise, and W  is a 

diagonal matrix whose diagonal entries are the values of the deviation from perfect 

symmetry for the corresponding node ( )n . W diag γ γγ ,,, 21 L=

Quantum-mechanical formulation 

From now on one can consider that P  represents a quantum object. In the 

particular case of a molecule one can consider an AO basis set associated to 

each atom, which only depend on the deviation of a given atom from the perfect 

symmetry as accounted by the CSM approach. However, in the CSM graph 

each pseudo-node is formed by two orbitals, one representing the atom deviated 

from the perfect symmetry and the other the atom in the perfect symmetry. 

Then, the CSM orbitals, which are the orbitals in the CSM graph, can be 

supposed as a set of localized orbitals { }CS
i

Mϕ , which can be constructed as the 

bond orbitals introduced by Hall and Lennard-Jones and used in a linear 

 



combination of bond orbitals (LCBO) approach. A similar approach to the 

present although in a different context was proposed many years ago by Paoloni 

et al. [17], they proposed for the first time the p-type AO’s in aromatic 

molecules like benzene to be substituted by spherical s-type functions. A more 

elaborated approach has been also employed in describing approximate 

promolecular first order density functions [18-22] . A parent approach has been 

successful in order to compute topological indices, which explicitly include 

molecular structure [23, 24]. More recently, the idea has been also successfully 

employed to compute multicenter aromaticity indices [25]. In fact the present 

approach amounts the same as to use both spherical and elliptically distorted s-

type functions. Such distortion in GTO’s has been early described and even 

employed to compute AO integrals [26-28]. 

Here a tight-binding approach similar to the one used in the Hückel 

molecular orbital (HMO) approach is employed. First, the MO’s are built as 

linear combinations of the pseudo-atomic orbitals by considering that the CSM 

orbitals are orthonormalized. The Coulomb integral  of a CSM orbital Hii φ i  is 

assumed to depend only on the deviation from perfect symmetry of the atom . 

As it is customary in HMO procedures, such an integral is set equal to 

i

baH iii γ+= , while the resonance integral  between CSM orbitals Hij φi  and φ j  is 

assumed to be zero, unless i  and j  are adjacent atoms in the molecule, in which 

 



case we set . After normalizing each element of the CSM Hamiltonian by 

 the main diagonal the entries are given by

bH ij =

b ix γ+ , where 

b
a −

=
ε            (3) x

 The non-diagonal entries of this matrix are the unity if, and only if, the 

corresponding atoms are adjacent. Thus, the orbital energy is determined by the 

eigenvalues of H , which are the eigenvalues of the weighted matrix ( )GΓ  

representing the CSM graph, 

           (4) jbxa −=jε

( )Gwhere  is an eigenvalue of the matrix jx Γ . The total electronic “CSM” 

energy is given by 

∑∑
==

=
n

j
j

n

j
CSM xb

11
22 −=j naεE ,        (5) 

where .  0<b

From now on the value 0≡= nap   is used without loss of generality, since p  

simply sets the origin of the energy scale. This makes the CSM energy 

∑
=

=
n

j
,          (6) CSM b2E jx

1

It is well known that the sum of the eigenvalues of any Hermitian matrix is 

equal to its trace. Then, it is straightforward to realize that the CSM is the total 

energy of the symmetry deviation for a molecule under the previous tight-binding 

assumptions, 
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for 
n

b 12 = . 

Higher order CSM 

 The CSM, corresponding  in the present scheme to the total energy of the 

symmetry deviation for a given molecule, does not account for the differences in 

symmetry between pairs of structures having the same sum of the iγ  values. In 

other words, the CSM total energy appears to be a first order measure for the CS 

deviation of a molecule. However, in the previous section it has been discussed 

that the CS total energy is given by the trace, the sum of diagonal elements, of the 

matrix : ( )GΓ

( )GtrtrECSM ΓH ==           (8) 

This expression can be generalized in order to account for higher-order 

contributions of the deviations from perfect symmetry. Let kμ  be the k -th spectral 

moment of the Hamiltonian matrix, which represents a weighted closed walk of 

length  between the pseudo-nodes of the CSM graph, where the weight 

associated with the walk is the product of the  interaction elements,  

k

iba,1H

1,3,22,1 2,1 iikiiikii ii
k

k tr HHHH L
K∑==μ .       (9)  

It is evident that the energy is just the first moment of the Hamiltonian. Then, the 

consideration of the higher-order moments differentiate the structures not 

 



distinguished by the first order measure. The higher-order terms can be accounted 

for in a more efficient way in a further section. 

Higher-order CSM in structure-property relationships 

One of the principal objectives of developing the CSM has been its use in 

describing quantitatively many different properties. Let  P be an experimental 

property which can be expressed as a linear combination of the higher-order CS 

measures, 

αμ += ∑ k
k

kbP ,          (10) 

where  are the coefficients of the correlation model and kb α  is the error. Then, the 

following result can be easily set:  

Theorem: Any property  P expressed quantitatively by means of the higher-

order CSM can be expressed as an atomic additivity function. 

Proof. The spectral moments of the CSM Hamiltonian can be expressed in 

terms of local moments for the atoms of the molecule [ ]akμ  

[ ]∑
=

=
n

a
kk a

1
μμ ,          (11) 

where the atomic moments are expressed in terms of the molecular orbitals 

coefficients and energies as follows, 

[ ] ( )[ ]∑
=

=
m

j

k
jjk aca

1

2εμ .         (12) 

Then, substituting (11) in (10) the property under study can be expressed in 

terms of the atomic moments, 
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 Summing up all the local moments corresponding to a given atom  multiplied 

by their respective coefficients, calling

a

( )aP  the CSM contribution of the atom a  

to the property P , then the following expression is deduced: 

( ) [ ]abaP k
k

kμ∑= .          (14) 

 Consequently, one can express the global property as a sum of atomic 

contributions,  

( )  
1
∑
=

+=
n

a

aPP α           (15) 

which proves the theorem, 

Statistical mechanics approach to higher-order CSM 

First, it can be defined a CSM partition function, associated to the previously 

defined CSM energies,  

( ) ∑
=

−=
n

j

jeCSMZ
1

βε ,          (16) 

where kT/1=β  is the inverse temperature (T ) and  is the Boltzmann constant. 

Using this partition function one can define the entropy of the CSM electronic 

distribution as 

k

( ) [ ZpkppkCSMS j
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j
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is the probability of finding the system in the state having energy jε  and 

.  Eq.  (16) can be rewritten in the following way (CSMZZ ≡ )

( ) ∑∑
==
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n

j
j

n

j
jj pZktpkS

11
lnεβ .        (18) 

Then, by multiplying by T  and reordering the terms  it is obtained 

TSpZ
n

j
jj −=− ∑

=1
ln1 ε

β
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which by using the known expression TSHF −= , permits to identify the CSM 

enthalpy H and the CSM free energy , F
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=

=
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1
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( ) ZCSMF ln1
β

−=           (21) 

In order to establish a connection between the statistical-mechanical 

parameters and the higher-order CSM parameters previously defined, the spectral 

moments of the Hamiltonian matrices can be easily used. First, the partition 

function (16) can be rewritten as the trace of the exponential of the Hamiltonian 

matrix, which can be immediately interpreted in terms of the spectral moments of 

the corresponding Hamiltonian, 

[ ] ( ) ( )
!00 kk!

trβetrZ k

k

k
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k
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ββ ∑∑

∞

=

∞

=

− −=−==
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Thus, the CSM partition function is a weighted sum of all the higher-order CS 

measures accounted by the spectral moments of the corresponding CSM 

Hamiltonian. Because the Hamiltonian here is simply the adjacency matrix of a 

weighted graph, the partition function is the CSM version of the “subgraph 

centrality” or the Estrada index of the graph (see [29-33] and references therein). 

Summary 

The concept of continuous symmetry measure (CSM) of Avnir et al. has been 

extended within a quantum mechanical background, employing a simple 

modification of HMO and the attached topological adjacency matrices. This 

permits to easily compute first and higher order CSM terms, which can be applied 

in turn to describe the partition of molecular properties as a sum of atomic 

contributions in structure-property relationships. Finally, CMS energy spectra can 

be employed to develop statistical mechanics partition functions and hence this 

permits to compute CMS related thermodynamic functions. 
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