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MATHEMATICAL MODELLING OF INTERNAL HIV DYNAMICS

Nirav dalal, David greenhalgh and Xuerong mao

Department of Statistics and Modelling Science
Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, U.K.

Abstract. We study a mathematical model for the viral dynamics of HIV
in an infected individual in the presence of HAART. The paper starts with
a literature review and then formulates the basic mathematical model. An
expression for R0, the basic reproduction number of the virus under steady
state application of HAART, is derived followed by an equilibrium and stability
analysis. There is always a disease-free equilibrium (DFE) which is globally
asymptotically stable for R0 < 1. Deterministic simulations with realistic
parameter values give additional insight into the model behaviour.

We then look at a stochastic version of this model and calculate the proba-
bility of extinction of the virus near the DFE if initially there are only a small
number of infected cells and infective virus particles. If R0 ≤ 1 then the system
will always approach the DFE, whereas if R0 > 1 then some simulations will
die out whereas others will not. Stochastic simulations suggest that if R0 > 1
those which do not die out approach a stochastic quasi-equilibrium consisting
of random fluctuations about the non-trivial deterministic equilibrium levels,
but the amplitude of these fluctuations is so small that practically the system
is at the non-trivial equilibrium. A brief discussion concludes the paper.

1. Introduction. AIDS, or Acquired Immune Deficiency Syndrome, is caused by
the Human Immunodeficiency Virus (HIV). First reported in 1981 in the United
States, AIDS has become a major worldwide epidemic. By killing or damaging
cells of the immune system, HIV progressively destroys the body’s ability to fight
infections. Individuals diagnosed with AIDS are susceptible to life-threatening in-
fections, which do not cause illness in healthy people [18].

UNAIDS and the WHO estimated that between 36 and 44 million people around
the world were living with HIV in December 2004. It was estimated that during
2004, between 4.3 and 6.4 million people were newly infected with HIV and between
2.8 and 3.5 million people with AIDS died. Sub-Saharan Africa remains by far the
worst-affected region, with 23.4 million to 28.4 million people living with HIV at the
end of 2004. Just under two thirds of all people living with HIV are in sub-Saharan
Africa, as are more than three quarters of all women living with HIV [1].

Over the years mathematical models using differential equations have been used
to gain an understanding of HIV viral dynamics. The models have evolved over time,
including more parameters as we gain more understanding of the disease. One of the
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benefits of using these models is that it helps us in identifying important parameters
and factors which have dominant effect on the development, transmission and spread
of the disease. This gives a better understanding for development of treatment
strategies and we can draw biologically relevant interpretations.

In this paper we shall study a mathematical model for HIV internal viral dy-
namics. HIV viral dynamics is defined as the interaction of the human immune
system with HIV. Infection with HIV causes depletion of CD4 T cells, also known
as the helper T cells. CD4 T cells play a central role in our immune system. They
are involved in protecting against viral, fungal and protozoal infections. These cells
normally orchestrate the immune response, signalling other cells in the immune sys-
tem to perform their special functions [18]. The depletion of CD4 T cells plays a
pivotal role in the degeneration of the immune system in HIV infected individuals.

Two types of HIV infect humans: HIV-1 and HIV-2. HIV-1 is the more vir-
ulent and easily transmitted, and is the source of the majority of HIV infections
throughout the world. Various methods have been suggested to effectively tackle
HIV-1. Early detection and treatment of the disease is one of them [5]. Treatment
with a single drug is usually not effective in containing the virus. However individ-
uals infected with HIV can be treated with a combination of antiretroviral drugs.
This is known as highly active antiretroviral therapy (HAART). HAART works by
reducing the HIV viral load in the plasma (usually measured in the blood) to an
undetectable level. This delays the onset of the debilitating and ultimately fatal
symptoms of AIDS for a very long time, perhaps indefinitely. Nowadays HAART
is usually effective but it is expensive, can involve a complicated medication regime
including many drugs and has unpleasant side effects. Moreover as HIV mutates
rapidly resistance is an increasing problem. Treatment with HAART greatly affects
the HIV internal viral dynamics. Viral dynamics under the influence of HAART
has been a topic of some major research work recently [2], [4], [6] and [29].

In the past mathematical models have been an important tool in modelling viral
dynamics. Several models have already been developed to describe the internal viral
dynamics of HIV-1 infection within an individual. Bonhoeffer et al. [5] started with
a basic model and went on to include the development of drug resistant virus.
Work has also been done on characterising HIV-1 dynamics incorporating virus
resistance [21]. Kamina et al. [14] have worked on a stochastic model for early HIV-
1 population dynamics based on a multi-dimensional diffusion process. Tuckwell
and Le Corfec [26] use a system of stochastic differential equations to model virus
dynamics. The model was formed to model the initial stages of infection. The
aim was to model the intrinsic variability in HIV-1 growth and to explore effects of
perturbation in the parameter values. Wick and Self [31] used a branching process
to model the early events in HIV-1 infection and study the influence that the time
of appearance of virus specific antibodies or the administration of antiretroviral
drugs has on probability of progression to chronic infection. One set of stochastic
models have looked at the effects of increasing variability among viral strains, as a
means of escaping control by the immune system in progression to AIDS [19, 20].
Vergu et al. [17] showed the impact of viral diversity on the immune response
and disease dynamics. Nelson et al. [17] included less than perfect drug effects
and a delay in the initiation of virus production. A system of delay differential
equations was used to model the system. It is widely accepted that HAART leads
to maintenance of low levels of viral load. It is important to identify the factors
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which lead to depletion of HIV-1 virus under HAART. Wu et al. [32] described
the reasons for the decay of HIV-1 virus in terms of decay rates. They observed
that in persons with moderately advanced HIV-1 infection treated with HAART,
there is significant inter-subject variability in the decay rates of HIV-1 virus. These
differences were not related to reported or measurable differences in adherence or
drug levels. Stafford et al. [25] suggested that cytotoxic T lymphocyte (CTL)
destruction of productively infected cells and suppression by CD8+ T cell antiviral
factor (CAF) are responsible for lowering the viral load.

The main aim of this paper is to improve existing mathematical models to de-
scribe internal HIV-1 viral dynamics in the presence of HAART treatment. We
start by formulating the model which includes drug treatment effects into the basic
model developed by Bonhoeffer et al. [5] and identify the possible equilibria. The
basic reproductive number R0 is a key parameter of the model. We perform a global
stability analysis and supplement our theoretical results by numerical simulations
of the model. We look at stochastic effects and the probability of extinction in the
model. Again our theoretical results are supplemented by numerical simulations. A
brief discussion concludes the paper.

2. Model formation. The basic model of Bonhoeffer et al. [5] which describes
HIV-1 viral dynamics is given by the following set of differential equations:

ẋ(t) = λ− dx − βxv,

ẏ(t) = βxv − ay,

and v̇(t) = ky − uv.

Here x represents the number of uninfected cells, y the number of infected cells
and v the number of virus particles at time t. λ is the total rate of production of new
uninfected cells per unit time, d, a and u the per capita death rates of uninfected
cells, infected cells and virus particles respectively. Each infected cell produces free
virus particles at rate k per unit time. Infected cells are produced from uninfected
cells and free virus particles at total rate βxv per unit time. Bonhoeffer et al. [5]
defined the basic reproductive number

R0 =
βλk

adu

to be the expected number of secondary virus particles produced by a single new
virus particle entering a population of uninfected cells at equilibrium with neither
infected cells nor virus present. For the above model two equilibria existed. The
disease free equilibrium (DFE) was

x = x̂ =
λ

d
, y = ŷ = 0, v = v̂ = 0

and the endemic equilibrium was given by

x = x∗ =
au

βk
, y = y∗ =

(R0 − 1)du

βk
, v = v∗ =

(R0 − 1)d

β
.

They went on to include the dynamics of resistant strains into the basic model.
The authors were of the opinion that treatment should start as early as possible
and with as many drugs as clinically possible. They also estimated the length of the
treatment required to eliminate or minimise the viral load. Ways were suggested to
reduce the chance of emergence of multiple drug resistant virus.
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Nowak et al. [21] also included strains of resistant virus in their model. Analytical
approximation for the rate of emergence of resistant virus was studied in this paper.
The decline of wild-type virus and the rise of resistant mutant virus in different
compartments of the virus populations such as free plasma virus, cells infected
with actively replicating virus, long lived infected cells and cells carrying defective
provirus was studied. The aim of the paper was to determine the rate of production
of plasma virus by cells, half life of infected cells and half life of free plasma virus.

Culshaw and Ruan [9] obtained a restriction on the number of viral particles
released per infectious cell in order for infection to be sustained. They also obtained
sufficient conditions on the parameters for the stability of the infected steady state.
After introducing a time delay into the model which described the time between
infection of a CD4 T cell and the emission of viral particles on a cellular level,
they derived that the same restriction on the number of viral particles released per
infectious cell is required. Stability conditions for the infected steady state in terms
of the parameters and independent of the delay were obtained.

Mittler et al. [16] analysed a model for the interaction of HIV-1 virus with target
cells and included a time delay between initial infection and the formation of pro-
ductively infected cells. They were of the opinion that it was theoretically possible
to estimate not only the viral clearance rate and the death rate of productively
infected cells, but also the mean and the variance of the infection delay. They
obtained an analytical solution for a particular case of delay in which the infec-
tion delay conforms to a gamma distribution. They also showed using simulated
datasets that the non-linear least-square regression methods used to analyse clini-
cal data can, in principle, extract viral dynamic parameters from models in which
distributed delays are present.

Huang et al. [12] developed a viral dynamic model to evaluate how time-varying
drug exposure and drug susceptibility affected antiviral response. Plasma concen-
trations were modelled using a standard pharmacokinetic one-compartment open
model with first order absorption and elimination as a function of fixed individual
pharmacokinetic parameters and dose times. They observed that poor adherence
may result in early viral rebound and a higher set point after treatment failure.
Particular patterns of non-adherence affect responses differentially. Also longer se-
quences of missed doses increase the chance of treatment failure and accelerate the
failure.

There does not seem to be much work which provides analytical conditions for
decay in viral load levels. We wish to provide some insight about the parameters and
conditions which would have major ramifications on the viral load levels. Tuckwell
and Wan [27] analyse a very similar model to ours. However, they do not consider
HAART in their model. In addition, we provide a global stability proof and a
probabilistic approach for this model.

We propose the following three dimensional model to describe the viral dynamics
in the presence of HIV-1 infection and HAART:

ẋ(t) = λ− δx− (1 − γ)βxv, (1)

ẏ(t) = (1 − γ)βxv − ay, (2)

and v̇(t) = (1 − η)Nay − uv − (1 − γ)βxv (3)

with suitable initial conditions.
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The above model also includes the effect of HAART. HAART is generally a
combination of reverse transcriptase inhibitor (RTI) drugs and protease inhibitor
(PI) drugs. RTI drugs are designed to prevent the conversion of HIV RNA to DNA
in early stages of HIV replication. Thus RTI drugs block conversion of uninfected
cells to infected cells. PI drugs are designed to intervene in the last stage of the
virus replication cycle to prevent HIV from being properly assembled, and thus
cause the newly produced virus to be noninfectious [10]. The treatment effects are
accordingly incorporated in the above model.

The variables and parameters in the model are described as follows:

x(t) is the concentration of uninfected cells;
y(t) is the concentration of infected cells;
v(t) is the concentration of virus particles;
(1-γ) is the reverse transcriptase inhibitor drug effect;
(1-η) is the protease inhibitor drug effect;
λ is the total rate of production of healthy cells per unit time;
δ is the per capita death rate of healthy cells;
β is the transmission coefficient between uninfected cells and infective virus par-

ticles;
a is the per capita death rate of infected cells;
N is the average number of infective virus particles produced by an infected cell

in the absence of HAART during its entire infectious lifetime;

and

u is the per capita death rate of infective virus particles.

Note that in the absence of HAART, assuming that the lifetime of an infected
cell has an exponential distribution each infected cell is infectious for time (1/a).
During its total infectious lifetime it produces (Na)/a = N virus particles.

Also observe that when a single infective virus particle infects a single uninfected
cell the virus particle is absorbed into the uninfected cell and effectively dies. Hence
the term (1−γ)βxv appears in equation (3) as well as equations (1) and (2). Perelson
and Nelson [23] ignored the term (1− γ)βxv in equation (3). The arguments given
were first that in examining data from patients with different T-cell counts there was
no statistically significant correlation between the T-cell count and the clearance
rate. However this may not always be true for all patients in all situations. The
second argument given is that if x is approximately constant then the clearance
rate can be redefined. As we wish to examine a dynamic model where x may vary
it is better to have this term in the model. Also given that there is a biological
justification for this term there is no harm done by including it as the model will be
more accurate with this term in than not. One of the models studied by Tuckwell
and Wan [27] also includes this term as does a stochastic model by Tuckwell and
Le Corfec [26]. However Tuckwell and Le Corfec’s work is relevant only to the early
stages of HIV infection.

3. Equilibrium and stability results. We begin our analysis by determining
the equilibria that exist and the conditions for their existence. We then move on to
investigating the conditions under which those equilibria are possible. This would
give us an insight into the long-term behaviour of our model.
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For our model the equilibrium with no infected cells and no infected virus parti-
cles is

(x, y, v) =

(

λ

δ
, 0, 0

)

.

Consider a single infected virus particle entering this equilibrium. Such a particle

is infectious for time (u + (1 − γ)β λ
δ
)−1 and during this time infects

(1−γ)β λ

δ

u+β λ

δ
(1−γ)

=

(1−γ)βλ
δu+βλ(1−γ) uninfected cells which each survive for average time 1

a
and during this

time produce infective virus particles at rate (1−η)Na. Hence the basic reproductive
number, defined as the number of secondary infective virus particles caused by a
single infective virus particle entering this equilibrium is

R0 =
βλ(1 − γ)

(δu + βλ(1 − γ))
×

(1 − η)Na

a
=

(1 − γ)βλN(1 − η)

(δu + βλ(1 − γ))
.

Note also that a similar argument shows that R0 can be interpreted as the expected
number of secondary cells infected by a single infected cell entering the DFE.

Theorem 3.1. The model (1)-(3) describing the viral dynamics has a unique DFE
which is globally asymptotically stable for R0 < 1.

Proof. Clearly our model has a unique DFE
(

x, y, v
)

=
(

λ
δ
, 0, 0

)

. Suppose that

R0 < 1. We shall show that (x(t), y(t), v(t)) →
(

λ
δ
, 0, 0

)

as t → ∞. We divide the
proof into three parts. We first show that limsup x(t) ≤ λ/δ, then we prove that
y(t), v(t) both tend to zero, then that x(t) → λ/δ.

From (1) we get

dx(t)

dt
≤ λ− δx(t).

Hence we can write

x(t) ≤ e−δt
(

x(0) +

∫ t

0

λeδsds

)

which implies that

x(t) ≤ e−δtx(0) +
λ

δ
(1 − e−δt).

Therefore

lim sup
t→∞

x(t) ≤
λ

δ
.

Next we show that y and v tend to zero as t → ∞. For ψ > 0 consider d
dt

(y+ ψv).

d

dt
(y(t) + ψv(t)) = [(1 − γ)βx(t)v(t) − ay(t)]

+ψ[(1 − η)Nay(t) − uv(t) − (1 − γ)βx(t)v(t)],

= [(1 − ψ)(1 − γ)βx(t) − uψ]v(t) + [Na(1 − η)ψ − a]y(t).

Now choose ǫ1 small enough so that,

1 >
(1 − γ)β(λ

δ
+ ǫ1)N(1 − η)

(1 − γ)β(λ
δ

+ ǫ1) + u
. (4)
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We can do this because the right hand side of (4) tends to R0 < 1 as ǫ1 → 0. Note
that with this value of ǫ1

min

(

1,
1

(1 − η)N

)

>
(λ
δ

+ ǫ1)(1 − γ)β

(1 − γ)β(λ
δ

+ ǫ1) + u
.

So choose ψ with

min

(

1,
1

(1 − η)N

)

> ψ >
(λ
δ

+ ǫ1)(1 − γ)β

(1 − γ)β(λ
δ

+ ǫ1) + u
.

There exists t0 such that t ≥ t0 implies that x(t) ≤ λ
δ

+ ǫ1. Hence for t ≥ t0

d

dt
(y(t) + ψv(t)) ≤ −ξ1v(t) − ξ2y(t)

where ξ1 = uψ – (1 − ψ)(1 − γ)β(λ
δ

+ ǫ1) > 0 and ξ2 = a – (1 − η)Naψ > 0.

Write π = y + ψv. If π(0) = 0 then y(0) = v(0) = 0 so y(t) = v(t) = 0 for all t.
If π(0) > 0 then it is straightforward to show that y(t) and v(t) are strictly positive
for t > 0. If π(0) > 0 then we can write

d

dt
π(t) ≤ −ξ3π(t),

where ξ3 = min
(

ξ1
ψ
, ξ2

)

> 0. This implies that

0 ≤ π(t) ≤ π(t0)e
−ξ3(t−t0).

So 0 ≤ y(t) ≤ π(t0) e
−ξ3(t−t0), hence y(t) → 0 as t → ∞. Similarly v(t) → 0 as t

→ ∞. On the other hand if π(0) = 0 then it is straightforward that y(t) and v(t)
→ 0 as t → 0.

The final step is to show that x(t) → λ/δ as t → ∞. Now given ǫ2 > 0 there
exists t1 such that ǫ2 > (1 − γ)βv for t ≥ t1. Hence for t ≥ t1

dx(t)

dt
≥ λ− (δ + ǫ2)x(t). (5)

Multiplying equation (5) by e(δ+ǫ2)t and integrating, it is straightforward to show
that

lim inf
t→∞

x(t) ≥
λ

δ + ǫ2
.

But ǫ2 > 0 is arbitrary so letting ǫ2 → 0 we deduce that lim inft→∞ x(t) ≥ λ
δ
. Hence

λ
δ
≥ lim supt→∞

x(t) ≥ lim inft→∞ x(t) ≥ λ
δ
. So x(t) → λ

δ
as t → ∞. The proof is

thus complete.

Tuckwell and Wan [27] analysed a functionally similar model, but without HAART,
corresponding to γ = η = 0 in our model. If in our model we define new parameters
k = (1 − γ)β, c = (1 − η)Na, s = λ, µ = δ and γ̃ = u and substitute the new
parameters into our model we get exactly Tuckwell and Wan’s model. Hence by
using this reparameterisation we can apply their analytical results directly to our
model. Doing this we deduce that the threshold condition ks(c − a)/µaγ̃ < 1 in
Tuckwell and Wan’s parameters becomes (1 − γ)βλ((1 − η)N − 1)/δu < 1 in our
parameters (i.e. R0 < 1). Applying Tuckwell and Wan’s results to our model we
deduce that for R0 < 1 there is only the DFE which is locally asymptotically stable
(LAS). For δu < (1 − γ)βλ((1 − η)N − 1) (R0 > 1) the DFE is unstable and there



8

is a unique non-trivial equilibrium with infected cells and virus particles present
which is LAS. In brief summary for our model for R0 ≤ 1 there is only the DFE
which is LAS for R0 < 1. There is a unique equilibrium with infected cells and
virus particles present if and only if R0 > 1 and this equilibrium is LAS when it
exists. Moreover the DFE is unstable for R0 > 1.

Theorem 3.1 extends the results of [27] in that it shows global not local stability
of the DFE for R0 < 1 using completely different mathematical methods than [27].
It also incorporates the effect of HAART and identifies R0 as the basic reproduction
number of the virus (alternatively the invasion of infected cells) into the DFE.

4. Deterministic simulations. As we have seen our analytical results suggest
the existence of two equilibria for the system (1) - (3). An equilibrium with only
uninfected cells present and no infected cells or virus particles always exists and
is globally asymptotically stable for R0 ≤ 1 and is unstable for R0 > 1. A non-
trivial equilibrium with uninfected cells, infected cells and virus particles exists for
R0 > 1 and is locally stable when it exists. We now use simulations with realistic
parameter values to explore the likely behaviour of the model further. The numerical
integration package SOLVER was used to integrate the differential equations. We
required two sets of parameter values for the simulations. One set was to be used
to get a value of R0 < 1 and the other one for R0 > 1. Hence the parameter values
were sourced from different publications so that they would be realistic but need
not be significantly altered from the published values.

Our parameter values have all been taken from published literature. λ, β, δ, u,
a have all been taken from [5] and N from [6]. The parameter values for Figure 1
are β = 1 × 10−10 day−1 dm3, λ = 107 day−1 dm−3, N = 100 per cell, γ = 0.2, η
= 0.2, a = 0.5 day−1, δ = 0.1 day−1 and u = 5 day−1. The initial values were x(0)
= 10000 dm−3, y(0) = 1000 dm−3 and v(0) = 1000 dm−3. These parameter values
give an R0 value of 0.1278.

As can be seen from Figure 1, for R0 ≤ 1 the system converges to the equilibrium
with only uninfected cells present. The infected cells and the infective virus particles
die out and the number of uninfected cells converge to λ/δ. For realistic parameter
values even with large initial numbers of cells and virus particles the number of
infected cells dropped to 10% of its initial value in around six days. The number of
virus particles rises sharply in the beginning but quickly peaks and drops to 10% of
its value in approximately nine days. The level of both was virtually zero after only
ten days. The number of susceptible cells took slightly longer to reach its very large
equilibrium value of 1× 108 susceptible cells, but had reached 90% of this value by
roughly 25 days and the equilibrium level had virtually been reached after 45 days.
The simulations were repeated for a large number of different starting values and in
each case the system approached the equilibrium with only uninfected cells present.

For Figure 2 the parameter values λ, a, u have been taken from [17] and β, δ are
taken from [21]. The value of N remains the same. The values are β = 1 × 10−8

day−1 dm3, λ = 106 day−1 dm−3, N = 100 per cell, γ = 0.2, η = 0.2, a = 0.5
day−1, δ = 0.01 day−1 and u = 3 day−1. These parameter values give an R0 value
of 16.8421. The initial values were x(0) = 108 dm−3, y(0) = 0 dm−3 and v(0) =
1 dm−3. The system converges to the equilibrium where uninfected cells, infected
cells and infective virus particles are all present, x → x∗, y → y∗ and v → v∗ as
t → ∞. After around seven days there is a very sharp rise in both the number
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Figure 1. Deterministic HIV viral dynamics model in vivo ap-
proaches the disease-free equilibrium for R0 < 1

of infected cells and virus particles which causes a corresponding sharp decrease
in the number of susceptible cells. After this the infected cells and virus particles
decline and then tend to their equilibrium values. This equilibrium is reached very
quickly after about only 60 days. This simulation was repeated with a variety of
different initial conditions and in each case x → x∗, y → y∗ and v → v∗ as t →
∞ suggesting that provided that at least one uninfected cell or one infective virus
particle is initially present the system will tend to this equilibrium. In [27] it is
shown that for the model without HAART that this equilibrium is LAS when it
exists. Our results strengthen these analytical results in two ways:

First our simulations suggest that the equilibrium with infected cells and virus
particles is actually globally stable when it exists in the sense that if R0 > 1 and at
least one infected cell or virus particle is initially present then the system of cells
and virus particles will tend to this equilibrium.

Second the model has been extended to include the effect of HAART. Usually
initially in an infection individuals are not treated with HAART but the extension
to include HAART is still useful, as some individuals such as healthcare workers
exposed to needlestick injuries will be on HAART from the beginning. Moreover
many other individuals will be diagnosed later and start HAART then. The model
is then applicable to the course of their internal HIV viral dynamics both before
HAART is started, and with suitably modified parameters, after HAART is started.
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Figure 2. Deterministic HIV viral dynamics model in vivo ap-
proaches the endemic equilibrium for R0 > 1

5. Probabilistic approach. While deterministic models have their uses a differ-
ent way of looking at the problem of HIV internal viral dynamics would be to use
a stochastic model. This can tell us about quantities such as the probability of ex-
tinction which deterministic models cannot. A straightforward stochastic analogue
of the deterministic model is to assume that the individual stochastic events occur
according to a Poisson process with the corresponding rate being the same as in the
deterministic model. Further details are given below. Then we can use standard
branching process theory to calculate the probability of extinction of the virus.

Wick and Self [31] also use a branching process to model the HIV virus dynamics.
The difference between their and our work lies in the assumption of ‘no competition
or cooperation’ between the cells and virus particles in Wick and Self. We do not
make any such assumption. Also their results are mainly numerical.

When an individual is initially infected with HIV, the usual situation is that
they will not be treated with HAART. However there are cases where an exposed
individual will be treated with HAART, for example healthcare workers exposed to
needlestick injuries [7, 13]. Hence we give the theoretical results with HAART in-
cluded and then state them without HAART. In the numerical examples we suppose
that HAART is not given, as this is the more usual situation.

We are interested in estimating the probability that the virus invades the DFE.
To calculate this we shall assume that the number of susceptible cells is kept fixed at
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the deterministic equilibrium level λ/δ. This approximation will be valid whilst the
number of virus particles and infected cells remains small. This approximation will
be valid near the DFE and is a similar approximation to that used to calculate the
probability of a major epidemic outbreak in Whittle’s simple stochastic epidemic
model [30]. In that paper it is assumed that the number of susceptibles remains
constant and the number of infectives is a stochastic birth and death process in
order to calculate the probability of a major epidemic outbreak. Once the stochastic
process moves away from the DFE this approximation will no longer be valid but
it can be used to estimate the probability that the virus and infected cells invade
the DFE.

The stochastic model assumes that the probability that each single infected cell
dies in [t, t+ δt] is aδt+o(δt). The probability that each single virus particle dies in
[t, t+δt] is uδt+o(δt). Each virus particle independently infects each susceptible cell
in [t, t+δt] with probability (1−γ)βδt+o(δt). When this happens the virus particle
is absorbed into the infected cell. Also each infected cell produces a virus particle
in [t, t+ δt] with probability (1− η)Naδt+ o(δt). All infected cells, virus particles,
death processes, infections and production of new virus particles are independent.

The translation of the deterministic model into the stochastic model is not a
unique process. As virus particles are produced continuously by infected cells we
have chosen to assume that each infected cell produces a virus particle in [t, t+ δt]
with probability (1 − η)Naδt + o(δt), and otherwise produces no virus particles
in [t, t + δt]. One possible alternative assumption might be to assume that each
infected cell simultaneously produces N virus particles in [t, t+ δt] with probability
(1 − η)aδt + o(δt) and otherwise produces no virus particles in [t, t + δt]. This
alternative would lead to a qualitatively different solution.

We consider the stochastic model at the equilibrium consisting only of uninfected
cells x = λ/δ, y = 0 and v = 0 and consider an initial small infective population

of ã infective virus particles and b̃ infected cells entering this equilibrium, where ã

and b̃ are small. Define q1 = (1−γ)βλ
(1−γ)βλ+uδ and q2 = (1−η)N

(1−η)N+1 . q1 is the probability

that a single infective virus particle at this equilibrium infects a cell before the virus
particle ceases to be infective. q2 is the probability that a single infected cell at the
above equilibrium creates one infective virus particle before it dies. Note that

R0 = q1

(

q2
1 − q2

)

.

Theorem 5.1. Consider a small initial infective population of ã infective virus
particles and b̃ infective cells entering the equilibrium consisting only of uninfected
cells. The probability that the population of infective virus particles and infective
cells will go extinct without creating a major outbreak is 1 for R0 ≤ 1 and is

(

1 − q1q2
q2

)ã (

1 − q2
q1q2

)b̃

for R0 > 1.

Proof. Suppose first that one infective virus particle enters the equilibrium consist-
ing only of uninfected cells. This particle either dies out at a rate u or ceases to be
infective by infecting an uninfected cell at rate (1−γ)β λ

δ
. Let X denote the number
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of initially uninfected cells infected by the virus particle before it either loses its
infectivity or dies. Then

P (X = 0) = 1 − q1,

P (X = 1) = q1.

Recall that when a single infective virus particle infects a single uninfected cell the
virus particle is absorbed into the uninfected cell and effectively dies. Hence there
are only two possible cases that can happen. The probability generating function
(p.g.f.) of X is given by

GX(s) = E(sX),

= 1 − q1 + q1s.

Now suppose that a single infected cell enters the equilibrium consisting only of
uninfected cells. Let Y be the number of infected virus particles created before it
dies. Then for k = 0, 1, 2, 3, . . .

P (Y = k) = qk2 (1 − q2).

Hence the p.g.f. of Y is

GY (s) =
1 − q2
1 − q2s

if |s| < 1.

Now let Z1 denote the number of secondary infective virus particles infected directly
by one initial infective virus particle entering the equilibrium consisting only of
uninfected cells. The p.g.f. of Z1 is given by

GZ1
(s) = E(sZ1)

= 1 − q1 + q1E[sZ1 |X1 = 1]

= 1 − q1 + q1

(

1 − q2
1 − q2s

)

,

where X1 is the number of cells infected by this infective virus particle. The prob-
ability of extinction is given by the smallest root of s = GZ1

(s) in [0,1], [8]. Hence
we get

(s− 1)((1 − q1q2) − q2s) = 0.

We obtain the two roots of the above equation as 1 and 1−q1q2
q2

. If R0 ≤ 1, 1−q1q2
q2

≥ 1 and the probability of extinction is 1, whereas if R0 > 1, 1−q1q2
q2

< 1 and the

probability of extinction is 1−q1q2
q2

.

Similarly let Z2 be the number of secondary infective cells produced by a single
infective cell entering the DFE.

GZ2
(s) = E(sZ2)

= 1 − q2 + q2(1 − q2)E[sz2 |Y1 = 1] + q22(1 − q2)E[sz2 |Y1 = 2]

+...+ qk2 (1 − q2)E[sz2 |Y1 = k] + ...

= 1 − q2 + q2(1 − q2)(1 − q1 + q1s) + q22(1 − q2)(1 − q1 + q1s)
2

+...+ qk2 (1 − q2)(1 − q1 + q1s)
k + ...

=
1 − q2

1 − q2 + q1q2 − q1q2s
.

Here Y1 is the number of infective virus particles produced by this infective cell.
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Again solving s = GZ2
(s) we get

(s− 1)((1 − q2) − q1q2s) = 0.

Hence if R0 ≤ 1, 1−q2
q1q2

≥ 1 and the probability of extinction is 1, whereas if R0 >

1, 1−q2
q1q2

< 1 and the probability of extinction is 1−q2
q1q2

.

So the probability of ultimate extinction of a small population of ã infective virus
particles and b̃ infected cells, entering the DFE is 1 if R0 ≤ 1 and

(

1 − q1q2
q2

)ã (

1 − q2
q1q2

)b̃

if R0 > 1. The proof is thus complete.

In the more practically useful case where HAART is not present the same formula
holds where q1 = βλ

βλ+δu and q2 = N
N+1 .

6. Stochastic simulations. Usually newly infected individuals will not be treated
with HAART, but occasionally they will be. Hence we keep HAART in theoretical
calculations but omit them in the following numerical examples and simulations.
We have looked at the simulation of the stochastic system with the same set of
parameter values as the deterministic system. The results look very similar.

According to the analytical results in the previous section the probability of
extinction of ã initial virus particles and b̃ initial infected cells is 1 for R0 ≤ 1 and
is

(

1 − q1q2
q2

)ã (

1 − q2
q1q2

)b̃

for R0 > 1. To confirm these observations we carried out stochastic simulations.
The simulations assume that the parameter values are the same fixed values as
in the deterministic simulations but that events occur at random times given by
an exponential distribution with the appropriate rate as described in the detailed
description of the stochastic model given in Section 5. Our simulations program
was written in FORTRAN and comprehensively verified using detailed output from
a large number of runs.

The results obtained were as expected. For those simulations where the number
of infected cells and virus particles died out (including those with R0 ≤ 1) the
stochastic effects were clearly visible on the trajectories of the number of virus
particles and the infected cells, but although stochastic effects were present in the
trajectory of uninfected cells, the scaling used meant that this trajectory looked
much smoother and more like the deterministic trajectory. Figure 3 shows such a
simulation with parameters and initial values as in Figure 1 except γ = η = 0. For
R0 > 1 we performed simulations with parameters and initial values as in Figure
2 except γ = η = 0. Some of these simulations died out and some did not. Those
simulations which did not die out tended to the deterministic endemic equilibrium
values. Although stochastic effects could be seen if these trajectories were plotted
on a very fine scale those trajectories which took off looked practically identical to
the deterministic ones in Figure 2, if the vertical axis scaling for Figure 2 was used.

For two sets of parameter values we also calculated the probabilities that the
simulations died out starting with one infective virus particle entering the stochastic
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Figure 3. Stochastic process simulation of HIV viral dynamics
model in vivo approaches the disease-free equilibrium for R0 < 1

Parameter Starting Calculated Prob. 95% Observed No.
Set Values of Extinction C.I. Extinctions
1 y = 0, v = 1 0.7600 (733,787) 750

y = 1, v = 0 0.0400 (28,52) 40
2 y = 0, v = 1 0.9657 (954,977) 957

y = 1, v = 0 0.2260 (200,252) 231

Table 1. Calculated extinction probabilities, 95% confidence in-
tervals and observed number of 1000 simulations which go extinct
for two parameter sets

DFE, that is y = 0, v = 1, and one infected cell entering the stochastic DFE, that
is y = 1, v = 0. One set was the values used for Figure 2. The only change
was the change in treatment effects, that is γ = η = 0. For the second set of
values λ, u were taken from [17], β from [21], δ from [12] and a from [6]. N
remained the same. The values were β = 1 × 10−8 day−1 dm3, λ = 106 day−1

dm−3, γ = η = 0, a = 0.7 day−1, δ = 0.072 day−1, u = 3 day−1 and N = 100.
The theoretically calculated probabilities of extinction were checked numerically
by running one thousand independent simulations for each starting value. A 95%
confidence interval for the number of the thousand simulations to go extinct was
calculated using the Normal approximation to the Binomial. In both cases the
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actual number of simulations which went to extinction lay in the confidence interval.
The numbers are given in Table 1.

7. Discussion of results. We have discussed an ordinary differential equation
model which describes the internal HIV viral dynamics in the presence of treatment
such as antiretroviral drugs. We derived an expression for the basic reproductive
number R0 and found that if R0 was less than or equal to one then the equilibrium
with only uninfected cells was the unique equilibrium and was globally asymptoti-
cally stable. This paper gives analytical results for the model (1)-(3). Most other
work in this area concentrates on obtaining numerical solutions to the problem un-
der consideration, which depend on parameter values used [27, 31]. Instead we have
established some concrete mathematical results for our model as these will be true
for all possible parameter values.

Some authors have previously neglected the term (1 − γ)βxv in the model in
equation (3) as numerically insignificant. This was motivated by statistical studies
on viral clearance rates in patients. However this term is biologically realistic as
each time that the virus infects a cell it must enter that cell, which means that
it cannot infect any more cells. Moreover other authors have also included this
term [27, 31]. It is of interest to include this term in the model as it is biologically
sensible and it may have an effect on the dynamics in some situations and for certain
parameter values.

We have also taken a stochastic approach in this paper. The processes of virus
replication and the increase of infected cells are highly interdependent processes.
Separation of one from the other is not possible. Our branching process approx-
imation reflects this interdependence. These results give us the condition for the
eradication of the virus and the infected cells in terms of the parameters of the
model.

Some recent research has suggested the presence of latent reservoirs in the body in
which HIV-1 persists even after the administration of HAART [15, 24, 22]. These
reservoirs are not biologically significant when the level of virus in the body is
high but become significant at low virus loads. They are not important in the
deterministic model where viral loads are high. These might possibly be significant
when considering the probability of extinction of the virus, however the timescale
on which these reservoirs are established is not yet clear.

In summary our paper has extended the results in [27] to include the effect
of HAART. We have additionally shown that the threshold value derived in [27]
corresponds to the basic reproduction number, R0, even when the model includes
the effect of HAART. For the deterministic model both with and without HAART
for R0 ≤ 1 there is only the DFE which is LAS if R0 < 1. For R0 > 1 the
DFE is unstable and there is a unique equilibrium with infected cells and virus
particles present which is LAS. Moreover we have shown global stability of the
DFE when R0 < 1 which was not shown in [27]. Then we examined the probability
of extinction using a branching process model. We have also obtained numerical
results for both the deterministic and the stochastic versions of this model. The
deterministic simulations suggest that for the deterministic model (either with or
without HAART) if R0 > 1 and at least one infected cell or virus particle is initially
present then the system will tend to the equilibrium with both infected cells and
virus particles present.
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