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Abstract:  

Natural ventilation is an established passive cooling technique with the potential to reduce building energy 

demands through the avoidance of air conditioning. However there has been uncertainty about the potential 

of natural ventilation in practice due to a lack of knowledge about the occupant interactions with windows 

for any given situation. This study explores the role of occupant behaviour in relation to natural ventilation 

and its effects on the summer thermal performance of naturally ventilated buildings. A behavioural 

algorithm is developed (the Yun algorithm) representing probabilistic occupant behaviour and implemented 

within a dynamic simulation tool. A core of this algorithm is the use of Markov chain and Monte Carlo 
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methods in order to integrate probabilistic window use models into dynamic energy simulation procedures.  

The comparison between predicted and monitored window use patterns shows good agreement. 

Performance of the Yun algorithm is demonstrated for active, medium and passive window users and a 

range of office constructions. Results show for example, that in some cases, the temperature of an office 

occupied by the active window user in summer is up to 2.6C lower than that for the passive window user. 

A comparison is made with results from an alternative behavioural algorithm developed by Humphreys 

(Rijal et al., 2007). In general, the two algorithms lead to similar predicted results, but the results suggest 

that the Yun algorithm better reflects the observed time of day effects on window use (i.e. the increased 

probability of action being taken on arrival).  
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1. Introduction 

Naturally ventilated buildings are common across many regions of the world. There is an increasing interest 

in the comfort and energy performance of these buildings due to a range of factors including higher recent 

summer temperatures and also legislative requirements for building energy use and carbon emissions such 

as enshrined in the EU directive [1]. One area of concern is the increasing use of air conditioning in UK 

buildings and its associated energy and emissions. Avoidance of air conditioning will require buildings to 

be designed, built (or re-designed and upgraded) and operated to passively maintain a comfortable indoor 

environment. In  current UK building regulations, domestic dwellings require a summer overheating 

calculation to be carried out using the Governments standard assessment procedure [2] or similar, for non 

domestic dwellings the guidance is to use CIBSE TM37 [3]. These methods for demonstrating compliance 

are simplistic, set static thresholds and take no explicit account of outside daily or hourly temperature 

variations or of detailed building ventilation paths and their dynamic interaction with the external climate. 

Other allowed methods include dynamic simulation which can account for dynamic climatic variation. 

Although dynamic simulation has the potential to investigate building performance in great detail and 

include airflows, ventilation openings, climate and building and occupant detailed behaviour, it is common 
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practice to represent occupant behaviour either by using fixed ventilation rates as in the more simple 

methods [2,4] or to model using an indoor temperature threshold to trigger window opening and apply 

proportional control above that threshold. The ventilation rates or temperature thresholds are generally 

derived from an amalgamation of historical survey data from buildings of a given type to define “typical” 

values which could be viewed as representing some typical or average behaviour of occupants. While these 

values may well represent behaviour in a historical notional average building they have no ability to 

accurately represent or explain the range of behaviours seen in survey data and do not provide insight into 

the actual behaviour and resultant effects on energy and comfort that will prevail in a specific situation. 

This is especially a concern in the current and future contexts where building regulations, building design, 

work patterns and climate are changing and historical assumptions may not be valid. 

 

In a typical naturally ventilated building the performance is highly dependent how the building responds to 

climatic and internal variations and on how and when the occupants respond to their conditions (i.e. what 

adaptive actions they take and under what conditions will they take them) and in turn how the people’s 

adaptive actions alter the buildings performance and so on. In order to model in detail the performance of 

naturally ventilated buildings it is desirable to be able to model the occupant’s behaviour within a dynamic 

simulation environment. ESP-r is open-source dynamic simulation software developed by ESRU at the 

University of Strathclyde [5]. Its open-source nature makes ESP-r a particularly suitable vehicle for the 

development and dissemination of new algorithms for adoption in other commercial and non-commercial 

simulation tools. Many control modes are already implemented in ESP-r, most represent controls as would 

be executed by a building management system (i.e. proportional control, integral control, on/off control and 

optimum start control). Some controls have also been implemented to represent occupant behaviour. The 

Hunt model [6] for the switching on and off of office lighting, the stochastic Lightswitch 2002 algorithm 

developed by Reinhart to predict dynamic personal response and control of lights and blinds from field 

study data [7] and Newsham et al [8]’s original Lightswitch model are available.  The SHOCC module 

developed by Bourgeois et al [9] is also available which enables sub-hourly occupancy modelling coupled 

with the occupant behavioural algorithms.  
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Among the most common adaptive actions in a naturally ventilated building is the adjustment of the 

window position. Recently the Humphreys adaptive algorithm for window opening behaviour was 

implemented in ESP-r and its application illustrated in summer overheating and annual energy use 

calculations for a range of different office designs [10, 11]. The Humphreys algorithm is a stochastic 

algorithm based on adaptive thermal comfort theory which has evolved over a number of years [12, 13]. 

The survey data behind the Humphreys algorithm was gathered in the 1990s for a number of offices across 

the UK for which window opening was recorded four times per day.  

 

There have been several other studies of window opening behaviour [14, 15, 16, 17, 18] and several 

different approaches have been taken in the formulation of algorithms to represent this behaviour. Of 

particular interest is the study by Fritsch et al [15]. They performed field measurements of occupants’ use 

of windows in four offices during a heating season and proposed Markov chains to create a time series of 

window angle as a function of outdoor temperature. The comparison of the monitored and generated time 

series of window angles confirmed the validity and reliability of the model based on Markov chains.  

 

Yun and Steemers [19,21] recently carried out a detailed monitoring study at sub-hourly frequency 

gathering window use and other environmental data for a number of modern UK offices and developed 

occupant window use models based on Markov chains which includes time of day (or more specifically - 

time of arrival) as a factor. These models are designed to be applied in Monte Carlo method in order to 

capture the non deterministic nature of the window opening behaviour. Time of day effects (i.e. increased 

probability of action on arrival etc) on window opening have been recognised by another study [18] and are 

also found in other non window behavioural models such as the manual lighting algorithms by Hunt [6] and 

Reinhart [7] but are not included in the Humphreys algorithm, possibly due to the time resolution of the 

survey data. 
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In this paper a new algorithm (the Yun algorithm) for occupant window-control behaviour in a cellular 

office with single-sided natural ventilation and its implementation in dynamic building simulation software 

for potential application to building design is described. Predicted behaviour is compared with the 

monitored data. The algorithm is then used to demonstrate the effects of a range in user behaviour and 

various building design parameters on thermal performance in summer. A comparison is made between the 

results from the Yun algorithm and those generated from use of the alternative Humphreys algorithm. The 

results, similarities and differences between two approaches are then discussed and some conclusions are 

developed. 

 

2. Non-homogenous Markovian model of window states 

Yun and Steemers [19] revealed that the previous state of a window strongly influences the current window 

state, i.e. the current window state is more likely to stay the same as the previous one, irrespective of the 

previous window state.  This study has selected a Markov chain model for the representation of occupant 

use of a window as a Markovian model is the chance process where the past results have an influence on 

the outcomes of successive predictions. The Markovian model has been applied to the simulation of 

building performance [22,23,24] and the representation of occupant behaviour [25,26] and occupancy [27]. 

Tanimoto et al [26], in particular, proposed a method to predict the maximum residential cooling load based 

on Markovian models of air-conditioning use and a new algorithm generating the daily activity schedules 

of residents.  A brief description of the Markov chain is now explained.   

   

2.1 Markov chain 

A Markov chain is a sequence of random states, },...,{ ,1,0 rSSSS  which meets the following 

conditions: 
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)|Pr(),...,,|Pr( 1011 ttttt SSSSSS          ( 1) 

 

This definition represents that the distribution of 1tS  given the past depends only on the value of the 

previous state tS [28]. This Markovian property does not indicate that 1tS  is independent of the previous 

states, 110 ,..., tSSS , but it means that any dependency of 1tS  on the past is stored in the value of 

tS [29].  

 

The Markovian process begins in one of the states, S, and proceeds from one state to another in one step. 

The transition probability that the chain moves from state i  to state j is defined as follows: 

 

)|Pr( 1, iSjSP ttji           (2) 

 

The event that a state remains the same occurs with probability of iiP , . If a Markov chain consists of 

r states, the equation to calculate the transition probability shifted from state i  to state j in m steps is 

given by: 
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2.2 Representing a time series of window states 

A time series of the binary state of a window (i.e. open or closed) at time intervals of one-hour has been 

constructed using a Markov chain. For the sake of convenience, 0 stands for a window being closed and 1 

for a window being open. Figure 1 illustrates the sequence of a window state. iP  , represents the transition 

probability of a window state in i time step from  to  , where the window state in i time step m  is 

 or  . As only two window states are considered here, a window state in m time step 

is }1,0{,  S . The transition probability is calculated by using the existing occupant behaviour 

models of window-control derived from logistic regression analysis [19, 21]. Table 1 summarises occupant 

behaviour models as a function of time of day and types of occupants. This Markovian model is 

inhomogeneous as the transition probability changes according to the time of day. For instance, the 

transition probability of a window state from closed to open on arrival is much higher than the likelihood of 

the change of a window state during the subsequent occupation period under the same thermal stimulus. 

The subsequent occupation period is defined here as the occupied hours except arrival and departure times.  

  

Insert Figure 1 and Table 1 

 

3. Combined algorithm of probabilistic and deterministic building performance 

 

This study develops an algorithm for probabilistic occupant behaviour integrated with deterministic 

building physics models. It aims to comprehend the probabilistic characteristic of the Markovian model of a 

window state in the analysis of building performance.  The behavioural algorithm borrows the concepts of 

stochastic simulations or Monte Carlo methods. A brief explanation of the Monte Carlo methods is now 

given.   
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3.1 Monte Carlo method 

The Monte Carlo method is defined as a statistical analysis based on artificially recreating chance process 

with random numbers, repeating the chance process many times and directly estimating the values of 

important parameters [29]. Thus, it provides not just point estimates of interest, but the statistical 

characteristic of estimates like average, maximum, minimum, standard deviation, etc.  The Monte Carlo 

method is based on the law of large numbers, expressed in Equation (4): 

 

Take nXXX ,..., 21 to be independent random variables, with a finite mean ( ). Let 

nn XXXS  21 . For every positive real number   

0lim 












n
SP n

n
        (4) 

It indicates that the average of the individual outcomes of random process, (Sn/N), is unlikely to be far 

from the true mean ( ), when n is large enough. Therefore, we can obtain the outcome which can be 

predicted with a high degree of certainty, by taking averages of independent random processes [30].  

 

3.2 Combined behaviour algorithm of probabilistic occupant behaviour and deterministic heat and 

mass balance models  

Figure 2 illustrates a combined algorithm of probabilistic and deterministic algorithm of building 

performance, developed and subsequently implemented into a building simulation tool, ESP-r. ESP-r is an 

integrated modelling tool that simulates a thermal and fluid flow phenomenon in a building, by solving the 

thermal model and a fluid flow network. Previous validation studies have shown that ESP-r can accurately 

predict thermal and airflow behaviour [31]. 
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The first stage in the estimations of indoor thermal conditions and energy demands is to initialise a window 

state at a time step of 1 (Figure 2). An initial window state might be randomly chosen from }1,0{S  in 

the general case. However, the longitudinal field studies [19,21], which provided the transition probability 

functions, showed all the windows were closed as occupants left their offices. Thus it is assumed that a 

window is closed at the start of a simulation. The algorithm stages from 2 to 5 are carried out at a 

simulation time step of i . The second stage assigns a candidate state of a window at the current time step 

( i ), which is different from the previous time step ( 1i ). If there are more than two window states, the 

candidate state has to be chosen randomly. In this specific case, the candidate state can be simply calculated 

by:  

 

|1|              (5) 

 

Where   is a candidate state at the current time step of i , 

 is a window state at the time step of 1i .     

 

Stages 3 and 4 update a window state ( i ) with probability ( iP  , ). In other words, they generate a binary 

distribution of window states from the transition probability functions in Table 1. In stage 3, the transition 

probability of a window state from  to   is calculated. If the previous window state is closed (=0), then 

the equation for the transition probability of a window state to open (=1) at the current time step is given 

by  
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1,1
1

1,01,0
1

0,01,0 PPPPP iii            (6) 

 

Stage 4 is a typical process in Monte Carlo methods [32]. A uniform random variable between 0 and 1 is 

created using the pseudo random generator. This random number is compared with the transition 

probability calculated in Stage 3. If the transition probability is equal or over the random number, we 

accept the trial state (i.e. a window state for the current time step is changed to the trial state). This 

evaluation result is then reflected in a time series of a Markovian window states.  

 

Once the window state at the current time step is determined, the iterative solution process of the existing 

deterministic thermal and airflow model in ESP-r is started [31]. When the model has converged in Stage 5, 

we can attain the point estimate of indoor conditions such as air and mean radiant temperatures, relative 

humidity and energy demand. To obtain a window state and other parameters of interest at the next time 

step (i+1), repeat the Stages 2 to 5. This is repeated until it reaches the last simulation time step (Stage 6).  

 

Stage 7 is an iteration process (i.e. multiple simulations as a function of a binary distribution of the window 

state). It aims to attain the statistical distribution of parameters of interest. Stage 6 is repeated until it meets 

the last number of the Monte Carlo or predefined iteration. Each simulation during the iteration process 

produces point estimates of indoor thermal conditions and energy demand at each simulation time step. The 

final estimates of parameters of interests at each time step in the simulation using the combined algorithm 

is the result of the average of point estimates obtained from each of the iterations. Other useful estimates 

from the combined algorithm include standard deviation, maximum and minimum values of interest.   

  

Insert Figure 2 here 
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4. Model description 

Simulation studies were conducted on a theoretical south facing cellular office (Figure 3). It is assumed that 

the office is located within an office building and the thermal conditions of the adjacent space are specified 

to be similar to those of the modelled office. The simulations use the climate data set for Cambridge, UK, 

obtained from the weather database program, Meteonorm 5.1 [33]. Meteonorm creates hourly weather data 

from monthly average values for periods of at least ten years using stochastic methods [33]. The simple 

theoretical office model and the climate dataset used in the simulations were chosen to be somewhat similar 

to the office types and climate of the monitoring study. Precise details of the monitored buildings such as 

thermal and optical properties of constructions, internal gains from equipment and the actual local climate 

(including sheltering, ground reflectance and overshading etc.) were not available [19, 21] and so values 

have been assumed here to allow the algorithm operation to be demonstrated.    

 

The simple office model whose only external wall faces due south has a width of 3m, a depth of 4.5m and 

ceiling height of 3m. The glazing ratio to the total south-facing external wall area is 35% or 3.2m2 and 

double glazing with a U-value of 2.8W/m2K was selected. The casual gains in the model are detailed in 

Table 2. The modelling study employs different construction types to allow analysis of the effect of thermal 

mass. Table 3 shows the specification of each construction type. The simulation period selected to represent 

a warm summer period from the Meteonorm climate file is from 21 August (Monday) to 25 August 

(Friday). This warm summer period was chosen to represent the type of climatic conditions where a poor 

building performance could potentially lead to the adoption of air-conditioning. The simulation time step 

used is one hour and the occupied period is from 9 am to 6 pm. The hourly time-step was chosen as being 

consistent with the frequency in the monitoring data [19,21].  
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The design light level is 400 lux on a horizontal work plane 0.8m above the floor. For the calculation of 

illuminance level on the work plane by daylighting an analytical daylight factor method is selected. The 

model has two photocells in the back and front of the space and the average of two photocells illuminance 

is used for lighting control to complement the level of daylighting illuminance (Figure 4). An artificial light 

is switched off when the daylight level at the height of the work plane is over 600lux (i.e. 1.5 times higher 

than design light level). 

   

Two kinds of airflow modelling methods were used. First, an airflow network model, consisting of airflow 

components of a large opening, infiltration and external wind pressure, was set up. It was employed for the 

simulation of the passive, medium and active behaviour models of window-control. As a comparison the 

use of fixed airflows was also evaluated, in this case a fixed constant background infiltration of 0.33 air 

change rate per hour (ac/h) was assumed and fixed ventilation rates of 2, 4, or 6ac/h were set during 

occupancy, these values were chosen to be within the range specified by CIBSE [4].    

  

Initially the model of the south-facing office with a medium-thermal mass and occupied by the medium 

occupant type for window-control was chosen as a base case to allow effective comparison and to highlight 

the effects of the various parameters.   

Insert Figures 3 and 4 and Tables 2 and 3  

 

5. Results  

 

5.1 Effects of the number of iterations 
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The estimates of indoor conditions are obtained from the average of point estimate results from multiple 

simulations (i.e. iterations) as a function of the binary distribution of the window state. Thus, the number of 

iterations is of significant importance. To determine the number of iterations required for a stable and 

accurate estimation, we investigated the change in indoor operative temperature from the value at the 

immediately preceding repetition (Figure 5).    

 

It is observed that variance in the change of the indoor temperature tends to go up as the day goes on. For 

instance, the maximum variance is 0.10C at 10 am, 0.38C at 12 pm, 0.68C at 2 pm and 1.00C at 4 pm. 

It seems to be attributed to the cumulative effects of probabilistic functions of the window-control 

behaviour models at a higher simulation time step. As the time series of window states is represented by 

Markov chains, the range of outcomes becomes wider the later the particular simulation step occurs within 

the simulation period.  

 

Figure 5 illustrates that only a marginal change in the indoor temperature occurs after 80 iteration 

simulations (i.e. 80 numbers of multiple simulations as a function of binary distribution of the window 

state). This is in line with previous studies which used Monte Carlo analysis in the uncertainty analysis in 

building simulations [33,35]. After 160 iterations the changes in indoor temperature are in most cases less 

than 0.01C and the largest change is equal or less than 0.03C. This study has chosen the iterations of 300 

to improve and guarantee the accuracy of the simulation results.   

 

Insert Figure 5 here 

 

5.2 Comparison with monitoring data 
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Due to the lack of some detailed data such as actual local weather conditions, precise thermal properties of 

the actual building constructions, and accurate internal heat gains from IT equipment in the field studies 

[19,21], a direct comparison of indoor thermal conditions between simulation results and monitoring data 

was not possible. Instead, we evaluated the Yun algorithm by comparing the predicted window state to the 

measured window state across a range of indoor temperatures. The window state data from simulation 

results and the field studies were classified using a temperature bin of 1 ̊C and the probabilities of a window 

being open were then calculated according to time of day (i.e. on arrival and during subsequent occupation 

period).  

   

The comparison of predicted probabilities using the Yun algorithm with the field monitoring results shows 

good agreement (Figure 6), and the monitored and predicted window state probabilities show similar 

trends. The difference between the predicted and monitored probabilities is 3.1% for the subsequent 

occupation period, which includes all of the occupied period except occupant’s first arrival times. The Yun 

algorithm appears to slightly overestimate the probability of a window being open on arrival (the mean 

deviation on arrival is 8.6%). However, the difference is not significant considering the unknowns between 

the model and the real office. 

 

Insert Figure 6 around here 

 

5.3 The effects of occupant behaviour of window-control 

Figure 7a shows the effects of the modelled occupant window opening behaviour on indoor thermal 

conditions for a medium window user and also for the case where the window is not opened. The reduction 

in the indoor temperature due to window opening behaviour compared to the case where the window is 

always closed spans from 1.66C to 9.00C, with an average reduction of 6.18C. The cooling effects of 

opening a window become more apparent towards the end of the week due to the cumulative effect of the 
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closed window, ambient temperature and solar and internal gains (figure 7b). For instance, the maximum 

temperature difference between when a window is controlled with a medium occupant model of window-

control and when a window is assumed to be closed, takes place on Friday when the peak solar radiation 

reaches 669 W/m2. While this model is somewhat simplistic (e.g. it assumes all adjacent spaces in the 

building have similar temperatures) it clearly illustrates window opening behaviour as a possible method 

for cooling of the indoor environment. 

 

Figure 7a also illustrates for the medium window user case the range of indoor temperatures with standard 

deviations at each simulation time step, the highest standard deviation of the indoor temperature is 0.91C 

for the unoccupied period; 1.73C for the occupied period.    Figure 7b demonstrates the likelihood of 

window-control activity for the medium window user model. The proportion of iterations when a window 

is open (i.e. the likelihood of a window being open) ranges from 66% to 82% on arrival and from 60% to 

96% during the subsequent occupation period. This is closely related with indoor temperature distributions. 

For example, on arrival, the proportion of the iterations with a window being open is 66% at the indoor 

temperature of 24.36C and 82% at the indoor temperature of 26.12C, when during the subsequent 

occupation period the operative temperature gradually increases from 27.03C to 28.52C the likelihood of 

a window being open rises from 78% to 89%.  

 

Insert Figures 7 and 8 here 

 

The models of manual window control in this study enable different window use patterns to be considered 

in the prediction of indoor thermal conditions (Figure 8). Figure 8b shows the wide variation in window-

control patterns as a function of active, medium and passive user behaviour models. The average likelihood 

of a window being open on arrival is 99% for the active window user, 76% for the medium window user, 
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43% for the passive window user. During the subsequent occupation periods the figures are 83% for the 

active window user, 75% for the medium window user, 67% for the passive window user. 

 

It is clear that individual differences in the interaction with a window play an important role in building 

thermal performance (Figure 8a). The operative temperature inside an office, where an occupant most 

actively controls the window in response to the intensity of indoor thermal stimulus, remains the lowest, 

while the room temperature for the passive user of a window is the highest. The temperature of an office of 

an active user of a window is up to 2.64C lower than that for a passive user of a window. The largest 

difference between the two cases occurs at one hour after the occupant arrival on Wednesday. The 

likelihood of a window being open at this simulation time step is 84% for the active window user and 44% 

for the passive window user. As the weather conditions and internal heat gains remain the same between 

the two cases, the temperature difference results from the difference in the window-control patterns of 

occupants. The mean temperature difference between the two offices during occupied period is 1.15C.    

 

5.4 Effects of thermal mass and occupant behaviour 

Figure 9 demonstrates the variation in indoor temperature distribution as a function of light, medium and 

heavy-weight construction with the medium user behaviour model of window-control. The results show 

that the thermal responses of a light weight structure are most sensitive to the change in heat gains and 

weather conditions. On average, the temperature in a light-weight office during occupancy is 1.75C higher 

than that in a heavy-weight office.  

 

As identified by Baker [36], the appropriate use of heavy or medium thermal mass and its effective 

distribution in a building is an effective design strategy to moderate the extremes of thermal conditions. 

Thermal mass combined with solar shading, night cooling and good ventilation is recommended design 

practice for maintaining comfortable summer temperatures [4, 37]. The maximum and minimum office 
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temperatures among the three offices analysed are all observed in a light weight office. The maximum 

temperature of 34.28C (at 2 pm on Friday) and the minimum temperature of 22.79C (at 10 am on 

Tuesday) occur for the light-weight office. The largest temperature difference of 5.14C between light and 

heavy-weight offices happens at 2 pm on Friday. 

  

Insert Figure 9 here 

 

5.5 Fixed ventilation rate methods and occupant behaviour models of window-control 

Figure 10 compares indoor temperature results obtained using the Yun algorithm with those obtained using 

a fixed ventilation rate. It suggests, as expected, that the simplified fixed ventilation rate representation of 

window-control does not well represent the variation experienced in the performance of natural ventilation. 

An ac/h of 10 or higher is commonly applied in evaluation of summer temperatures [4] which would in this 

case give predicted indoor temperatures even lower than for the 6 ac/h results shown here which could lead 

to an underestimate of the actual room temperatures that would be experienced in practice.  

 

It should be mentioned that the window-control activities, ventilation rates from an open window and 

cooling effects of natural ventilation are dependent on various factors such as wind speed and direction, 

ambient temperature, indoor thermal conditions and the detailed design of a window system. These factors 

are not explicitly accounted for when fixed ventilation rates are assumed. Thus, a detailed simulation 

incorporating user behaviour, ventilation paths and local climate conditions as carried out in this study has 

potential to  provide more robust prediction of the airflow rate and the thermal performance of naturally 

ventilated buildings.  

 

Insert Figure 10 here 
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5.6 Comparative simulation with the Humphreys model  

The research team led by Fergus Nicol and Michael Humphreys have recently proposed the Humphreys 

algorithm for window opening in naturally ventilated buildings [10,11]. This algorithm is based on window 

opening being an adaptive response to thermal discomfort and has also been implemented in ESP-r. As a 

comparison to the new algorithm (the Yun algorithm) developed in this work and described in earlier 

sections, the same office was simulated but with the Humphreys algorithm controlling the window opening 

behaviour.  The Humphreys algorithm [10] is also stochastic and it has a thermal comfort ‘dead-band’ 

which could be viewed as having the effect of making the probability of a window change event dependent 

on the previous setting of the window as the window setting from the previous time step directly affects the 

thermal comfort conditions of the current time step. Unlike in previous studies using the Humphreys 

algorithm, here a Monte Carlo approach was employed to generate a statistical distribution. The results for 

this application of the Humphreys algorithm are shown in Figure 10a. In general the operative temperature 

ranges predicted are similar for both the Yun (22.2C to 30.8C) and Humphreys (24.4C to 30.2C) 

algorithms as both predict the windows will generally be open for this warm period. However differences 

between the two algorithms are also highlighted particularly with respect to the predicted behaviour on the 

cooler days of the week. On these days the Humphreys algorithm predicts that the occupants will be 

comfortable on arrival and will not open the windows until outdoor temperature, solar and internal gains 

cause the internal temperature to exceed the comfort band and the occupant experiences some mild thermal 

discomfort. This occurs around 11am for the more moderate Tuesday, Wednesday and Thursday conditions 

in this example. This behaviour is shown in the increasing trend in the operative temperature for the 

mornings of these cooler days which is opposite to the prediction from the Yun algorithm where window 

opening on arrival causes the office temperature to drop initially due to the influx of cooler outside air. On 

days where the room temperatures have already exceeded the Humphreys comfort band by arrival time then 

the performance of the two algorithms is more consistent (Monday, Friday). Figure 11b shows the average 

value for the probability function calculated in the Humphreys algorithm. The Humphreys algorithm has 

been assigned a value of 0 when the comfort band is not exceeded (i.e. a window is closed).  In comparison 
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to the earlier chart (Figure 11a) for the Yun algorithm, it can be seen that while in general the maximum 

probabilities for the window being open on each of the days are similar the difference in predicted 

behaviour on arrival is again highlighted.  

Insert Figure 11 here 

6 Discussion 

This study reports the development of a behavioural algorithm of manual window-control (i.e. the Yun 

algorithm) using Markov chain and Monte Carlo methods from a longitudinal monitoring campaign and its 

implementation into a dynamic energy simulation tool, ESP-r.  The Yun algorithm generates a time series 

of window states as a function of the indoor thermal stimulus, the previous window state and time of day in 

order to simulate occupant behaviour of window-control observed in the monitoring campaign. Thus, the 

algorithm would potentially contribute to more realistic predictions of thermal performances of naturally 

ventilated buildings, compared with conventional simulation methods which deal with the use of windows 

based on certain assumptions such as a predefined schedule, fixed ventilation rate and threshold method. 

These assumptions are often without evidence from the field and attributed to discrepancy between 

predicted and actual building performance [10]. We envisage that the application of the Yun algorithm in 

dynamic simulation processes would allow us to better understand the roles of occupant behaviour in 

building performance and develop more reliable and robust design strategies.  

 

The Yun algorithm classifies building occupants into active, medium and passive users of windows and is 

capable of quantifying the effects of the difference in occupant interactions with windows on thermal 

performances. This study also provides evidence that the effects of occupant behaviour of window-control 

patterns can be of the same order as the influence of thermal mass. The mean variation in indoor 

temperature is 1.75C due to the different construction types and the variation caused by different user 

behaviour of window-control is 1.15C. This also suggests that taking account of occupant behaviour in 

building simulation tools is essential to ensure the accuracy and reliability of their simulation results.      



21 

 

 

Another outcome of this study is the comparison of the Yun algorithm with the Humphreys adaptive 

algorithm of manual window-control. The two algorithms result in generally similar prediction results. The 

differences in indoor temperatures between the algorithms over the occupied hours are in most cases less 

than 0.5C. Particularly the temperature difference is minimal during the warmer days of the week 

(Monday and Friday) when the indoor temperatures by the occupant’s arrival time of day go already over 

the comfort band in the Humphreys algorithm. 

 

The Humphreys algorithm was based largely on a 12 building survey (6 Aberdeen, 6 Oxford) carried out in 

the 1990s. Buildings covered Educational, Local Authority and Commercial offices of both cellular and 

open plan office types. Longitudinal and transverse studies were carried out [10]. The observations were 

made only 4 times per day. Building fabric and building locations were varied. The Yun algorithm is based 

on more comprehensive and more frequent observations across a smaller number of observation sites and a 

narrower range of buildings and occupations.  The Humphreys algorithm as it was published and evaluated 

here does not distinguish between arrival times and later times of day. This may have been influenced by 

factors such as the four-a-day sampling period, the occupant activities, the surrounding environments etc. 

The thermal comfort basis for the Humphreys algorithm is not sensitive to non thermal factors such as 

‘stuffiness’, contaminants, odours or other hypothetical desires for air movement or freshness. Sources of 

‘poor air’ that could trigger non thermal window opening could possibly include high levels of dust, IT 

equipment left running overnight, building materials that emit contaminants, odours, low humidity, un-

emptied bins containing organic materials, toilets, cleaning materials, etc. These non thermal triggers could 

alter window opening behaviour and tend to increase window opening with (in the UK climate) some 

associated increase in energy use for the enhanced ventilation rates in winter time and possibly some 

reduction in peak summer temperatures [11]. 
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Monitoring data that forms the basis of the Yun algorithm may be influenced by the specific situational and 

contextual factors of the offices on campus such as pleasant surroundings (visual and aural), single 

occupancy, easily operable windows, educational employee types etc. These may lead to enhanced window 

use in these monitored offices. The educational employees in a campus setting may routinely open the 

windows because it is pleasant to do so. This will not always be the case (e.g. road noise outside) and other 

situations may lead to windows remaining closed until some thermal discomfort is experienced. 

 

The Yun algorithm similarly to the Humphreys algorithm, may not be directly sensitive to the other non 

thermal factors which may drive window opening events although it may indirectly capture these by its 

separate treatment of window opening events upon arrival. The Humphreys approach directly incorporates 

adaptive thermal comfort criterion based on rolling mean external temperatures which is now included in 

standards to be applied to free running buildings [4,38] while the Yun algorithm is dependent on internal 

temperatures only. The Yun algorithm approach, of defining different user types may offer some 

advantages in identifying the critical roles of occupant behaviour in naturally ventilated buildings, 

similarly, the incorporation of time of day or event driven effects (i.e. arrival, occupied periods) has 

advantages and better reflects the occupant window-control behaviours discovered in the monitoring 

activities.  

 

Future work can be carried out in a number of areas in order to make the methodology more robust. Further 

surveys, algorithm development and validation studies should be carried out in order to answer the open 

questions. Both Humphreys and Yun methodologies have merits and it is expected that further data 

gathering and analysis may lead to a solution containing elements of both. Both methodologies lend 

themselves to being embedded in building design software and would give advantages over current 

standard methods for design of comfortable and low energy buildings. The simulation methodology 

illustrated here has comprehended occupant window opening behaviour and its stochastic variability. Other 

occupant behavioural models such as occupancy models, blind, shade and light use models [9] can also be 
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integrated in future with the window algorithms in dynamic simulation to more fully represent the occupant 

experience and impact on comfort, energy use and carbon emissions. Other uncertainties in parameters such 

as internal gains and building fabric (thermal bridges etc) should also be comprehended in the methodology 

and combined with the occupant models in order to give a realistic range of building performance (comfort 

and carbon) under realistic operational conditions at the design stage [35].  

Comprehending occupant behaviour and its effect on energy is recognised as one area where simplified 

models are weak. Dynamic simulation relies on the same assumptions of behaviour used in the simplified 

models. There is scope for the current and future work in this field to both develop robust human behaviour 

models for use in dynamic simulation and to improve the simplified methods. 

 

7. Conclusions 

A newly developed algorithm (The Yun algorithm) for occupant window-control behaviour including 

Markov chains and Monte Carlo methods and its implementation in dynamic building software for potential 

application to building design has been described in detail. The Yun algorithm applied to a naturally 

ventilated office was used to illustrate the predicted effect of user behaviour on the summer thermal 

performance for a range of different building constructions. It was shown that variation between active and 

passive window user behaviour can have a significant effect on thermal performance, the difference 

between active and passive window use behaviour being of the same order as the difference between low 

and high thermal mass constructions. A comparison was made between the Yun algorithm results and the 

results from the alternative Humphreys algorithm. The similarities and differences between the two 

approaches are discussed and areas for further work identified. The algorithm has been implemented in 

open source simulation software to facilitate its dissemination and adoption in other simulation software or 

by other researchers. An argument is presented for the incorporation of occupant behaviour models in 

building design. 
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thermal mass structure  

(a)  Indoor temperature with standard deviation using the medium user behaviour models of window-

control for the simulation period, along with the likelihood of a window being open 

(b) Ambient conditions   
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Figure 8 Indoor operative temperatures in an office with medium weight construction mass as a function of 

passive, medium and active user behaviour models of window-control 

(a)  Indoor operative temperatures 

(b) The likelihood of a window being open (i.e. the ratio of the number of iteration when a window is open 

to the total number of iteration)  
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Figure 9 Indoor temperatures in an office with light, medium and heavy weight construction using a 

medium user behaviour model of window control 
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Figure 10 Comparison of indoor temperature as a function of passive, medium and active user behaviour 

models of window-control with indoor temperature with fixed ac/h of 2, 4 and 6 in an office with a 

medium-weight construction 
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Figure 11 Comparison of the results between the Yun and Humphreys algorithms 

(a)  Indoor operative temperatures 

(b)  Likelihood of a window being open (i.e. the ratio of the number of iteration when a window is open to 

the total number of iteration) 
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Tables: 

 

 

Logistic transition probability function 

 

where  is the probability of a window state 

transition from i to j and is indoor temperature 

Regression results 

Time of day Occupant type State transition a (SD) b (SD) 
Arrival Active Closed to open -14.094 (9.195) 0.717 (0.428) 
Arrival Medium Closed to open -7.989 (1.856) 0.359 (0.080) 
Arrival Passive Closed to open -7.777 (4.292) 0.293 (0.183) 

Subsequent Medium Closed to open -11.383 (2.669) 0.365 (0.108) 
Subsequent Medium Open to closed 3.748 (2.462) -0.289 (0.103) 

 

Table 1. Transition probability functions: logistic regression coefficients for the user behaviour models of 

window control (SD refers to standard deviation) 
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Gain/Floor area (W/m2) Selected heat gain in the model 

Occupancy 12 

Lighting 12 

Small power 8 
 

Table 2. Internal heat gains during the occupied period 
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Floor       
Thermal 
mass 

Material Thickness (mm) Conductivity W/(m. ̊C) Density kg/m3 Specific heat J/(kg. ̊C) R (m2.K)/W 

Heavy Heavy mix 
concrete 

150 1.400 2100 653 0.11 

Medium Heavy mix 
concrete 

150 1.400 2100 653 0.11 

 Wilton 10 0.060 186 1360 0.17 
Light Aerated concrete 

block 
100 0.240 750 1000 0.42 

 Air 200    0.17 
 Chipboard 20 0.150 800 2093 0.13 
 Wilton 15 0.060 186 1360 0.25 
Ceiling       
Thermal 
mass 

Material Thickness (mm) Conductivity W/(m. ̊C) Density kg/m3 Specific heat J/(kg. ̊C) R (m2.K)/W 

Heavy Heavy mix 
concrete 

150 1.400 2100 653 0.11 

Medium Heavy mix 
concrete 

150 1.400 2100 653 0.11 

 Light plaster 10 0.160 600 1000 0.06 
Light Aerated concrete 

block 
100 0.240 750 1000 0.42 

 Air 200    0.17 
 Mineral ceiling 15 0.030 290 2000 0.50 
External wall      
Thermal 
mass 

Material Thickness (mm) Conductivity W/(m. ̊C) Density kg/m3 Specific heat J/(kg. ̊C) R (m2.K)/W 

Heavy Cement screed 10 1.400 2100 650 0.01 
 Polyurethane foam 100 0.030 30 837 3.33 
 Light mix concrete 100 0.380 1200 653 0.26 
 Gypsum plaster 10 0.420 1200 837 0.02 
Medium Cement screed 10 1.400 2100 650 0.01 
 Polyurethane foam 100 0.030 30 837 3.33 
 Aerated concrete 

block 
70 0.240 750 1000 0.29 

 Gypsum plaster 10 0.420 1200 837 0.02 
Light Cement screed 10 1.400 2100 650 0.01 
 Polyurethane foam 90 0.030 30 837 3.00 
 Aerated concrete 50 0.160 500 840 0.31 
 Air 200    0.17 
 Light plaster 10 0.160 600 1000 0.06 
Internal wall      
Thermal 
mass 

Material Thickness (mm) Conductivity W/(m. ̊C) Density kg/m3 Specific heat J/(kg. ̊C) R (m2.K)/W 

Heavy Cement screed 10 1400 2100 650 0.01 
 Light mix concrete 100 0.380 1200 653 0.26 
 Gypsum plaster 10 0.420 1200 837 0.02 
Medium Cement screed 10 1.400 2100 650 0.01 
 Aerated concrete 

block 
70 0.240 750 1000 0.29 

 Gypsum plaster 10 0.420 1200 837 0.02 
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Light Cement screed 10 1.400 2100 650 0.01 
 Aerated concrete 50 0.160 500 840 0.31 
 Air 200    0.17 
 Light plaster 10 0.160 600 1000 0.06 
Table 

 


