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Abstract. In this paper, we investigate a Lotka-Volterra system under regime switching

dx(t) = diag(x1(t), . . . , xn(t))[(b(r(t)) + A(r(t))x(t))dt+ σ(r(t))dB(t)],

where B(t) is a standard Brownian motion. The aim here is to find out what happens

under regime switching. We first obtain the sufficient conditions for the existence of global

positive solutions, stochastic permanence, extinction. We find out that both stochastic

permanence and extinction have close relationships with the stationary probability dis-

tribution of the Morkov chain. The limit of the average in time of the sample path of the

solution is then estimated by two constants related to the stationary distribution and the

coefficients. Finally, the main results are illustrated by several examples.
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1 Introduction

The classical Lotka-Volterra model for n interacting species is described by the n-dimensional

ordinary differential equation (ODE)

ẋ(t) = diag(x1(t), . . . , xn(t))[b+ Ax(t)], (1.1)

where

x = (x1, · · · , xn)T ∈ Rn, b = (b1, · · · , bn)T ∈ Rn
+, A = (aij)n×n ∈ Rn×n.

There are many extensive literatures concerned with the dynamics of this model and we

here don’t mention them in details.

Population systems are often subject to environmental noise. It is therefore useful to

reveal how the noise affects the population systems. As we know, there are various types

of environmental noise. First of all, let us consider one type of them, namely the white

noise. Recall that the parameter bi represents the intrinsic growth rate of species i. In

practice we usually estimate it by an average value plus an error which follows a normal

distribution. If we still use bi to denote the average growth rate, then the intrinsic growth

rate becomes

bi → bi + σiḂ(t),

where Ḃ(t) is a white noise, and σi is a positive constant representing the intensity of the

noises respectively. Then this environmentally perturbed system can be described by the

Itô equation

dx(t) = diag(x1(t), . . . , xn(t))[(b+ Ax(t))dt+ σdB(t)], (1.2)

where σ = (σ1, · · · , σn)T , B(t) is an standard Brownian motion with B(0) = 0. As

a matter of fact, population systems perturbed by the white noise have recently been

studied by many authors, for example, [2], [3], [11]-[13], [14]-[17], [19], [21], [22], [24], [25],

[28]. In particular, Mao, Marion and Renshaw [24], [25] revealed that the environmental

noise can suppress a potential population explosion while Mao [21] showed that different

structures of white noise may have different effects on the population systems.

Let us now take a further step by considering another type of environmental noise,

namely, color noise, say telegraph noise (see e.g. [20], [31]). The telegraph noise can be
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illustrated as a switching between two or more regimes of environment, which differ by

factors such as nutrition or as rain falls [7], [30]. The switching is memoryless and the

waiting time for the next switch has an exponential distribution. We can hence model

the regime switching by a finite-state Markov Chain. Assume that there are N regimes

and the system obeys

dx(t) = diag(x1(t), . . . , xn(t))[(b(k) + A(k)x(t))dt+ σ(k)dB(t)], (1.3)

in regime k (1 ≤ k ≤ N), where b(k) = (b1(k), · · · , bn(k))T etc. The switching between

these N regimes is governed by a Markov chain r(t) on the state space S = {1, 2, . . . , N}.

The population system under regime switching can therefore be described by the following

stochastic model (SDE)

dx(t) = diag(x1(t), . . . , xn(t))[(b(r(t)) + A(r(t))x(t))dt+ σ(r(t))dB(t)]. (1.4)

This system is operated as follows: If r(0) = k0, the system obeys equation (1.3) with

k = k0 till time τ1 when the Markov chain jumps to k1 from k0; the system will then obey

equation (1.3) with k = k1 from τ1 till τ2 when the Markov chain jumps to k2 from k1.

The system will continue to switch as long as the Markov chain jumps. In other words,

the SDE (1.4) can be regarded as equations (1.3) switching from one to another according

to the law of the Markov Chain. Each of (1.3) (1 ≤ k ≤ N) is hence called a subsystem

of the SDE (1.4).

Recently, Takeuchi et al. [31] have investigated a 2-dimensional autonomous predator-

prey Lotka-Volterra system with regime switching and revealed a very interesting and

surprising result: If two equilibrium states of the subsystems are different, all positive

trajectories of this system always exit from any compact set of R2
+ with probability one;

on the other hand, if the two equilibrium states coincide, then the trajectory either leaves

from any compact set of R2
+ or converges to the equilibrium state. In practice, two

equilibrium states are usually different whence Takeuchi et al. [31] showed that the

stochastic population system is neither permanent nor dissipative (see e.g. [10] ). This is

an important result as it reveals the significant effect of the environmental noise to the

population system: both its subsystems develop periodically but switching between them

makes them become neither permanent nor dissipative. It is these factors that motivate

us to consider the Lotka-Volterra system subject to both white noise and color noise

described by the SDE (1.4) .
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In this paper, in order to obtain better dynamic properties of the SDE (1.4), we will

show that there exists a positive global solution with any initial positive value under some

conditions in section 2. In the study of population dynamics, permanence and extinction

are two of the important and interesting topics which mean that the population system

will survive or die out in the future, respectively. One of our main aims is to investigate

these properties. In sections 3 and 4, we give the sufficient conditions for stochastic

permanence and extinction which have closed relations with the stationary probability

distribution of the Markov chain. When the SDE (1.4) is stochastically permanent we

estimate the limit of average in time of the sample path of its solution in section 5. Finally,

we illustrate our main results through several examples in sections 6 and 7.

The key method used in this paper is the analysis of Lyapunov functions. This Lya-

punov function analysis for stochastic differential equations was developed by Khasminskii

(see e.g. [18]) and has been used by many authors (see e.g. [1, 9, 13, 22, 26, 27]).

2 Positive and Global Solutions

Throughout this paper, unless otherwise specified, let (Ω, F , {Ft}t≥0, P ) be a complete

probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increas-

ing and right continuous while F0 contains all P-null sets). Let B(t) denote the standard

Brownian motion defined on this probability space. We also denote by Rn
+ the positive

cone in Rn, that is Rn
+ = {x ∈ Rn : xi > 0 for all 1 ≤ i ≤ n}, and denote by R̄n

+ the

nonnegative cone in Rn, that is R̄n
+ = {x ∈ Rn : xi ≥ 0 for all 1 ≤ i ≤ n}. If A is a vector

or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is denoted by

|A| =
√

trace(ATA) whilst its operator norm is denoted by ‖A‖ = sup{|A| : |x| = 1}.

In this paper we will use a lot of quadratic functions of the form xTAx for the state

x ∈ Rn
+ only. Therefore, for a symmetric n × n matrix A, we naturally introduce the

following definition

λ+
max(A) = sup

x∈Rn+,|x|=1

xTAx.

Let us emphasis that this is different from the largest eigenvalue λmax(A) of the matrix

A but λ+
max(A) does have some similar properties as λmax(A) has. It follows straight-

forward from the definition that λ+
max(A) ≤ λmax(A) and xTAx ≤ λ+

max(A)|x|2 for any

x ∈ Rn
+. For more properties of λ+

max(A) please see the Appendix in [3].
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Let r(t) be a right-continuous Markov chain on the probability space taking values

in a finite state space S = {1, 2, . . . , N} with the generator Γ = (γuv)N×N given by

P{r(t+ δ) = v|r(t) = u} =

 γuvδ + o(δ), if u 6= v,

1 + γuvδ + o(δ), if u = v,

where δ > 0. Here γuv is the transition rate from u to v and γuv ≥ 0 if u 6= v while

γuu = −
∑
v 6=u

γuv.

We assume that the Markov chain r(·) is independent of the Brownian motion B(·). It is

well known that almost every sample path of r(·) is a right continuous step function with a

finite number of jumps in any finite subinterval of R̄+. As a standing hypothesis we assume

in this paper that the Markov chain r(t) is irreducible. This is very reasonable as it means

that the system will switch from any regime to any other regime. This is equivalent

to the condition that for any u, v ∈ S, one can find finite numbers i1, i2, . . . , ik ∈ S

such that γu,i1γi1,i2 . . . γik,v > 0. Note that Γ always has an eigenvalue 0. The algebraic

interpretation of irreducibility is rank(Γ) = N−1. Under this condition, the Markov chain

has a unique stationary (probability) distribution π = (π1, π2, . . . , πN) ∈ R1×N which can

be determined by soving the following linear equation

πΓ = 0 (2.1)

subject to
N∑
k=1

πk = 1 and πk > 0, ∀ k ∈ S.

For convenience and simplicity in the following discussion, for any constant sequence

{cij(k)}, (1 ≤ i, j ≤ n, 1 ≤ k ≤ N) define

c̆ = max
1≤i,j≤n,1≤k≤N

cij(k), c̆(k) = max
1≤i,j≤n

cij(k),

ĉ = min
1≤i,j≤n,1≤k≤N

cij(k), ĉ(k) = min
1≤i,j≤n

cij(k).

Moreover, let C2,1(Rn×R̄+×S; R̄+) denote the family of all positive real-valued functions

V (x, t, k) on Rn × R̄+ × S which are continuously twice differentiable in x and once in t.

If V ∈ C2,1(Rn × R̄+ × S; R̄+), define an operator LV from Rn × R̄+ × S to R by

LV (x, t, k) = Vt(x, t, k) + Vx(x, t, k)diag(x1, · · · , xn)(b(k) + A(k)x)
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+
1

2
[σT (k)diag(x1, · · · , xn)Vxx(x, t, k)diag(x1, · · · , xn)σ(k)]

+
N∑
l=1

γklV (x, t, l),

where

Vt(x, t, k) =
∂V (x, t, k)

∂t
, Vx(x, t, k) =

(
∂V (x, t, k)

∂x1

, · · · , ∂V (x, t, k)

∂xn

)
,

Vxx(x, t, k) =

(
∂2V (x, t, k)

∂xi∂xj

)
n×n

.

As the ith state xi(t) of the SDE (1.4) is the size of ith species in the system at

time t, it should be nonnegative. Moreover, in order for a stochastic differential equation

with Markovian switching to have a unique global (i.e. no explosion in a finite time)

solution for any given initial data, the coefficients of the equation are generally required

to satisfy the linear growth condition and local Lipschitz condition (cf. [26]). However,

the coefficients of the SDE (1.4) do not satisfy the linear growth condition, though they

are locally Lipschitz continuous, so the solution of the SDE (1.4) may explode at a finite

time. It is therefore useful to establish some conditions under which the solution of the

SDE (1.4) is not only positive but will also not explode to infinity at any finite time.

Assumption 1 Assume that there exist positive numbers c1(k), · · · , cn(k) for each k ∈ S

such that

−λ := max
k∈S

{
λ+

max
(
C̄(k)A(k) + AT (k)C̄(k)

)}
≤ 0,

where C̄(k) = diag(c1(k), · · · , cn(k)).

Theorem 2.1 Under Assumption 1, for any given initial value x(0) ∈ Rn
+, there is an

unique solution x(t) to the SDE (1.4) on t ≥ 0 and the solution will remain in Rn
+ with

probability 1, namely, x(t) ∈ Rn
+ for all t ≥ 0 almost surely.

The proof is a modification of that for the autonomous case (see e.g. [2, 3, 21]) but

for the completeness of the paper we will give it in Appendix A.

3 Stochastic Permanence

Theorem 2.1 shows that the solution of the SDE (1.4) will remain in the positive cone

Rn
+. This nice property provides us with a great opportunity to discuss how the solution
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varies in Rn
+ in more details. In this section we will give the definitions of stochastically

ultimate boundedness and stochastic permanence of the SDE (1.4) and some sufficient

conditions for them.

Definition 3.1 The SDE (1.4) is said to be stochastically ultimately bounded, if for any

ε ∈ (0, 1), there is a positive constant χ(= χ(ε)), such that for any initial value x(0) ∈ Rn
+,

the solution of the SDE (1.4) has the property that

lim sup
t→+∞

P {|x(t)| > χ} < ε.

Definition 3.2 The SDE (1.4) is said to be stochastically permanent if for any ε ∈ (0, 1),

there exist positive constants δ = δ(ε), χ = χ(ε) such that

lim inf
t→+∞

P {|x(t)| ≤ χ} ≥ 1− ε, lim inf
t→+∞

P {|x(t)| ≥ δ} ≥ 1− ε,

where x(t) is the solution of the equation with any initial value x(0) ∈ Rn
+.

It is obvious that if the SDE is stochastically permanent, it must be stochastically

ultimately bounded. Let us begin with the easier one.

Assumption 2 Assume that there exist positive numbers c1(k), · · · , cn(k) for each k ∈ S

such that

−λ := max
k∈S

{
λ+

max
(
C̄(k)A(k) + AT (k)C̄(k)

)}
< 0,

where C̄(k) = diag(c1(k), · · · , cn(k)).

Lemma 3.1 Under Assumption 2, for any given positive constant p, there is a positive

constant K(p) such that for any initial value x(0) ∈ Rn
+, the solution x(t) of the SDE

(1.4) has the property that

lim sup
t→∞

E(|x(t)|p) ≤ K(p). (3.1)

Proof. By Theorem 2.1, the solution x(t) will remain in Rn
+ for all t ≥ 0 with

probability 1. Define for any given positive constant p

V (x, t, k) = et(1 + C(k)x)p = et

(
1 +

n∑
i=1

ci(k)xi

)p

for x ∈ Rn
+,

where C(k) = (c1(k), · · · , cn(k)). Using the method of Lyapunov function analysis, we

could obtain the required assertion. The left proof is rather standard and hence is omitted.
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Theorem 3.1 The solutions of the SDE (1.4) is stochastically ultimately bounded under

Assumption 2.

The proof of Theorem 3.1 is a simple application of Chebyshev’s inequality and

Lemma 3.1. Let us now discuss the more complicated stochastic permanence. For conve-

nience, let

β̂(k) = b̂(k)− 1

2
σ̆2(k), β̆(k) = b̆(k)− 1

2
σ̂2(k), (3.2)

and we impose the following assumptions:

Assumption 3 For some u ∈ S, γiu > 0, ∀i 6= u.

Assumption 4
N∑
k=1

πkβ̂(k) > 0.

Assumption 5 β̂(k) > 0 ( 1 ≤ k ≤ N).

To state our main result, we will need a few more notations. Let G be a vector or

matrix. By G� 0 we mean all elements are positive. We also adopt here the traditional

notation by letting

ZN×N = {A = (aij)N×N : aij ≤ 0, i 6= j}.

We shall also need two classical results.

Lemma 3.2 (Mao and Yuan [26], Lemma 5.3) If A = (aij) ∈ ZN×N has all of its row

sums positive, that is
N∑
j=1

aij > 0 for all 1 ≤ i ≤ N,

then detA > 0.

Lemma 3.3 (Mao and Yuan [26], Theorem 2.10) If A ∈ ZN×N , then the following state-

ments are equivalent:

(1) A is a nonsingular M-matrix.

(2) All of the principal minors of A are positive; that is∣∣∣∣∣∣∣∣∣
a11 . . . a1k

... . . .
...

ak1 . . . akk

∣∣∣∣∣∣∣∣∣ > 0 for every k = 1, 2, . . . , N.
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(3) A is semi-positive; that is, there exists x� 0 in Rn such that Ax� 0.

The proof of the stochastic permanence is rather technical, so we prepare several

useful lemmas.

Lemma 3.4 Assumptions 3 and 4 imply that there exists a constant θ > 0 such that the

matrix

A(θ) = diag (ξ1(θ), ξ2(θ), . . . , ξN(θ))− Γ (3.3)

is a nonsingular M-matrix, where

ξk(θ) = θβ̂(k)− 1

2
θ2σ̆2(k), k ∈ S.

Proof. It is known that a determinant will not change its value by switching the

ith row with the jth row and then switching the ith column with the jth column. It

is also known that given a nonsingular M-matrix, if we switch the ith row with the jth

row and then switch the ith column with the jth column, then the new matrix is still a

nonsingular M-matrix. We may therefore assume u = N without loss of generality, that

is

γkN > 0 ∀ 1 ≤ k ≤ N − 1

instead of Assumption 3. It is easy to see that

detA(θ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ1(θ), − γ12, . . . , − γ1N

ξ2(θ), ξ2(θ)− γ22, . . . , − γ2N

...
... . . . ,

...

ξN−1(θ), − γN−1,2, . . . , − γN−1,N

ξN(θ), − γN2, . . . , ξN(θ)− γNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

N∑
k=1

ξk(θ)Mk(θ), (3.4)

where Mk(θ) is the corresponding minor of ξk(θ) in the first column. More precisely,

M1(θ) = (−1)1+1

∣∣∣∣∣∣∣∣∣∣∣∣

ξ2(θ)− γ22, . . . , −γ2N

... . . . ,
...

−γN−1,2, . . . , −γN−1,N

−γN2, . . . , ξN(θ)− γNN

∣∣∣∣∣∣∣∣∣∣∣∣
,
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...

MN(θ) = (−1)N+1

∣∣∣∣∣∣∣∣∣∣∣∣

−γ12, . . . , −γ1N

ξ2(θ)− γ22, . . . , −γ2N

... . . . ,
...

−γN−1,2, . . . , −γN−1,N

∣∣∣∣∣∣∣∣∣∣∣∣
.

Noting that

ξk(0) = 0 and
d

dθ
ξk(0) = β̂(k),

we have
d

dθ
detA(0) =

N∑
k=1

β̂(k)Mk(0),

which means that

d

dθ
detA(0) =

∣∣∣∣∣∣∣∣∣∣∣∣

β̂(1), − γ12, . . . , − γ1N

β̂(2), − γ22, . . . , − γ2N

...
... . . . ,

...

β̂(N), − γN2, . . . , − γNN

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.5)

By Appendix A in literature [23], under Assumption 3, Assumption 4 is equivalent to∣∣∣∣∣∣∣∣∣∣∣∣

β̂(1), − γ12, . . . , − γ1N

β̂(2), − γ22, . . . , − γ2N

...
... . . . ,

...

β̂(N), − γN2, . . . , − γNN

∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

Together with (3.5), we obtain that

d

dθ
detA(0) > 0. (3.6)

It is easy to see that detA(0) = 0. Hence, we can find a θ > 0 sufficiently small for

detA(θ) > 0 and

ξk(θ) = θβ̂(k)− 1

2
θ2σ̆2(k) > −γkN , 1 ≤ k ≤ N − 1. (3.7)

For each k = 1, 2, . . . , N − 1, consider the leading principle sub-matrix

Ak(θ) :=

∣∣∣∣∣∣∣∣∣∣∣∣

ξ1(θ)− γ11, −γ12, . . . , −γ1k

−γ21, ξ2(θ)− γ22, . . . , −γ2k

...
... . . . ,

...

−γk1, −γk2, . . . , ξk(θ)− γkk

∣∣∣∣∣∣∣∣∣∣∣∣
10



of A(θ). Clearly Ak(θ) ∈ Zk×k. Moreover, by (3.7) , each row of this sub-matrix has the

sum

ξu(θ)−
k∑
v=1

γuv ≥ ξu(θ) + γuN > 0.

By Lemma 3.2, detAk(θ) > 0. In other words, we have shown that all the leading principal

minors of A(θ) are positive. By Lemma 3.3, we obtain the required assertion.

Lemma 3.5 Assumption 5 imply that there exists a constant θ > 0 such that the matrix

A(θ) is a nonsingular M-matrix.

Proof. Note that for every k ∈ S,

ξk(0) = 0 and
d

dθ
ξk(0) = β̂(k) > 0.

we can then choose θ > 0 so small that ξk(θ) > 0 for all 1 ≤ k ≤ N . Consequently, every

row of A(θ) has a positive sum. By Lemma 3.2, we see easily that all the leading principal

minors of A(θ) are positive. So A(θ) is a nonsingular M-matrix.

Lemma 3.6 Let Assumption 1 hold. If there exists a constant θ > 0 such that A(θ) is

a nonsingular M-matrix, then the solution x(t) of the SDE (1.4) with any initial value

x(0) ∈ Rn
+ has the property that

lim sup
t→∞

E(
1

|x(t)|θ
) ≤ H, (3.8)

where H is a positive constant.

Proof. By Theorem 2.1, the solution x(t) with initial value x(0) ∈ Rn
+ will remain

in Rn
+ with probability one. Define

V (x) =
n∑
i=1

xi on t ≥ 0. (3.9)

Then

dV (x) = xT{[b(r(t)) + A(r(t))x]dt+ σ(r(t))dB(t)}. (3.10)

Define also

U(x) =
1

V (x)
on t ≥ 0. (3.11)
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By the generalized Itô formula, we derive from (3.10) that

dU = −U2dV + U3(dV )2

= −U2xT{[b(r(t)) + A(r(t))x]dt+ σ(r(t))dB(t)}+ U3|xTσ(r(t))|2dt

= {−U2xT [b(r(t)) + A(r(t))x] + U3|xTσ(r(t))|2}dt

−U2xTσ(r(t))dB(t), (3.12)

dropping x(t) from U(x(t)), V (x(t)) and t from x(t) respectively. By Lemma 3.3, for

given θ, there is a vector ~q = (q1, . . . , qN)T � 0 such that

~λ = (λ1, · · · , λN)T := A(θ)~q � 0,

namely,

qk

(
θβ̂(k)− 1

2
θ2σ̆2(k)

)
−

N∑
l=1

γklql > 0 for all 1 ≤ k ≤ N. (3.13)

Define the function V̄ : Rn
+ × S → R+ by

V̄ (x, k) = qk(1 + U)θ. (3.14)

Applying the generalized Itô formula, we have

LV̄ (x, k) = qkθ(1 + U)θ−1
{
−U2xT [b(k) + A(k)x] + U3|xTσ(k)|2

}
+

1

2
qkθ(θ − 1)(1 + U)θ−2U4|xTσ(k)|2 +

N∑
l=1

γklql(1 + U)θ

= qkθ(1 + U)θ−2
{
−(1 + U)U2xT [b(k) + A(k)x] + (1 + U)U3|xTσ(k)|2

+
1

2
(θ − 1)U4|xTσ(k)|2

}
+

N∑
l=1

γklql(1 + U)θ. (3.15)

We compute that

−(1 + U)U2xT [b(k) + A(k)x] + (1 + U)U3|xTσ(k)|2 +
1

2
(θ − 1)U4|xTσ(k)|2

= −U2xT b(k)− U3xT b(k)− U2xTA(k)x− U3xTA(k)x

+U3|xTσ(k)|2 +
1

2
(θ + 1)U4|xTσ(k)|2

= −x
TA(k)x

V 2
+

{
−x

T b(k)

V
+
|xTσ(k)|2 − xTA(k)x

V 2

}
U

−
{
xT b(k)

V
− 1

2
(θ + 1)

|xTσ(k)|2

V 2

}
U2.

It is easy to see that for all x ∈ Rn
+,

−x
TA(k)x

V 2
≤ K1 and − xT b(k)

V
+
|xTσ(k)|2 − xTA(k)x

V 2
≤ K1,

12



where K1 is a positive constant, while

xT b(k)

V
− 1

2
(θ + 1)

|xTσ(k)|2

V 2
≥ b̂(k)− 1

2
(θ + 1)σ̆2(k) = β̂(k)− 1

2
θσ̆2(k), (3.16)

where ~1T = (1, · · · , 1)T ∈ Rn
+. Hence

−(1 + U)U2xT [b(k) + A(k)x] + (1 + U)U3|xTσ(k)|2 +
1

2
(θ − 1)U4|xTσ(k)|2

≤ −
(
β̂(k)− 1

2
θσ̆2(k)

)
U2 +K1(1 + U).

Substituting this into (3.15) yields

LV̄ (x, k) = qkθ(1 + U)θ−2

{
−
(
β̂(k)− 1

2
θσ̆2(k)

)
U2 +K1(1 + U)

}
+

N∑
l=1

γklql(1 + U)θ

≤ (1 + U)θ−2

{
−

[
qk

(
θβ̂(k)− 1

2
θ2σ̆2(k)

)
−

N∑
l=1

γklql

]
U2

+

(
qkθK1 + 2

N∑
l=1

γklql

)
U +

(
qkθK1 +

N∑
l=1

γklql

)}
. (3.17)

Now, choose a constant κ > 0 sufficiently small such that it satisfies

~λ− κ~q � 0,

i.e.

qk

(
θβ̂(k)− 1

2
θ2σ̆2(k)

)
−

N∑
l=1

γklql − κqk > 0 for all 1 ≤ k ≤ N. (3.18)

Then, by the generalized Itô formula again and (3.18)

L
[
eκtV̄ (x, k)

]
= κeκtqk(1 + U)θ + eκtLV̄ (x, k)

≤ eκt(1 + U)θ−2

{
κqk(1 + U)2 −

[
qk

(
θβ̂(k)− 1

2
θ2σ̆2(k)

)
−

N∑
l=1

γklql

]
U2

+

(
qkθK1 + 2

N∑
l=1

γklql

)
U +

(
qkθK1 +

N∑
l=1

γklql

)}

= eκt(1 + U)θ−2

{
−U2

[
qk

(
θβ̂(k)− 1

2
θ2σ̆2(k)

)
−

N∑
l=1

γklql − κqk

]

+

(
qkθK1 + 2

N∑
l=1

γklql + 2κqk

)
U +

(
qkθK1 +

N∑
l=1

γklql + κqk

)}
≤ n−θq̂κHeκt, (3.19)
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where

H =
1

q̂κ
nθ max

1≤k≤N

{
sup
x∈R+

{
(1 + x)θ−2

{
−x2

[
qk

(
θβ̂(k)− 1

2
θ2σ̆2(k)

)
−

N∑
l=1

γklql − κqk

]

+

(
qkθK1 + 2

N∑
l=1

γklql + 2κqk

)
x+

(
qkθK1 +

N∑
l=1

γklql + κqk

)}}
, 1

}
(3.20)

in which we put 1 in order to make H positive. (3.19) implies

lim sup
t→∞

E
[
U θ(x(t))

]
≤ lim sup

t→∞
E
[
(1 + U(x(t)))θ

]
≤ n−θH. (3.21)

For x(t) ∈ Rn
+, note that(

n∑
i=1

xi(t)

)θ

≤
(
n max

1≤i≤n
xi(t)

)θ
= nθ

(
max
1≤i≤n

x2
i (t)

) θ
2

≤ nθ|x(t)|θ. (3.22)

Consequently,

lim sup
t→∞

E(
1

|x(t)|θ
) ≤ H.

We obtain the required assertion (3.8) .

Theorem 3.2 Under Assumptions 2, 3 and 4, the SDE (1.4) is stochastically permanent.

The proof is a simple application of the Chebyshev inequality, Lemmas 3.4 and 3.6.

Similarly, we have the following result.

Theorem 3.3 Under Assumptions 2 and 5, the SDE (1.4) is stochastically permanent.

4 Extinction

In the previous sections we have showed that under certain conditions, the original au-

tonomous equations (1.1) and the associated SDE (1.4) behave similarly in the sense that

both have positive solutions which will not explode to infinity in a finite time and, in fact,

will be ultimately bounded and permanent. In other words, we show that under certain

condition the noise will not spoil these nice properties. However, we will show in this

section that if the noise is sufficiently large, the solution to the associated SDE (1.4) will

become extinct with probability one, although the solution to the original equation (1.1)

may be persistent. For example, recall a simple case, namely the scalar logistic equation

dN(t) = N(t)(b− aN(t))dt, t ≥ 0. (4.1)

14



It is well known that if b > 0, a > 0, then its solution N(t) is persistent because

lim
t→∞

N(t) =
a

b
.

However, consider its associated stochastic equation

dN(t) = N(t)[(b− aN(t))dt+ σdB(t)], t ≥ 0, (4.2)

where σ > 0. We will see from the following theorem that if σ2 > 2b, then the solution to

this stochastic equation will become extinct with probability one, namely

lim
t→∞

N(t) = 0 a.s.

In other words, the following theorem reveals the important fact that the environmental

noise may make the population extinct.

Assumption 6 Assume that there exist positive numbers c1, · · · , cn such that

−λ := max
k∈S

{
λ+

max
(
C̄A(k) + AT (k)C̄

)}
≤ 0,

where C̄ = diag(c1, · · · , cn).

Theorem 4.1 Let Assumption 6 hold. For any given initial value x(0) ∈ Rn
+, the solution

x(t) of the SDE (1.4) has the property that

lim sup
t→∞

log |x(t)|
t

≤
N∑
k=1

πkβ̆(k) a.s. (4.3)

Particularly, if
N∑
k=1

πkβ̆(k) < 0, then

lim
t→∞
|x(t)| = 0 a.s.

Proof. Define V (x) = Cx =
n∑
i=1

cixi, x ∈ Rn
+, where C = (c1, · · · , cn). By the

generalized Itô formula, we have

dV (x(t)) = xT (t)C̄{[b(r(t)) + A(r(t))x(t)]dt+ σ(r(t))dB(t)}.

Thus

d log V (x(t)) =
1

V
dV − 1

2V 2
(dV )2

=
1

V
xT C̄{[b(r(t)) + A(r(t))x]dt+ σ(r(t))dB(t)}

− 1

2V 2
|xT C̄σ(r(t))|2dt, (4.4)
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dropping x(t) from V (x(t)) and t from x(t) respectively. We compute

xT C̄A(r(t))x

V
=
xT [C̄A(r(t)) + AT (r(t))C̄]x

2V
≤ −λ|x|

2

2V
≤ − λ

2|C|
|x| ≤ 0.

We compute also

xT C̄b(r(t))

V
− |x

T C̄σ(r(t))|2

2V 2
≤ b̆(r(t))− 1

2
σ̂2(r(t)) = β̆(r(t)). (4.5)

Substituting these two inequalities into (4.4) yields

d log V (x(t)) ≤ β̆(r(t))dt+
xT (t)C̄σ(r(t))

V (x(t))
dB(t).

This implies

log V (x(t)) ≤ log V (x(0)) +

∫ t

0

β̆(r(s))ds+M(t), (4.6)

where M(t) is a martingale defined by

M(t) =

∫ t

0

xT (s)C̄σ(r(s))

V (x(s))
dB(s).

The quadratic variation of this martingale is

〈M,M〉t =

∫ t

0

|xT (s)C̄σ(r(s))|2

V 2(x(s))
ds ≤ σ̆2|C̄|2

ĉ2
t.

By the strong law of large numbers for martingales (see [22], [26]), we therefore have

lim
t→∞

M(t)

t
= 0 a.s.

It finally follows from (4.6) by dividing t on the both sides and then letting t→∞ that

lim sup
t→∞

log V (x(t))

t
≤ lim sup

t→∞

1

t

∫ t

0

β̆(r(s))ds =
N∑
k=1

πkβ̆(k) a.s.

which implies the required assertion (4.3) .

5 Asymptotic Boundedness of Integral Average

Lemma 5.1 Under Assumption 2, for any given initial value x(0) ∈ Rn
+, the solution

x(t) of the SDE (1.4) has the property that

lim sup
t→∞

log(|x(t)|)
log t

≤ 1 a.s. (5.1)
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The proof is somehow standard so we only give a brief one in Appendix B.

Lemma 5.2 Let Assumption 1 hold. If there exists a constant θ > 0 such that A(θ) is

a nonsingular M-matrix, then the solution x(t) of the SDE (1.4) with any initial value

x(0) ∈ Rn
+ has the property that

lim inf
t→∞

log(|x(t)|)
log t

≥ −1

θ
a.s (5.2)

Proof. Let U : Rn
+ → R+ be the same as defined by (3.11) , for convenience, we write

U(x(t)) = U(t). Applying the generalized Itô formula, for the fixed constant θ > 0, we

derive from (3.17) that

d
[
(1 + U(t))θ

]
≤ θ(1 + U(t))θ−2

{
−
(
β̂(r(t))− 1

2
θσ̆2(r(t))

)
U2(t) +K1U(t) +K1

}
.

−θ(1 + U(t))θ−1U2(t)xTσ(r(t))dB(t). (5.3)

Under given condition, by (3.21) of Lemma 3.6, there exists a positive constant M such

that

E
[
(1 + U(t))θ

]
≤M on t ≥ 0. (5.4)

Let δ > 0 be sufficiently small for

θ

[
(β̂ +

1

2
θσ̆2 +K1)δ +

3

ĉ
max
k∈S
{|σ(k)|}δ

1
2

]
<

1

2
. (5.5)

Let k = 1, 2, · · ·. (5.3) implies that

E

[
sup

(k−1)δ≤t≤kδ
(1 + U(t))θ

]
≤ E

[
(1 + U((k − 1)δ))θ

]
+ E

(
sup

(k−1)δ≤t≤kδ
|
∫ t

(k−1)δ

θ(1 + U(s))θ−2

×
{
−
(
β̂(r(s))− 1

2
θσ̆2(r(s))

)
U2(s) +K1(U(s) + 1)

}
ds|
)

+ E

(
sup

(k−1)δ≤t≤kδ
|
∫ t

(k−1)δ

θ(1 + U(s))θ−1U2(s)xT (s)σ(r(s))dB(s)|

)
. (5.6)

We compute

E

(
sup

(k−1)δ≤t≤kδ
|
∫ t

(k−1)δ

θ(1 + U(s))θ−2
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×
{
−
(
β̂(r(s))− 1

2
θσ̆2(r(s))

)
U2(s) +K1(U(s) + 1)

}
ds|
)

≤ E

(∫ kδ

(k−1)δ

|θ(1 + U(s))θ−2

{
−
(
β̂ − 1

2
θσ̆2

)
U2(s) +K1U(s) +K1

}
|ds
)

≤ θE

(∫ kδ

(k−1)δ

(β̂ +
1

2
θσ̆2 +K1)(1 + U(s))θds

)
≤ θ(β̂ +

1

2
θσ̆2 +K1)E

(∫ kδ

(k−1)δ

sup
(k−1)δ≤s≤kδ

(1 + U(s))θds

)

≤ θ(β̂ +
1

2
θσ̆2 +K1)δE

(
sup

(k−1)δ≤t≤kδ
(1 + U(t))θ

)
(5.7)

By the well-known Burkholder-Davis-Gundy inequality, we derive that

E

(
sup

(k−1)δ≤t≤kδ
|
∫ t

(k−1)δ

θ(1 + U(s))θ−1U2(s)xT (s)σ(r(s))dB(s)|

)

≤ 3E

(∫ kδ

(k−1)δ

(
θ(1 + U(s))θ−1U2(s)

)2 ∣∣xT (s)σ(r(s))
∣∣2 ds) 1

2

≤ 3θE

(∫ kδ

(k−1)δ

(1 + U(s))2(θ−1)U2(s)
|x(s)|2|σ(r(s))|2

ĉ2|x(s)|2
ds

) 1
2

≤ 3

ĉ
θmax
k∈S
{|σ(k)|}E

(∫ kδ

(k−1)δ

(1 + U(s))2θds

) 1
2

≤ 3

ĉ
θmax
k∈S
{|σ(k)|}δ

1
2E

(
sup

(k−1)δ≤t≤kδ
(1 + U(t))2θ

) 1
2

≤ 3

ĉ
θmax
k∈S
{|σ(k)|}δ

1
2E

(
sup

(k−1)δ≤t≤kδ
(1 + U(t))θ

)
.

Substituting this and (5.7) into (5.6) gives

E

[
sup

(k−1)δ≤t≤kδ
(1 + U(t))θ

]
≤ E

[
(1 + U((k − 1)δ))θ

]
+θ

[
(β̂ +

1

2
θσ̆2 +K1)δ +

3

ĉ
max
k∈S
{|σ(k)|}δ

1
2

]
E

(
sup

(k−1)δ≤t≤kδ
(1 + U(t))θ

)
. (5.8)

Make use of (5.4) and (5.5) we obtain that

E

[
sup

(k−1)δ≤t≤kδ
(1 + U(t))θ

]
≤ 2M. (5.9)

Let ε > 0 be arbitrary. Then, by the well-known Chebyshev inequality, we have

P

{
ω : sup

(k−1)δ≤t≤kδ
(1 + U(t))θ > (kδ)1+ε

}
≤ 2M

(kδ)1+ε
, k = 1, 2, . . .
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Applying the well-known Borel-Cantelli lemma (see e.g. [22], [26] ), we obtain that for

almost all ω ∈ Ω

sup
(k−1)δ≤t≤kδ

(1 + U(t))θ ≤ (kδ)1+ε (5.10)

holds for all but finitely many k. Hence, there exists an integer k0(ω) > 1/δ + 2, for

almost all ω ∈ Ω, for which (5.10) holds whenever k ≥ k0. Consequently, for almost all

ω ∈ Ω, if k ≥ k0 and (k − 1)δ ≤ t ≤ kδ,

log(1 + U(t))θ

log t
≤ (1 + ε) log(kδ)

log((k − 1)δ)
= 1 + ε.

Therefore

lim sup
t→∞

log(1 + U(t))θ

log t
≤ 1 + ε. a.s.

Letting ε→ 0, we obtain the desired assertion

lim sup
t→∞

log(1 + U(t))θ

log t
≤ 1. a.s.

Recalling the definition of U(t), we yield

lim sup
t→∞

log

(
1

|x(t)|θ

)
log t

≤ 1 a.s.

which further implies

lim inf
t→∞

log(|x(t)|)
log t

≥ −1

θ
a.s.

This is our required assertion (5.2).

Assumption 7 Assume that there exist positive numbers c1, · · · , cn such that

−λ := max
k∈S

{
λ+

max
(
C̄A(k) + AT (k)C̄

)}
< 0,

where C̄ = diag(c1, · · · , cn).

Theorem 5.1 Under Assumptions 3, 4 and 7, for any initial value x(0) ∈ Rn
+ , the

solution x(t) of the SDE (1.4) obeys

lim sup
t→+∞

1

t

∫ t

0

|x(s)|ds ≤ 2|C|
λ

N∑
k=1

πkβ̆(k) a.s. (5.11)

lim inf
t→+∞

1

t

∫ t

0

|x(s)|ds ≥ 2ĉ

λ̂

N∑
k=1

πkβ̂(k) a.s. (5.12)

where

−λ̂ := min
k∈S

{
λ+

max
(
C̄A(k) + AT (k)C̄

)}
< 0. (5.13)
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Proof. Define

V (x) = Cx =
n∑
i=1

cixi for x ∈ Rn
+.

By the generalized Itô formula, we have

dV (x(t)) = xT (t)C̄{[b(r(t)) + A(r(t))x(t)]dt+ σ(r(t))dB(t)}. (5.14)

It is easy to observe from the inequality (5.1) of Lemma 5.1 and (5.2) of Lemma 5.2 that

lim
t→+∞

log V (x(t))

t
= 0 a.s. (5.15)

We derive from (5.14) that

d log V (x(t)) =
1

V (x(t))
xT (t)C̄{[b(r(t)) + A(r(t))x(t)]dt+ σ(r(t))dB(t)}

− 1

2V 2(x(t))
|xT (t)C̄σ(r(t))|2dt. (5.16)

We compute

− λ̂

2ĉ
|x| ≤ xT C̄A(r(t))x

V (x)
=
xT [C̄A(r(t)) + AT (r(t))C̄]x

2V (x)
≤ − λ

2|C|
|x| < 0. (5.17)

By (3.16) and (4.5) , we know

β̂(r(t)) ≤ xT C̄b(r(t))

V (x)
− |x

T C̄σ(r(t))|2

2V 2(x)
≤ β̆(r(t)). (5.18)

Substituting these into (5.16) yields

d log V (x(t)) ≤ β̆(r(t))dt− λ

2|C|
|x(t)|dt+

xT (t)C̄σ(r(t))

V (x(t))
dB(t).

Hence

log V (x(t)) +
λ

2|C|

∫ t

0

|x(s)|ds ≤ log V (x(0)) +

∫ t

0

β̆(r(s))ds+

∫ t

0

xT (s)C̄σ(r(s))

V (x(s))
dB(s).

(5.19)

By the strong law of large numbers for martingales (see [22], [26]), we therefore have

lim
t→∞

1

t

∫ t

0

xT (s)C̄σ(r(s))

V (x(s))
dB(s) = 0 a.s.

We can therefore divide both sides of (5.19) by t and then let t→∞ to obtain

λ

2|C|
lim sup
t→+∞

1

t

∫ t

0

|x(s)|ds ≤
N∑
k=1

πkβ̆(k) a.s.

which implies the required assertion (5.11).
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On the other hand, we observe from (5.16), (5.17) and (5.18) that

d log V (x(t)) ≥ β̂(r(t))dt− λ̂

2ĉ
|x(t)|dt+

xT (t)C̄σ(r(t))

V (x)
dB(t). (5.20)

Hence

log V (x(t)) +
λ̂

2ĉ

∫ t

0

|x(s)|ds ≥ log V (x(0)) +

∫ t

0

β̂(r(s))ds+

∫ t

0

xT (s)C̄σ(r(s))

V (x(s))
dB(s).

So we have
λ̂

2ĉ
lim sup
t→+∞

1

t

∫ t

0

|x(s)|ds ≥
N∑
k=1

πkβ̂(k) a.s.

which implies the other required assertion (5.12).

Similarly, using Lemmas 3.5, 5.1 and 5.2, we can show:

Theorem 5.2 Under Assumptions 5 and 7, for any initial value x(0) ∈ Rn
+, the solution

x(t) of the SDE (1.4) obeys

lim sup
t→+∞

1

t

∫ t

0

|x(s)|ds ≤ 2|C|
λ

N∑
k=1

πkβ̆(k) a.s. (5.21)

lim inf
t→+∞

1

t

∫ t

0

|x(s)|ds ≥ 2ĉ

λ̂

N∑
k=1

πkβ̂(k) a.s. (5.22)

6 Conclusions and Examples

Let Assumptions 3 and 7 hold. It is interesting to point out that if β̂(k) > 0 for some

k ∈ S, then the equation

dx(t) = diag(x1(t), . . . , xn(t))[(b(k) + A(k)x(t))dt+ σ(k)dB(t)] (6.1)

is stochastically permanent. Hence Theorems 3.3 tells us if every individual equation

dx(t) = diag(x1(t), . . . , xn(t))[(b(k) + A(k)x(t))dt+ σ(k)dB(t)] (6.2)

is stochastically permanent, then as the result of Markovian switching, the overall behav-

ior, i.e. the SDE (1.4) remains stochastically permanent. On the other hand, if β̆(k) < 0

for some k ∈ S, then equation (6.1) is extinctive. Hence Theorem 4.1 tell us if every indi-

vidual equation (6.2) is extinctive, then as the result of Markovian switching, the overall

behavior, i.e. the SDE (1.4) remains extinctive. However, Theorems 3.2 and 4.1 tell us a
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more interesting result that some individuals in (6.2) are stochastically permanent while

some are extinctive, but as the results of Markovian switching, the overall behavior, i.e.

the SDE (1.4) may be stochastically permanent or extinctive which depends on the sign

of
n∑
k=1

πkβ̂(k) and
n∑
k=1

πkβ̆(k) respectively. Moreover, if the SDE (1.4) is stochastically

permanent, the limit of the average in time of the sample path of the solution could

be estimated making use of Theorems 5.1 and 5.2. We shall illustrate these conclusions

through the following examples.

Example 6.1 First of all, let us consider the following one-dimensional logistic system

with regime switching

dN(t) = N(t)[(b(r(t))− a(r(t))N(t))dt+ σ(r(t))dB(t)], t ≥ 0, (6.3)

where r(t) is a right-continuous Markov chain taking value in S = {1, 2, 3}. As pointed

out in Section 1, we may regard the SDE (6.3) as the result of the following three equations

switching from one to another according to the movement of the Markovian chain:

dN(t) = N(t)[(b(1)− a(1)N(t))dt+ σ(1)dB(t)], (6.4)

where b(1) = 11, a(1) = 1, σ(1) = 2;

dN(t) = N(t)[(b(2)− a(2)N(t))dt+ σ(2)dB(t)], (6.5)

where b(2) = 1, a(2) =
1

2
, σ(2) = 2

√
2;

dN(t) = N(t)[(b(3)− a(3)N(t))dt+ σ(3)dB(t)], (6.6)

where b(3) = 3, a(3) =
1

3
, σ(3) =

√
14. Compute

β̂(1) = β̆(1) = 9 > 0, β̂(2) = β̆(2) = −3 < 0, β̂(3) = β̆(3) = −4 < 0;

λ =
2

3
> 0, λ̂ = 2 > 0.

We observe that the SDE (6.4)(blue) is stochastically permanent while the SDEs (6.5)

(red) and (6.6) (green) are extinctive, see Figure 1. To see how the Markovian switing

affect the system, let us discuss two cases.

Case 1. Let the generator of the Markov chain r(t) be

Γ =


−2 1 1

3 −4 1

1 1 − 2

 .
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Figure 1. SDE (6.4) (blue): N(0) = 5; SDE (6.5)(red): N(0) = 13; SDE(6.6) (green): N(0) = 10.

Figure 2. N(0) = 2, r(0) = 3.

By solving the linear equation (2.1) we obtain the unique stationary (probability) distri-

bution

π = (π1, π2, π3) = (
7

15
,

1

5
,

1

3
).

Then
3∑

k=1

πkβ̂(k) =
34

15
> 0.

Therefore, by Theorems 3.2 and 5.1, as the result of Markovian switching, the overall

behavior, i.e. the SDE (6.3) is stochastically permanent, see Figure 2, and its solution

N(t) with any positive initial value has the following property:

34

15
≤ lim inf

t→+∞

1

t

∫ t

0

N(s)ds ≤ lim sup
t→+∞

1

t

∫ t

0

N(s)ds ≤ 34

5
a.s.

Case 2. Let the generator of the Markov chain r(t) be

Γ =


−5 2 3

1 −1 0

3 0 − 3

 .
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Figure 3. N(0) = 5, r(0) = 3.

By solving the linear equation (2.1) we obtain the unique stationary distribution

π = (π1, π2, π3) = (
1

4
,

1

2
,

1

4
).

Then
3∑

k=1

πkβ̆(k) = −1

4
< 0.

Therefore, by Theorems 4.1, as the result of Markovian switching, the overall behavior,

i.e. the SDE (6.3) is extinctive, see Figure 3.

Example 6.2 Consider the two-species Lotka-Volterra system of facultative mutualism

with regime switching described by dx1(t) = x1(t) [(b1(r(t))− a11(r(t))x1(t) + a12(r(t))x2(t)) dt+ σ1(r(t))dB(t)]

dx2(t) = x2(t) [(b2(r(t)) + a21(r(t))x1(t)− a22(r(t))x2(t)) dt+ σ2(r(t))dB(t)]

(6.7)

for t ≥ 0, where r(t) is a right-continuous Markov chain taking values in S = {1, 2}. As

pointed out in Section 1, we may regard the SDE (6.7) as the result of the following two

equations: dx1(t) = x1(t) [(b1(1)− a11(1)x1(t) + a12(1)x2(t)) dt+ σ1(1)dB(t)]

dx2(t) = x2(t) [(b2(1) + a21(1)x1(t)− a22(1)x2(t)) dt+ σ2(1)dB(t)]
(6.8)

and  dx1(t) = x1(t) [(b1(2)− a11(2)x1(t) + a12(2)x2(t)) dt+ σ1(2)dB(t)]

dx2(t) = x2(t) [(b2(2) + a21(2)x1(t)− a22(2)x2(t)) dt+ σ2(2)dB(t)]
(6.9)

switching from one to the other according to the movement of the Markovian chain r(t).

24



Assume that

b1(1) = 5, a11(1) = 2, a12(1) = 1, σ1(1) =
√

2;

b2(1) = 8, a21(1) = 6, a22(1) = 2, σ2(1) = 2;

b1(2) = 4, a11(2) = 1, a12(2) = 0, σ1(2) =
√

14;

b2(2) = 5, a21(2) = 1, a22(2) = 2, σ2(2) = 4.

Let C̄ = I ∈ R2×2 and compute

λ1,2

(
IA(1) + AT (1)I

)
= −5±

√
10, λ1,2

(
IA(2) + AT (2)I

)
= −3±

√
2.

Then

−λ = λ+
max

(
IA(1) + AT (1)I

)
≤ −3+

√
2 < 0, −λ̂ = λ+

min

(
IA(2) + AT (2)I

)
≥ −5−

√
10,

whence Assumption 2 holds. Moreover,

λ ≥ 3−
√

2, λ̂ ≤ 5 +
√

10,

and

β̂(1) = 3, β̂(2) = −4, β̆(1) = 7, β̆(2) = −2.

To see if the SDE (6.7) is stochastically permanent or extinctive, we consider two cases:

Case 1. Let the generator of the Markov chain r(t) be

Γ =

 −2 2

3 −3

 .

It is easy to see that the Markov chain has its stationary probability distribution π =

(π1, π2) = (
3

5
,
2

5
). We observe that the SDE (6.8) is stochastically permanent while

the SDE (6.9) is extinctive. However, as the result of Markovian switching, the overall

behavior, i.e. the SDE (6.7) will be stochastically permanent noting that

2∑
k=1

πkβ̂(k) =
3

5
× 3 +

2

5
× (−4) =

1

5
> 0.

2∑
k=1

πkβ̆(k) =
3

5
× 7 +

2

5
× (−2) =

17

5
.

Moreover, by Theorem 5.1, the solution x(t) with any initial value x(0) ∈ Rn
+ has the

following property:

2

5(5 +
√

10)
≤ lim inf

t→+∞

1

t

∫ t

0

|x(s)|ds ≤ lim sup
t→+∞

1

t

∫ t

0

|x(s)|ds ≤ 34
√

2

5(3−
√

2)
a.s.
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Case 2. Assume that the generator of the Markov chain r(t) is

Γ =

 −4 4

1 −1

 .

It is easy to see that the Markov chain has its stationary probability distribution π =

(π1, π2) = (
1

5
,
4

5
). As the result of Markovian switching, the overall behavior, i.e. the

SDE (6.7) will extinct almost surely because

2∑
k=1

πkβ̆(k) =
1

5
× 7 +

4

5
× (−2) = −1

5
< 0.

Example 6.3 Consider the two-species Lotka-Volterra competitive system with regime

switching described by dx1(t) = x1(t) [(b1(r(t))− a11(r(t))x1(t)− a12(r(t))x2(t)) dt+ σ1(r(t))dB(t)]

dx2(t) = x2(t) [(b2(r(t))− a21(r(t))x1(t)− a22(r(t))x2(t)) dt+ σ2(r(t))dB(t)]

(6.10)

for t ≥ 0. Assume that the Markov chain r(t) is on the state space S = {1, 2} with the

generator

Γ =

 −3 3

1 −1

 .

It is easy to see that the Markov chain has its stationary probability distribution π =

(π1, π2) = (
1

4
,
3

4
). As pointed out in Section 1, we may regard the SDE (6.10) as the result

of the following two equations: dx1(t) = x1(t) [(b1(1)− a11(1)x1(t)− a12(1)x2(t)) dt+ σ1(1)dB(t)]

dx2(t) = x2(t) [(b2(1)− a21(1)x1(t)− a22(1)x2(t)) dt+ σ2(1)dB(t)]
(6.11)

and  dx1(t) = x1(t) [(b1(2)− a11(2)x1(t)− a12(2)x2(t)) dt+ σ1(2)dB(t)]

dx2(t) = x2(t) [(b2(2)− a21(2)x1(t)− a22(2)x2(t)) dt+ σ2(2)dB(t)]
(6.12)

switching from one to the other according to the movement of the Markovian chain r(t).

Case 1. Assume that

b1(1) = 9, a11(1) = 4, a12(1) = 2, σ1(1) = 2;

b2(1) = 10, a21(1) = 6, a22(1) = 3, σ2(1) = 1;

b1(2) = 4, a11(2) = 2, a12(2) =
3

2
, σ1(2) = 3;

b2(2) = 6, a21(2) = 3, a22(2) = 1, σ2(2) = 2
√

3.
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Then we know

β̂(1) = 7, β̂(2) = −2, β̆(1) =
19

2
, β̆(2) =

3

2
;

b̂(1) = 9, b̂(2) = 4, b̆(1) = 10, b̆(2) = 6, â = 1, ă = 6.

The Appendix in [3] tell us that for a matrix D = (dij)n×n

λ+
max(D) ≤ max

1≤i≤n

(
dii +

∑
j 6=i

(0 ∨ dij)

)
; λ+

max(D) ≥ min
1≤i≤n

(
dii +

∑
j 6=i

(0 ∧ dij)

)
.

Let C̄ = I ∈ R2×2, then we know

λ ≥ 4, λ̂ ≤ 36.

We observe that the SDE (6.11) is stochastically permanent while we are not sure that the

SDE (6.12) is stochastically permanent or extinctive. However, as the result of Markovian

switching, the overall behavior, i.e. the SDE (6.10) will be stochastically permanent noting

that
2∑

k=1

πkβ̂(k) =
1

4
× 7 +

3

4
× (−2) =

1

4
> 0

and
2∑

k=1

πkβ̆(k) =
1

4
× 19

2
+

3

4
× 3

2
=

7

2
.

Moreover, by Theorem 5.1, the solution x(t) with any initial value (x(0), r(0)) ∈ R2
+ has

the following property:

1

72
≤ lim inf

t→+∞

1

t

∫ t

0

|x(s)|ds ≤ lim sup
t→+∞

1

t

∫ t

0

|x(s)|ds ≤ 7
√

2

4
a.s.

Case 2. Assume that

b1(1) = 6, a11(1) = 1, a12(1) = 3, σ1(1) =
√

2;

b2(1) = 5, a21(1) = 0, a22(1) = 2, σ2(1) = 2;

b1(2) = 1, a11(2) = 0, a12(2) = 4, σ1(2) = 3;

b2(2) = 1, a21(2) = 2, a22(2) = 3, σ2(2) =
√

6.

Then we know

β̂(1) = 3, β̂(2) = −7

2
, β̆(1) = 5, β̆(2) = −2.
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We observe that the SDE (6.11) is stochastic permanent while the SDE (6.12) is extinctive.

However, noting that

2∑
k=1

πkβ̆(k) =
1

4
× 5 +

3

4
× (−2) = −1

4
< 0,

as the result of Markovian switching, the overall behavior, i.e. the SDE (6.10) will be

extinctive by Theorem 4.1.

7 Application to Stochastic Harvest

It is clearly necessary to develop an ecologically optimal strategy for harvesting any re-

newable resource be it animals, fish, plants or whatever. Clark in [5, 6] introduced some

important economic constraints and examples in population models of renewable resource.

The collection of papers edited by Vincent and Skowronski [32] specially deals with renew-

able resource management. The results about the harvesting policy of resources, which

has a direct relationship to sustainable development, are increasing, for example, see ref-

erence [4, 5, 6, 8, 29]. In the real world the natural growth of every renewable population

has itself rule and is always affected inevitably by some random disturbance. Therefore we

discuss an harvesting policy of single population modeled by randomized logistic equation

dN(t) = N(t)[(b− aN(t))dt+ σdB(t)], t ≥ 0, (7.1)

which has a direct relationship to sustainable development, where b, a, σ are positive con-

stants. Following Clark [5], we also assume that the harvest rate for the population would

be proportional to its stock level N(t). Thus, as a result of harvesting, the population

growth obeys

dN(t) = N(t)[(b− h− aN(t))dt+ σdB(t)], t ≥ 0, (7.2)

where h > 0 is the harvesting effort. However, whether to harvest is depend on weather

factors, such as wind power, wave height. Therefore, the population switches between

harvest regime and unharvest regime. The switching is memoryless and the waiting time

for the next switch has an exponential distribution. The population system under regime

switching can therefore be described by the following stochastic model

dN(t) = N(t)[(b(r(t))− aN(t))dt+ σdB(t)], t ≥ 0, (7.3)
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where b(1) = b, b(2) = b − h, r(t) is a right-continuous Markov chain taking value in

S = {1, 2}. Assume that the Markov chain has the stationary distribution (π1, π2).

By Theorem 3.2, we see that given b− σ2

2
> 0, as the results of harvesting, the SDE

(7.3) may be stochastically permanent or extinctive dependent on the power of harvesting

effort h. More precisely, if h <
1

π2

(b − σ2

2
) the population will develop stochastically

permanently, while if h >
1

π2

(b− σ2

2
) the population will be extinctive. Moreover, if the

SDE (7.3) is stochastically permanent, the limit of the average in time of the sample path

of the solution could be estimated by using Theorems 5.1 and 5.2.
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Appendix

A Proof of Theorem 2.1

Since the coefficients of the equation are locally Lipschitz continuous, for any given initial

value x(0) ∈ Rn
+ there is an unique maximal local solution x(t) on t ∈ [0, τe), where τe

is the explosion time (cf. [26]). To show this solution is global, we need to show that

τe =∞ a.s. Let m0 > 0 be sufficiently large for every component of x(0) lying within the

interval [ 1
m0
,m0]. For each integer m ≥ m0, define the stopping time

τm = inf{t ∈ [0, τe) : xi(t) /∈ (
1

m
, m) for some i = 1, · · · , n},

where throughout this paper we set inf ∅ =∞ (as usual ∅ denotes the empty set). Clearly,

τm is increasing as m→∞. Set τ∞ = lim
m→∞

τm, whence τ∞ ≤ τe a.s. If we can show that

τ∞ = ∞ a.s., then τe = ∞ a.s. and x(t) ∈ Rn
+ a.s. for all t ≥ 0. In other words, to

complete the proof all we need to show is that τ∞ = ∞ a.s. If this statement is false,

there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Hence there is an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ε for all m ≥ m1. (A.1)

Define a C2-function V : Rn
+ × S → R+ by

V (x, k) =
n∑
i=1

ci(k)[xi − 1− log(xi)].

The nonnegativity of this function can be seen from

u− 1− log(u) ≥ 0 on u > 0.
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If x(t) ∈ Rn
+, we compute that

LV (x, k) = xT C̄(k)b(k) + xT C̄(k)A(k)x− C(k)[b(k) + A(k)x]

+
1

2
[σT (k)C̄(k)σ(k)] +

N∑
l=1

γklV (x, l)

≤ −1

2
λ|x|2 + xT C̄(k)b(k)− C(k)A(k)x− C(k)b(k)

+
1

2
[σT (k)C̄(k)σ(k)] +

N∑
l=1

γklV (x, l), (A.2)

where we write x(t) = x and C(k) = (c1(k), · · · , cn(k)). Moreover, there is clearly a

constant K∗1 > 0 such that

max
k∈S

{
xT C̄(k)b(k)− C(k)A(k)x− C(k)b(k) +

1

2
[σT (k)C̄(k)σ(k)]

}
≤ K∗1(1 + |x|).

Substituting this into (A.2) yields

LV (x, k) ≤ K∗1(1 + |x|) +
N∑
l=1

γklV (x, l). (A.3)

Noticing that u ≤ 2(u− 1− log u) + 2 on u > 0, we compute

|x| ≤
n∑
i=1

xi ≤
n∑
i=1

[2(xi − 1− log xi) + 2]

≤ 2n+
2

ĉ

n∑
i=1

ci(k)(xi − 1− log xi)

= 2n+
2

ĉ
V (x, k). (A.4)

Let

q̆ = max

{
ci(k)

ci(l)
: 1 ≤ i ≤ n, 1 ≤ k, l ≤ N

}
. (A.5)

By the definition of V , for any k, l ∈ S, we have

V (x, l) =
n∑
i=1

ci(l)[xi − 1− log(xi)] ≤
n∑
i=1

q̆ci(k)[xi − 1− log(xi)] ≤ q̆V (x, k).

Thus
N∑
l=1

γklV (x, l) ≤ q̆

(
N∑
l=1

|γkl|

)
V (x, k). (A.6)

We therefore obtain from (A.3) , (A.4) and (A.6) that

LV (x, k) ≤ K∗2 [1 + V (x, k)], (A.7)
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where K∗2 is a positive constant. Making use of the generalized Itô formula, yields

EV (x(τm ∧ T ), r(τm ∧ T )) ≤ V (x(0), r(0)) +K∗2E(τm ∧ T ) +K∗2E

∫ τm∧T

0

V (x(t), r(t))dt

≤ V (x(0), r(0)) +K∗2T +K∗2

∫ T

0

EV (x(τm ∧ t), r(τm ∧ t))dt.

The Gronwall inequality implies that

EV (x(τm ∧ T ), r(τm ∧ T )) ≤ [V (x(0), r(0)) +K∗2T ]eK
∗
2T . (A.8)

Set Ωm = {τm ≤ T} for m ≥ m1 and by (A.1) , P (Ωm) ≥ ε. Note that for every

ω ∈ Ωm, there is some i such that xi(τm, ω) equals either m or 1
m

, and hence V (x(τm, ω))

is no less than either

ĉ
(√

m− 1− 0.5 log(m)
)

or

ĉ

(√
1

m
− 1− 0.5 log(

1

m
)

)
= ĉ

(√
1

m
− 1 + 0.5 log(m)

)
.

Consequently,

V (x(τm, ω), r(τm, ω)) ≥ ĉ

(
[
√
m− 1− 0.5 log(m) ] ∧ [0.5 log(m)− 1 +

√
1

m
]

)
.

It then follows from (A.8) that

[V (x(0), r(0)) +K∗2T ]eK
∗
2T ≥ E[1Ωm(ω)V (x(τm, ω), r(τm, ω))]

≥ εĉ
(

[
√
m− 1− 0.5 log(m)] ∧ [0.5 log(m)− 1 +

√
1
m

]
)
,

where 1Ωm is the indicator function of Ωm. Letting k →∞ leads to the contradiction

∞ > [V (x(0), r(0)) +K∗2T ]eK
∗
2T =∞.

So we must have τ∞ =∞ a.s. This completes the proof of Theorem 2.1.

B Proof of Lemma 5.1

Let V : Rn
+ → R+ be defined as (3.9) , by the generalized Itô formula, we can show that

E

(
sup

t≤r≤t+1
V (x(r))

)
≤ EV (x(t)) + max

k∈S
{|b(k)|}

∫ t+1

t

E(|x(s)|)ds+ max
k∈S
{|A(k)|}

∫ t+1

t

E(|x(s)|2)ds

+E

(
sup

t≤r≤t+1

∫ r

t

xT (s)σ(r(s))dB(s)

)
.
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From (3.1) of Lemma 3.1, we know that

lim sup
t→∞

EV (x(t)) ≤ n
1
2 lim sup

t→∞
E(|x(t)|) ≤ n

1
2K(1). (B.1)

and

lim sup
t→∞

E

∫ t+1

t

|x(s)|2ds ≤ K(2). (B.2)

But, by the well-known Burkholder-Davis-Gundy inequality (see [22], [26]) and the Hölder

inequality, we derive that

E

(
sup

t≤r≤t+1

∫ r

t

xT (s)σ(r(s))dB(s)

)
≤ 3 max

k∈S
{|σ(k)|}E

(∫ t+1

t

|x(s)|2ds
) 1

2

Therefore

E

(
sup

t≤r≤t+1
V (x(r))

)
≤ EV (x(t)) + max

k∈S
{|b(k)|}

∫ t+1

t

E(|x(s)|)ds+ max
k∈S
{|A(k)|}

∫ t+1

t

E(|x(s)|2)ds

+3 max
k∈S
{|σ(k)|}

[
E

∫ t+1

t

|x(s)|2ds
] 1

2

.

This, together with (B.1) and (B.2), yields

lim sup
t→∞

E

(
sup

t≤r≤t+1
V (x(r))

)
≤

[
n

1
2 + max

k∈S
{|b(k)|}

]
K(1) + max

k∈S
{|A(k)|}K(2) + 3 max

k∈S
{|σ(k)|}[K(2)]

1
2 .

Recalling the following inequality

|x(t)| ≤
n∑
i=1

xi(t) ≤ V (x(t)) for any x(t) ∈ Rn
+,

we obtain

lim sup
t→∞

E

(
sup

t≤r≤t+1
|x(r)|

)
≤

[
n

1
2 + max

k∈S
{|b(k)|}

]
K(1) + max

k∈S
{|A(k)|}K(2) + 3 max

k∈S
{|σ(k)|}[K(2)]

1
2 . (B.3)

To prove assertion (5.1) we observe from (B.3) there is a positive constant K̄ such that

E

(
sup

k≤t≤k+1
|x(t)|

)
≤ K̄, k = 1, 2, . . .

Let ε > 0 be arbitrary. Then, by the well-known Chebyshev inequality, we have

P

{
sup

k≤t≤k+1
|x(t)| > k1+ε

}
≤ K̄

k1+ε
, k = 1, 2, . . .
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Applying the well-known Borel-Cantelli lemma (see e.g. [22]), we obtain that for almost

all ω ∈ Ω

sup
k≤t≤k+1

|x(t)| ≤ k1+ε (B.4)

holds for all but finitely many k. Hence, there exists a k0(ω), for almost all ω ∈ Ω, for

which (B.4) holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≥ k0 and

k ≤ t ≤ k + 1,
log(|x(t)|)

log t
≤ (1 + ε) log k

log k
= 1 + ε.

Therefore

lim sup
t→∞

log(|x(t)|)
log t

≤ 1 + ε. a.s.

Letting ε→ 0 we obtain the desired assertion (5.1). The proof is therefore complete.
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