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1. Abstract 

 

Erosion-corrosion of materials in aqueous environments is a complex phenomenon involving a very 

large number of variables.  In such cases, characteristics of the target, particle and the environment 
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affect the degradation mechanism.  Predicting material behaviour may sometimes be a “black art” due to 

the parameter size which is involved in such processes.   

In studies of erosion-corrosion, there have been significant advances in the modelling of such processes 

in recent years. Various methodologies employed include quasi static modelling, using CFD modeling 

and erosion-corrosion mapping. In such cases, the output of the various models can differ significantly.   

In this work, a methodology combining CFD modelling and erosion-corrosion mapping has been 

developed to model the erosion-corrosion behaviour of pure metals, which variously passivate and 

dissolve under a range of simulated conditions.  This provides a means of mapping the component 

undergoing erosion-corrosion and thus is a step change on previous modelling work in this area as it 

enables superimposition of the erosion-corrosion map on real surfaces.  The relative advantages and 

limitations of this approach are discussed in this paper. 

2. Introduction 

Particulate erosion-corrosion in aqueous conditions has been the subject of much research in recent 

years concentrating on a very wide range of materials and conditions. [1-5] Erosion-corrosion is process 

which is still the subject of much investigation mechanistically.  Nonetheless, various modelling 

approaches have been developed concentrating on many different kinds of output data. 

An advance in studying the effects of chemical degradation, caused by corrosion, and mechanical 

degradation caused by solid particle erosion has been the development of mechanistic maps showing the 

regime of degradation, the mechanism of wastage and providing a basis for materials selection decisions 

in a range of conditions [1-5]. Such maps have been developed using predictive models of erosion-
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corrosion.  However, a limitation of their application to erosion in flowing conditions is that they do not 

incorporate a parameter relating to fluid flow. 

Aqueous fluid flow simulation can be divided into various categories.  In the Lagrangian-Eulerian 

methodology, the Navier-Stokes equations are numerically used to simulate fluid flow processes and the 

effects of the particles dispersed in the flow are simulated using particle tracking and erosion model 

techniques.  In the Eulerian-Eulearian approach, the fluid and particles are treated essentially as fluids.  

The first method is thus generally used for dilute multiphase flows where the particle trajectory can be 

tracked and modeled.  For dense flows, where particle–particle interactions may be significant, the two 

phases can be interpreted and modelled as interacting continuous media [6]. 

In studies of erosion-corrosion there are no models available which attempt to combine the effects of 

particle erosion, corrosion and fluid flow with mapping tribo-corrosion methodologies.  This has limited 

the characterization of tribo-corrosion phenomena in real life environments to date. 

In this work, various models of solid particle erosion are combined with those for aqueous corrosion.  In 

addition, these models are incorporated in a simulated flowing environment using CFD techniques.  The 

results present a new technique for mapping erosion-corrosion on real pipes, thereby introducing an 

important step-change in the interpretation of erosion-corrosion mapping techniques to date. 

3. Methodology 

 

The initial work involved evaluation of several erosion models against some laboratory erosion 

results[7]. A methodology was then developed to predict the combined effect of the erosion and 

corrosion wastage using the model of Sundararajan[8] to predict the erosion rates and a range of 
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corrosion models to predict the corrosion rates. The total wastage was estimated by combining the 

erosion rates and the corrosion rates. 

The modelling processes thus involved several steps i.e.: 

(i) A single elbow- pipe with diameter ratio RD-1 of 1.2 with a bore diameter of 0.078 [m] was used 

for the simulation. 

(ii) A standard k-ε model was employed with standard wall function and zero roughness to model the 

turbulence [9]. 

(iii) A Lagrangian-Eulerian simulation was used to model the multi-phase flow of the particles 

trajectories to evaluate the erosion rate using the Discrete Phase Modelling (DPM) method [6]. 

The DPM method is based on the Lagrangian tracking of every particle using several discritizing 

methods for tracing the ingested particles (the method used here is Runge-Kutta method). 

(iv) A user defined function (UDF) was developed in the above algorithms to evaluate the erosion 

rate based on the models of Forder et al.[10], Finnie (first model)[11], Neilson-Gilchrist[12], and 

Sundararajan (second model) [8]. These are outlined in equations 2-5.  

(v) A further UDF file was developed to calculate the corrosion and erosion rates  at every impact 

site (according to the original erosion-corrosion mapping methodology generated in 2D [15]).  



  5

(vi)  For evaluation of the erosion-corrosion rates, Sundararajan’s model [8] below was used to 

calculate the erosion components.  The impact angles computed ranged between 7 .5 and 10 o and this 

is why this model was used as it accounts for impact angle effects. 

 

The simulation commenced by using a single phase CFD run using FLUENT software and then injecting 

the particles uniformly at the inlet by using DPM method. A sample of 1655 particles of 10-3 [m] 

diameter was injected with total mass flow rate equal 3.8 [kg s-1] to represent 22.88% particle 

concentration which corresponds to particle volume fraction of 0.09.   

(The work on 3D maps in this paper was based on earlier studies carried out by Stack and Jana [15], 

where 2D erosion-corrosion maps for 1mm diameter particle sizes were generated. A particle size of 1 

mm was thus chosen to be comparable with results in this earlier study. In ref [15], a value of 25.29% by 

mass (volume fraction =0.101) was used. This value is marginally above the allowed limit for dilute 

slurries i.e.  0.1. Thus, a value of 22.88% was chosen which corresponds to a volume fraction of 0.091. 

This means that the value chosen is within the limit of using Discrete Phase Modelling (DPM) in the 

FLUENT simulation.) 

The walls were chosen as “no slip boundary conditions” and the initial flow velocity was 3 [m s-1]. The 

erosion rates were evaluated in terms of volume loss per impact. The total erosion rate over the surface 

was estimated by calculating the weighted average of all erosion rates on the outer surfaces per unit area 

i.e. W& [14] 
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3.1 Erosion models for impact by solid particles 

For the various models, the erosion rates W&  are given as follows: (All mathematical terms are given in 

the list of nomenclature, section 10) 

1- ) Finnie’s erosion model [11]: 
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Finnie recommended a value of 0.1, 2 and 2 for Cf, ψ, and k respectively.  

2- ) Neilson-Gilchrest model [12]: 
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3- ) Sundararajan’s second model [8]: 
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and  t D cW W W= +& & &          (4.c) 

where  
( ) ( )
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4- ) Forder’s model [10]: 
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3.2 Corrosion and Erosion-Corrosion methodologies 

 

 The corrosion rate in the dissolution regime and full details of corrosion reactions anticipated for the 

pure metals are given elsewhere as generated for the earlier work on 2 dimensional erosion-corrosion 

maps for the pure metals studied in this paper [15].  The corrosion rate in the dissolution regime is given 

by: 
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where 
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In the passive region, the corrosion rates estimated for normal impact are given elsewhere [16], based on 

the work of Tirupataiah et al.[17] for determining a crater diameter for normal impact. To account for 

the effect of impact angle, we have to modify this approach.  

Assuming that the energy involved in the erosion process is the difference between the initial and 

rebound impact energy and that the erosion process is adiabatic, the energy required to form a crater can 

be written as: 

 ( )2 2
1 22

p
s

m
V V H U− =        (7) 

where mp is the particle mass, V is particle velocity, Hs is the material hardness, U is the crater volume 

and the subscripts 1,2 are for the impact and rebound process respectively. Assuming that the surface 

shear stresses due to oblique impact may be neglected for erosion of brittle materials, Finnie [11] stated 

that the crater diameter of ring crack d is related to the vertical component of the velocity. Hence, the 

energy balance in equation (7) is: 

  ( )2 2 2 2
1 1 2 2sin sin

2
p

s

m
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where α1 and α2 are the impact and rebound angles respectively. By definition, the normal impact 

velocity component is related to the normal rebound velocity component by the coefficient of restitution 

e, thus and by rearranging: 
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Assuming that the particle is a sphere and the crater depth is comparably smaller than the particle 

diameter, i.e. at low particle velocities, the shape of the crater on the passive film surface can be 

assumed as part of a sphere and U can be related to the crater diameter Dc by: 
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Substitution of equation (10) into (9) gives: 
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The crater depth d is related to crater diameter using the same assumption above by: 
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From [15], the mass of passive film removed per impact is given as: 

 2t p fM k d d hπ ρ=         (13) 

Substituting equation (11) into (12) and apply to (13): 
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The unit given for the erosion model by equation (14) is [kg impact-1]. To convert to Ke [kg m-2 s-1], the 

erosion rate, equation (14) can be multiplied by particle impact frequency as outlined in [15]. This can 

be varied according to the application under investigation. For example, if the flow is homogeneous 

(constant particle concentration) then particle impact frequency may be given as: 
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and c is the particle concentration by mass [kg m-3].  

 

For evaluation of properties of the pure metals and their passive films, the mechanical properties for Fe, 

Ni, Cu and Al are given below, in table (1). The constant k2 is defined as the mass ratio between the 

metal and its oxide created during the corrosion reaction multiplied by the number of moles of metal 

involved in the reaction [15]. 

The thickness of the passive layer h can be assumed to be varied with the potential difference and may 

be given from [15]: 

 ( )93 10o ap pash h E E−= + × −        (16) 

and:     ho=1×10-9 [m] 

 

All corrosion rates must be calculated in [gm cm-2 s-1]. The erosion rates from Sundarararjan’s model [8] 

must be converted from [kgtarget kgparticle
-1] accordingly as indicated above.  

Equation (14) is a simple expression for estimating the erosion rates for the passive film on a substrate. 

It is valid only for the impact of passive film formed during the erosion-corrosion process where the 

erosion footprint (i.e. the deformed surface) has a ring shape approximately (this is also assumed at 

oblique impact angles). The equation is useful for CFD applications in which erosion occurs at a range 

of impact angles. Should the particle fully penetrate the passive film and erode the substrate, another 

approach is considered i.e. the use of a model for erosion of ductile materials [8].   
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The calculation of Kec, the total erosion-corrosion rate is outlined below.  

3.3 Erosion-corrosion mapping boundaries 

The regime boundaries are defined in terms of the ratio Kc/Ke. Therefore, by combining and rearranging 

the above expression for Kc, and Ke, the boundaries for the erosion-corrosion regime maps at a given 

applied potential can be determined as [15]: 

0.1c

e

K
K

<    (Erosion dominated)    (17) 

0.1 1c

e

K
K

≤ <    (Erosion-Corrosion dominated)  (18) 

1 10c

e

K
K

≤ <    (Corrosion-Erosion dominated)  (19) 

10c

e

K
K

≥    (Corrosion- dominated)   (20) 

where in the dissolution region, Kc can be determined from equation (6-a,b). In the passive region, the 

corrosion rate is equal to the additive effect of the erosion on corrosion (i.e. erosion controlled corrosion 

or simply repassivation) which can be given directly from equation (14).  (The Pourbaix diagrams, Fig 1, 

indicate whether corrosion process involved in the erosion-corrosion interaction will be erosion-

dissolution or erosion-passivation as a function of the pH and potential  The ratios of the corrosion to the 

erosion contributions above identify which process dominates ie. If the corrosion rate is 10 times the 

erosion rate then the surface is corrosion dominated and if the Pourbaix diagram, Fig. 1,  indicates that 

dissolution can only take place, then the process is dissolution dominated). 

In order to present the erosion-corrosion regime on the pipe surface, the Kc/Ke ratios at each node in the 

pipe surface are evaluated and contour plots are generated to generate transition boundaries of the 
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erosion-corrosion regimes above.   

The total wastage in the active and passive regimes can be given by: 

 ec c eK K K= +         (21) 

The transition boundaries for the wastage maps: 

1ecK <  [mm year-1] (low wastage)     (22) 

 1 10ecK≤ <   [mm year-1] (medium wastage)    (23) 

 10ecK ≥  [mm year-1] (high wastage)     (24) 

 

Plots of these regimes at each node in the pipe were generated for the wastage maps below. The erosion-

corrosion maps constructed in this work are based on the pure metals data, electrochemical reactions, 

and pH values used in [15] and are considered an extension from 2D to 3D mappings taking into 

consideration the effect of the fluid flow properties on the erosion-corrosion mappings, assuming 

potential controlled corrosion. 

4. Results 

To clarify the dissolution and passive regions of influence for every pure material selected in this study, 

Fig. 1 illustrates the Pourbaix diagrams for Fe, Ni, Cu, and Al respectively. These diagrams are the basis 

for constructing the erosion-corrosion maps below as they determine the corrosion regimes which 

predominate for each of the pure metals (i.e. dissolution, passivation and immunity).  As is shown from 

the figures, significant differences in the stability regimes are observed for the pure metals as a function 

of pH and potential which, in the context of the erosion-corrosion maps, will be discussed further below.  
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4. 1 Erosion model predictions 

 

Fig. 2 indicates the various predictions of the erosion models and it can be seen that there are similarities 

between the erosion rates calculated and evaluated in earlier work [7] when the values in the earlier 

study were used and hence this was a useful calibration exercise.  The predictions on real surfaces are 

indicated in Fig. 3 where the highest erosion rates were observed at the bend in the pipe.  Analysis of the 

impact frequency; Fig. 4 and the impact velocity profile. Fig. 5 indicates the area around the bend 

experienced the highest impact frequency and velocities. 

 

4. 2 Effect of pH on the erosion-corrosion regime mapping for pure metals 

The erosion-corrosion mapping results Fig. 6 (a-d) show the change in erosion-corrosion regimes for the 

various pure metals at pH 5 and -0.6 V (SCE). It is clear that there were a number of erosion-corrosion 

regimes operating on the component, under nominally the same initial simulation conditions.  Here, it 

was shown that there were significant differences between the regimes of erosion-corrosion behaviour 

observed, with dissolution and dissolution-erosion being dominant for Fe, Fig. 6(a), a transition to 

erosion-dominated behaviour for Ni and Cu, Fig. 6(b-c) and to erosion-passivation for Al, Fig. 6 (d).   At 

pH 7, Fig. 7, as was observed at pH 5, Fig. 6, only Fe, Fig. 7(a), was affected by dissolution. All the 

other metals were in the erosion-dominated or in the case of Al, Fig. 7(d), passivation affected regimes.  

At pH 9, Fig 8, there was a transition to erosion-passivation and erosion-dominated behaviour for the Fe, 

Fig. 8(a) which contrasted with the behaviour at lower pH values; Fig. 6(a) and 7 (a); in which 

dissolution affected the process.  For the Ni and Cu, the erosion-corrosion processes were again 

characterized by erosion-dominated behaviour, Fig. 8 (b-c).  For Al, Fig. 8(d) there was a transition to a 
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new corrosion affected regime, dissolution dominated behaviour, which contrasted with the passivation 

dominated processes observed at the lower pH values, Fig. 6(d), 7(d). 

 

4. 3 Effect of particle size and applied potential on erosion-corrosion mapping of Fe 

 

For the effect of particle size on Fe at pH 9 and -0.6 V (SCE), Fig. 9, increases in particle size by a 

factor of three, Fig. 9(a-c) changed the erosion-corrosion processes from passivation dominated and 

passivation-erosion dominated behaviour to a situation where erosion-passivation was the dominant 

degradation process, with the extent of this regime prevailing being greater at the higher potentials, Fig. 

9(b-c). Increases in applied potential, however, Fig. 10 for Fe at pH 7 showed various significant 

transitions from mainly erosion dominated behaviour at -0.75 V(SCE), Fig. 8(a) to dissolution and 

mainly erosion-passivation dominated behaviour as the potential was increased from t -0.5 to -0.25 V, 

Figs. 10(b-c). 

4. 4 Comparison between erosion-corrosion wastage maps at the various pH values 

The results on erosion-corrosion wastage maps, Figs. 11-13, indicate very significant differences for the 

pure metals at the various pHs. As in the case for the results above, a number of wastage regimes 

predominated on the component.  At pH 5, the highest wastage was observed for the Fe, Fig. 11 (a), with 

the wastage decreasing for Ni and Cu, Fig. 11(b-c).  The high wastage regime had a greater presence for 

Al, Fig. 11(d) than for the latter metals, Fig. 11 (b-c).  As the pH was increased to 7, the wastage profiles 

were similar for all metals, Fig. 12 (a-d) as had been the case at pH 5, Fig. 11.  However, at pH 9, there 



  15

was a change in the behaviour, Fig. 13(a-d) with the high wastage regime predominant for the Al, Fig. 

13 (d), to a greater extent than for the other metals. 

5. Discussion 

 

The results indicate that it is possible to simulate the erosion-corrosion mapping process on real 

components using such an approach.  It is shown that a number of mechanistic regimes are possible, 

under nominally the same initial tribo-corrosion conditions, Figs. 6-13, and that this may be in part 

related to the difference in impact frequencies and velocities, Figs. 4-5 observed on the component. This 

means that designing materials and processes for optimum erosion-corrosion resistance is a complex 

problem with more than one erosion-corrosion regime possible on a single component.   

 

It is interesting that, as in the two dimensional simulations for erosion-corrosion of pure metals,[15] 

significant differences are found in the three-dimensional simulation between the regimes dominating 

for the metals, with Cu and Ni being more immune and less likely to be dominated by corrosion than Fe 

and Al, under the window of conditions employed in the model, Figs. 6-8.  However, it should be 

emphasized that if the conditions differ the results will change significantly. Moreover, it is important to 

note that various metals will exhibit different erosion-corrosion behaviour and because of the changes of 

velocity and particle frequency of impact over the component, Fig. 4 and 5, a variety of erosion-

corrosion regimes are experienced on the surface of the component. 

 

It is clear that a significant area of the component modelled will not experience any erosion or impact of 

flowing particles, Figs. 6-13. In practice, the un-eroded surfaces may experience corrosion through 

dissolution or passivation.  Moreover, the corrosion process may be controlled by the flow parameters 
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(flow controlled corrosion) such as fluid temperature and the oxygen concentration in the bulk flow 

[18,19]. The effect of these parameters will be addressed in further work. 

 

The transition from passivation to dissolution dominated behaviour for Al, is illustrated in Figs. 6(d), 

8(d).  Here, at higher pH values, the Al dissolves, in contrast to that which occurs for the other pure 

metals at such pHs, Fig. 8.  This is a characteristic of Al which makes it unsuitable for use at such pH 

values. 

 

Increases in particle size by a factor of three, Fig. 9, for the Fe, not surprisingly, reduces the passivation 

affected regimes on the component.  The increase in erosion footprint results from the higher impact 

energy involved in the process.  The three dimensional results highlight the important influence that 

particle size has on the erosion-corrosion regime. 

 

The effect of changing applied potential in the positive direction, i.e. from -0.75 to -0.25 V(SCE), Fig. 

10(a-c),  has a very significant effect on the erosion-corrosion degradation mode for the Fe.   Here, the 

regime is changed from dissolution to predominately passivation affected behaviour over the 

component.  This illustrates the important of electrochemical potential on the stability of the corrosion 

regime as identified by the Pourbaix diagrams for the various pure metals and their influence on the 

erosion-corrosion two-dimensional maps[15].     

 

The wastage regime maps for the pure metals, Figs. 11-13, show very little differences between the pure 

metals at pH 5 and 7, at -0.6 V (SCE) which is surprising.  However, at the higher pH values, the 
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wastage is significantly greater for the Al, Fig. 13(d) than at lower pH values, possibly due to the high 

dissolution rate of this material.  

 

A limitation of the model developed to date is that it assumes no interaction between erosion and 

corrosion i.e. no synergy or antagonism during the processes.  However, the reasons for such effects are 

not well understood and can be material specific [5, 19-20].  This is why the initial work on mapping the 

component for the materials above has made such assumptions.  Further work will be to incorporate 

such effects in the model, particularly in the case where they can be directly related to material 

properties i.e. for the erosion-corrosion of composites both in bulk and in coating form [5]. 

 

It is acknowledged that in situations where re-passsivation cannot take place due to a very short duration 

between impacts , a transition to erosion affected dissolution behavior may occur as identified in other 

tribo-corrosion studies in aqueous environments [22].  This is a potentially complex situation which has 

not been considered to date in the above approach.  Further work will be to consider the more complex 

interactions in erosion-corrosion as discussed above. 

 

 Hence, the model developed provides a new tool for representing the transitions between erosion-

corrosion regimes on real surfaces.  The results indicate the variety of regimes possible over one single 

component.  Further work will be to investigate a range of other variables in the model, such as 

temperature and oxygen concentration, in addition to the above issues together with identifying how 

materials and process parameters may be optimized for erosion-corrosion resistance using such an 

approach. 
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6. Conclusions 

(i) CFD methods which involve fluid dynamics and multiphase flow parameters have been used to 

model the erosion-corrosion behaviour of a range of metal-corrosion systems. 

(ii) The results indicate that it is possible to identify erosion-corrosion mechanistic regimes on real 

components using the analysis and show the wide range of regimes possible under nominally 

similar fluid flow conditions. 

(iii) The effect of erosion and corrosion parameters such as particle size and applied potential show 

significant differences on the three dimensional erosion-corrosion regimes indicating the 

important effect of erosion-corrosion variables on the stability of such regimes observed on real 

life components. 
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 9. List of tables: 

Table 1: Properties for pure metals selected and their passive films. 

10. Nomenclature: 

 

Latin letters:    

Ai Area of the surface cell.  [m2] 

ba Anode Tafel slope  [V decade-1] 

bc Cathode Tafel slope  [V decade-1] 

Cf Non-dimensional constant (Finnie)  0.5  

Ck Cutting characteristic velocity (Forder)  [m s-1] 

Cp Specific heat capacity  [J Kg-1 K-1] 

c Particle concentration  [g cm-3] 

D, Dc Diameter of the pipe roundness, Crater diameter  [m] 

Dk Deformation characteristic velocity (Forder)  [m s-1] 

d Pipe diameter, crater depth  [m] 

E 
Applied potential, relative to saturated calomel electrode, 

Modulus of elasticity of the material. 
 

V[SCE], 

[Pa] 
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Ee Reduced Young’s modulus of elasticity (modulus of  collision)  [Pa] 

e Coefficient of restitution   

Fr Faraday’s constant 96485 [C mol-1] 

f(α) Function depends on the impact angle   

ft Numerical constant 0.025  

H Hardness  [Pa] 

h Thickness of the oxide layer  [m] 

ho Initial thickness of the oxide layer  [m] 

Ip Impact frequency  [imp cm-2 s-1]

ianet Net anodic current density  [A m-2] 

io Exchange current density  [A m-2] 

Kc Corrosion rate  [kg m-2 s-1] 

Kec Total wastage rate  [kg m-2 s-1] 

Ke Erosion rate  [kg m-2 s-1] 

k Ratio of vertical to horizontal forces (Finnie) 2  

k2 metal to its oxide molecular mass ratio  [8]   

Mt Total erosion rate by single impact particle  [Kg impact-1]

mp mass of impacting particle  [Kg] 

n Empirical constant (Neilson-Gilchrist)   

nf Velocity ratio exponent (Forder) 2.54  

nc Strain hardening coefficient 0.3  

PH Eroding surface flow stress related to hardness (Finnie)  [Pa] 

RAM Relative atomic mass   
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Rf Particle roundness factor (Forder) 0.5  

rp radius of impacting particle  [m] 

Tm Melting temperature point of the metal  [K] 

U Crater volume  [m3] 

V Velocity,  [m s-1] 

vf Volume fraction of particles   

W Erosion rates  [m3 impact-1] 

WC Erosion by cutting  [kg kg-1] 

WD Erosion by deformation  [kg kg-1] 

Wt Total Erosion (Sundararajan)  [kg kg-1] 

wav Area weighted average wastage of metal  [kg m-2 s-1] 

wi Wastage of metal at centre node on the eroded surface cell  [kg m-2 s-1] 

Y Yield stress of the target material(Forder)  [Pa] 

zm number of electrons   

 

Greek letters: 
   

α impact angle  [deg] 

ε Deformation wear factor (Neilson-Gilchrist)   

λ Particle shape factor 0.0  

µ Frictional coefficient 0.1  

µf Critical friction coefficient (Sundararajan)   

ν Poisson’s ratio   

π Pi ratio 3.1416  
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ρ Density  [Kg m-3] 

ρp Density of the particle 2650 [Kg m-3] 

Φ Cutting wear factor (Neilson-Gilchrist)   

Ψ Ratio of depth of contact to depth of cut (Finnie) 2  

 

Subscripts: 
   

p Particle   

pas passivation   

s Substrate   

o initial, Reversible equilibrium potential   

f Friction, oxide film   

t total, target   

i Node   

c Corrosion, crater   

e Erosion, reduced elasticity   

m Melting   

1 Impact   

2 Rebound   

ap Applied potential   

av Average   

ce Total wastage due to erosion and corrosion   

K Threshold, deformation(N-G)   

tp threshold, cutting (N-G)   
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Figure 1: Pourbaix diagrams for: (a) Fe (b) Ni (c) Cu (d) Al. [13] 
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Figure 2: Prediction of erosion models [10], [11], [8], [12] and comparison with experimental results[7]. 

 
 

Figure 3: Erosion rates contours on the outer surface predicted by (DPM) Discrete Particle Method 

      
     Figure 4: Impact frequency by (DPM) Discrete Particle Method 

 
Figure 5: Impact velocity profile on the surface of the elbow‐pipe 

Er
os
io
n 
ra
te
 x
10

‐1
8  [
m

3  i
m
p‐

1 ]
 



  28

(a)  

 

 (b)  

 

(c)  

 

(d)  

Figure 6: Erosion‐corrosion maps for the outer surface of elbow‐pipe at pH=5, EAP=‐0.6 V[SCE], particle size=1000 [µm] 
and concentration =22.88% (vf= 0.1) for: (a) Fe. (b) Ni. (c) Cu. (d) Al.  

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Passivation dominated [Kc/Ke ≥ 10]
Passivation erosion [1 ≤ Kc/Ke < 10] 
Erosion passivation [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 
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(b)  

 

(c)  

 

(d)  

Figure 7: Erosion‐corrosion maps for the outer surface of elbow‐pipe at pH=7, EAP=‐0.6 V[SCE], particle size=1000 [µm] 
and concentration =22.88% (vf= 0.1) for: (a) Fe. (b) Ni. (c) Cu. (d) Al. 

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Passivation dominated [Kc/Ke ≥ 10]
Passivation erosion [1 ≤ Kc/Ke < 10] 
Erosion passivation [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 
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(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 8: Erosion‐corrosion maps for the outer surface of elbow‐pipe at pH=9, EAP =‐0.6 V[SCE], particle size=1000 [µm] 

and concentration =22.88% (vf= 0.1) for: (a) Fe. (b) Ni. (c) Cu. (d) Al. 

Passivation dominated [Kc/Ke ≥ 10]
Passivation erosion [1 ≤ Kc/Ke < 10] 
Erosion Passivation [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 
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(b)  

 

 

 

(c)  

Figure 9: Erosion‐corrosion maps for the outer surface of (Fe) elbow‐pipe at pH=9, EAP =‐0.6 V[SCE] and 

concentration=22.88% (vf= 0.1) for particle size: (a) 250 [µm]. (b) 500 [µm]. (c) 750 [µm]. 

Passivation dominated [Kc/Ke ≥ 10]
Passivation erosion [1 ≤ Kc/Ke < 10] 
Erosion passivation [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Passivation dominated [Kc/Ke ≥ 10]
Passivation erosion [1 ≤ Kc/Ke < 10] 
Erosion passivation [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Passivation dominated [Kc/Ke ≥ 10]
Passivation erosion [1 ≤ Kc/Ke < 10] 
Erosion passivation [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 
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(b)  

 

 

 

 (c)  

Figure 10: Erosion‐corrosion maps for the outer surface of (Fe) elbow‐pipe at pH=7, particle size=1000 [µm] and 

concentration =22.88% (vf= 0.1) for EAP: (a) ‐0.75 (b) ‐0.5 (c) ‐0.25 V[SCE]. 

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Dissolution dominated [Kc/Ke ≥ 10]
Dissolution erosion [1 ≤ Kc/Ke < 10] 
Erosion dissolution [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 

Passivation dominated [Kc/Ke ≥ 10]
Passivation erosion [1 ≤ Kc/Ke < 10] 
Erosion passivation [0.1 ≤ Kc/Ke <1] 
Erosion dominated [0 ≤ Kc/Ke <0.1] 
No erosion 
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 (a)  

 

(b)  

 

(c)  

 

(d)  

Figure 2: Erosion‐corrosion wastage maps for the outer surface of elbow‐pipe at pH=5, EAP =‐0.6 V[SCE], particle 

size=1000 [µm] and concentration =22.88% (vf= 0.1) for: (a) Fe. (b) Ni. (c) Cu. (d) Al. 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 
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(b)  
 
 

(c)  
 
 

(d)  
Figure 3: Erosion‐corrosion wastage maps for the outer surface of elbow‐pipe at pH=7, EAP =‐0.6 V[SCE], particle 

size=1000 [µm] and concentration =22.88% (vf= 0.1) for: (a) Fe. (b) Ni. (c) Cu. (d) Al. 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 
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          (a)  

 
 

(b)  
 
 

(c)  
 

(d)  
Figure 4: Erosion‐corrosion wastage maps for the outer surface of elbow‐pipe at pH=9, EAP =‐0.6 V[SCE], particle 

size=1000 [µm] and concentration =22.88% (vf= 0.1) for: (a) Fe. (b) Ni. (c) Cu. (d) Al. 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 

High [Kec ≥ 10]     [mm year‐1]
Medium [1 ≤ Kec < 10] 
Low [0.1 ≤ Kec <1] 
No erosion 
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Table 1: Properties for pure metals selected and their passive films 

  


