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Abstract

In this paper we will show that noise can make a given system whose solutions
grow exponentially become a new system whose solutions will grow at most poly-
nomially. On the other hand, we will also show that noise can make a given system
whose solutions are bounded become a new system whose solutions will grow ex-
ponentially. In other words, we reveal that the noise can suppress or expresses
exponential growth.

Key words: Brownian motion, stochastic differential equation, stochastic control,
exponential growth, polynomial growth, boundedness.

AMS Classifications: 60H10, 93E15

1 Introduction

It is well known that noise can be used to stabilise a given unstable system or to make
a system even more stable when it is already stable. There is an extensive literature
concerned with the stabilisation and destabilisation by noise and we here mention [1, 2,
3, 4, 5, 7, 8, 9, 10, 11, 14, 18, 20, 21]. Recently, Mao et al. [16] showed another important
fact that the environmental noise can suppress explosions (in a finite time) in population
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dynamics. In this paper we will reveal one more important feature that the noise can
suppress or expresses exponential growth.

To explain this feature more clearly, let us consider the simple linear scalar ordinary
differential equation

ẏ(t) = a+ by(t) on t ≥ 0 (1.1)

with initial value y(0) = y0 > 0, where a, b > 0. This equation has its explicit solution

y(t) =
(
y0 +

a

b

)
ebt − a

b
.

Hence

lim
t→∞

1

t
log(y(t)) = b,

that is, the solution tends to infinity exponentially. On the other hand, we stochastically
perturb this equation into a linear stochastic differential equation (SDE)

dx(t) = [a+ bx(t)]dt+ σx(t)dB(t) on t ≥ 0 , (1.2)

where σ > 0 and B(t) is a scalar Brownian motion. Given initial value x(0) = x0 > 0,
this SDE has its explicit solution

x(t) = exp
[
(b− 1

2
σ2)t+ σB(t)

](
x0 + a

∫ t

0

exp
[
(b− 1

2
σ2)s+ σB(s)

]
ds
)
.

We shall see later in this paper that if σ2 > 2b then the solution of equation (1.2) obeys

lim sup
t→∞

log(x(t))

log t
≤ σ2

σ2 − 2b
a.s. (1.3)

This shows that for any ε > 0, there is a positive random variable Tε such that, with
probability one,

x(t) ≤ tε+σ
2/(σ2−2b) ∀t ≥ Tε.

In other words, the solution will grow at most polynomially with order ε+ σ2/(σ2 − 2b).
In particular, by increasing the noise intensity σ, we can make the order as closed to 1 as
we like. Comparing this polynomial growth with the exponential growth of the solution
(1.1), we see the important fact that the noise suppresses the exponential growth.

We should also point out another important feature. As the noise term in equation
(1.2) is linear, the mean value Ex(t) of the solution still obeys its original equation (1.1)
so Ex(t) will tend to infinity exponentially. This is significantly different from its sample
property that almost every sample path of the solution will grow at most polynomially.
The classical relationship between almost sure and moment Lyapunov exponents (see e.g.
[6, 19]) illustrates this issue more clearly.

The main aim of this paper is to develop this idea for general nonlinear SDEs. We
will then consider a nonlinear system described by an ordinary differential equation

ẏ(t) = f(y(t), t),

whose coefficient obeys

〈y, f(y, t)〉 ≤ K1 +K2|y|2, ∀(y, t) ∈ Rn × R+.
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Clearly, the solution of this equation may grow exponentially. However, we will show that
we can always design a linear stochastic feedback control Ax(t)dB(t) (i.e. choose a square
matrix A ∈ Rn×n) so that the stochastically controlled system

dx(t) = f(x(t), t)dt+ Ax(t)dB(t)

will grow at most polynomially with probability one.

However, every thing has two sides. We may therefore wonder if noise can make
a given system whose solutions are bounded become a new system whose solutions will
grow exponentially? In this paper we will give a positive answer to this question as well.
For example, the n-dimensional linear ordinary differential equation ẏ(t) = q+Qy(t) has
bounded solutions if the square matrix Q is negative-definite. If n is an even number, we
can perturb it by two independent Brownian motions into a linear SDE

dx(t) = (q +Qx(t))dt+ ξdB1(t) + Ax(t)dB2(t)

so that its solutions will grow exponentially with probability one. It is also interesting
to observe that its mean values Ex(t) still obey the original equation ẏ(t) = q + Qy(t)
whence they are still bounded.

2 Polynomial Growth of SDEs

Throughout the paper, unless otherwise specified, we will employ the following notation.
Let (Ω,F , {F(t)}t≥0,P) be a complete probability space with a filtration {F(t)}t≥0 satis-
fying the usual conditions (i.e., it is increasing and right continuous while F(0) contains
all P-null sets). Let B(t) = (B1(t), · · · , Bm(t))T , t ≥ 0, be an m-dimensional Brownian
motion defined on the probability space, where T denotes the transpose of a vector or
matrix. If x, y are real numbers, then x ∨ y denotes the maximum of x and y, and x ∧ y
denotes the minimum of x and y. Let |x| be the Euclidean norm of a vector x ∈ Rn and
〈x, y〉 be the inner product of vectors x, y ∈ Rn. Vectors x ∈ Rn are thought as column
ones so to get row vectors we use xT . The space of n ×m matrices with real entries is
denoted by Rn×m. If A = (aij) is an n×m matrix, we denote its Frobenius or trace norm
by

|A| =

√√√√ n∑
i=1

m∑
j=1

a2
ij

while its operator norm by ‖A‖ = sup{|Ax| : x ∈ Rm, |x| = 1}. If A ∈ Rn×n is symmetric,
its largest and smallest eigenvalue are denoted by λmax(A) and λmin(A), respectively.

Let us consider an n-dimensional stochastic differential equation (SDE)

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) (2.1)

on t ≥ 0 with the initial value x(0) = x0 ∈ Rn, where

f : Rn × R+ → Rn and g : Rn × R+ → Rn×m.

We impose the following hypothesis.
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Assumption 2.1 Assume that both coefficients f and g are locally Lipschitz continuous,
that is, for each k = 1, 2, · · · , there is a positive number Hk such that

|f(x, t)− f(y, t)| ∨ |g(x, t)− g(y, t)| ≤ Hk|x− y|

for all t ≥ 0 and those x, y ∈ Rn with |x|∨|y| ≤ k. Assume also that there are nonnegative
constants α, β, η and γ such that

〈x, f(x, t)〉 ≤ α + β|x|2, |g(x, t)|2 ≤ η + γ|x|2 (2.2)

for all (x, t) ∈ Rn × R+.

It is known (see e.g. [15, Theorem 3.5 on page 58]) that under Assumption 2.1, the
SDE (2.1) has a unique global solution x(t) on t ∈ R+. We also observe from [15, Theorem
5.1 on page 63] that under Assumption 2.1 the solution obeys

lim sup
t→∞

1

t
log(|x(t)|) ≤ β + 1

2
γ a.s.

That is, the solution will grow at most exponentially with probability one. The follow-
ing theorem shows that if the noise is sufficiently large, it will suppress this potentially
exponential growth and make the solution grow at most polynomially.

Theorem 2.2 Let Assumption 2.1 hold. Assume that there are moreover two positive
constants δ and ρ such that

|xTg(x, t)|2 ≥ δ|x|4 − ρ (2.3)

for all (x, t) ∈ Rn × R+. If
δ > β + 1

2
γ, (2.4)

then the solution of equation (2.1) obeys

lim sup
t→∞

log(|x(t)|)
log t

≤ δ

2δ − 2β − γ
a.s. (2.5)

Proof. Choose any θ such that

0 < θ <
2δ − 2β − γ

2δ
. (2.6)

By the Itô formula,

d[(1 + |x(t)|2)θ] =
(
θ(1 + |x(t)|2)θ−1[2〈x(t), f(x(t), t)〉+ |g(x(t), t)|2]

+ 2θ(θ − 1)(1 + |x(t)|2)θ−2|xT (t)g(x(t), t)|2
)
dt

+ 2θ(1 + |x(t)|2)θ−1xT (t)g(x(t), t)dB(t).
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By conditions (2.2) and (2.3), we then have

d[(1 + |x(t)|2)θ] ≤ θ(1 + |x(t)|2)θ−2

×
[
(1 + |x(t)|2)[2α + η + (2β + γ)|x(t)|2]− 2(1− θ)(δ|x(t)|4 − ρ)

]
dt

+ 2θ(1 + |x(t)|2)θ−1xT (t)g(x(t), t)dB(t)

= θ(1 + |x(t)|2)θ−2
(

2α + η + 2ρ+ (2α + η + 2β + γ)|x(t)|2

−[2δ(1− θ)− 2β − γ]|x(t)|4
)
dt

+ 2θ(1 + |x(t)|2)θ−1xT (t)g(x(t), t)dB(t). (2.7)

Choose ε > 0 sufficiently small for

ε

θ
< 2δ(1− θ)− 2β − γ. (2.8)

Then, by the Itô formula again,

d[eεt(1 + |x(t)|2)θ]

≤ θeεt(1 + |x(t)|2)θ−2
(ε
θ

(1 + |x(t)|2)2 + 2α + η + 2ρ

+(2α + η + 2β + γ)|x(t)|2 − [2δ(1− θ)− 2β − γ]|x(t)|4
)
dt

+ 2θeεt(1 + |x(t)|2)θ−1xT (t)g(x(t), t)dB(t).

It is easy to see that there is a positive constant C1 such that

θ(1 + |x|2)θ−2
(ε
θ

(1 + |x|2)2 + 2α + η + 2ρ

+(2α + η + 2β + γ)|x|2 − [2δ(1− θ)− 2β − γ]|x|4
)
≤ C1 (2.9)

for all x ∈ Rn. Thus

d[eεt(1 + |x(t)|2)θ] ≤ C1e
εtdt+ 2θeεt(1 + |x(t)|2)θ−1xT (t)g(x(t), t)dB(t).

This implies

E[eεt(1 + |x(t)|2)θ] ≤ [(1 + |x0|2)θ] +
C1

ε
eεt,

whence

lim sup
t→∞

E[(1 + |x(t)|2)θ] ≤ C1

ε
. (2.10)

Moreover, using (2.9), we observe from (2.7) that

d[(1 + |x(t)|2)θ] ≤ C1dt+ 2θ(1 + |x(t)|2)θ−1xT (t)g(x(t), t)dB(t).

This implies

E
(

sup
t≤u≤t+1

(1 + |x(u)|2)θ
)
≤ E[(1 + |x(t)|2)θ] + C1

+2θE
(

sup
t≤u≤t+1

∣∣∣ ∫ u

t

(1 + |x(s)|2)θ−1xT (s)g(x(s), s)dB(s)
∣∣∣). (2.11)
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But, by the well-known Burkholder–Davis–Gundy inequality (see e.g. [15, 17]), we com-
pute

2θE
(

sup
t≤u≤t+1

∣∣∣ ∫ u

t

(1 + |x(s)|2)θ−1xT (s)g(x(s), s)dB(s)
∣∣∣).

≤ 2θE
(∫ t+1

t

(1 + |x(s)|2)2θ−2|xT (s)g(x(s), s)|2ds
)1

2

≤ 2θE
(∫ t+1

t

(1 + |x(s)|2)2θ−2|x(s)|2(η + γ|x(t)|2)ds
)1

2

≤ 2θ
√
η ∨ γE

([
sup

t≤s≤t+1
(1 + |x(s)|2)θ

] ∫ t+1

t

(1 + |x(s)|2)θds
)1

2

≤ 1
2
E
[

sup
t≤s≤t+1

(1 + |x(s)|2)θ
]

+ 2θ2(η ∨ γ)E
∫ t+1

t

(1 + |x(s)|2)θds.

Substituting this into (2.11) gives

E
(

sup
t≤u≤t+1

(1 + |x(u)|2)θ
)
≤ 2E[(1 + |x(t)|2)θ] + 2C1

+ 4θ2(η ∨ γ)

∫ t+1

t

E(1 + |x(s)|2)θds.

Letting t→∞ and using (2.10) we obtain that

lim sup
t→∞

E
(

sup
t≤u≤t+1

(1 + |x(u)|2)θ
)
≤ 2C1

[
1 +

1

ε
(1 + 4θ2(η ∨ γ))

]
. (2.12)

Therefore, there is a positive constant C2 such that

E
(

sup
k≤u≤k+1

|x(u)|2θ
)
≤ C2, k = 1, 2, · · · .

Let ε̄ > 0 be arbitrary. Then, by the well-known Chebyshev inequality, we have

P
{

sup
k≤t≤k+1

|x(u)|2θ > k1+ε̄
}
≤ C2

k1+ε̄
, k = 1, 2, · · · .

Applying the well-known Borel–Cantelli lemma (see e.g. [15]), we obtain that for almost
all ω ∈ Ω,

sup
k≤t≤k+1

|x(t)|2θ ≤ k1+ε̄ (2.13)

holds for all but finitely many k. Hence, there exists a k0(ω), for almost all ω ∈ Ω, for
which (2.13) holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≥ k0 and
k ≤ t ≤ k + 1,

log(|x(t)|2θ)
log t

≤ (1 + ε̄) log k

log k
= 1 + ε̄.

Therefore

lim sup
t→∞

log(|x(t)|)
log t

≤ 1 + ε̄

2θ
a.s.
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Letting ε̄→ 0 we obtain that

lim sup
t→∞

log(|x(t)|)
log t

≤ 1

2θ
a.s.

Since this holds for any θ which obeys (2.6), we must have the desired assertion (2.5).
The proof is therefore complete. 2

Let us now return to the ordinary differential equation (1.1) and its corresponding
SDE (1.2). If we define

f(x, t) = a+ bx and g(x, t) = σx, (x, t) ∈ R× R+

and let B(t) be a scalar Brownian motion. Then equation (1.2) can be written as equation
(2.1). In this case, we clearly have

|g(x, t)|2 = σ2x2 and |xg(x, t)|2 = σ2x4.

Moreover, for any sufficiently small ε > 0,

xf(x, t) = ax+ bx2 ≤ 2a2

ε
+ (b+ ε)x2.

By Theorem 2.2, we see that the solution of equation (1.2) obeys

lim sup
t→∞

log(|x(t)|)
log t

≤ σ2

σ2 − 2(b+ ε)
a.s.

Letting ε→ 0 yields

lim sup
t→∞

log(|x(t)|)
log t

≤ σ2

σ2 − 2b
a.s.

which confirms (1.3).

3 Noise Suppresses Exponential Growth

Let us now consider a nonlinear system described by an ordinary differential equation

ẏ(t) = f(y(t), t). (3.1)

Here f : Rn × R+ → Rn is locally Lipschitz continuous and obeys

〈x, f(x, t)〉 ≤ α + β|x|2, ∀(x, t) ∈ Rn × R+, (3.2)

for some positive constants α and β. Clearly, the solution of this equation may grow
exponentially. The question is: Can we design a linear stochastic feedback control of the
form

m∑
i=1

Aix(t)dBi(t)

(i.e. choose square matrices Ai ∈ Rn×n) so that the stochastically controlled system

dx(t) = f(x(t), t)dt+
m∑
i=1

Aix(t)dBi(t) (3.3)

will grow at most polynomially with probability one? Let us first establish a corollary from
Theorem 2.2. Based on this corollary, we will then answer the question very positively.
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Corollary 3.1 Let (3.2) hold. Assume that there are two positive constants γ and δ such
that

m∑
i=1

|Aix|2 ≤ γ|x|2,
m∑
i=1

|xTAix|2 ≥ δ|x|4 (3.4)

for all x ∈ Rn, and
δ > β + 1

2
γ. (3.5)

Then, for any initial value x(0) = x0 ∈ Rn, the solution of the stochastically controlled
system (3.3) obeys

lim sup
t→∞

log(|x(t)|)
log t

≤ δ

2δ − 2β − γ
a.s. (3.6)

Proof. Define g : Rn × R+ → Rn×m by

g(x, t) = (A1x, · · · , Amx).

Then system (3.3) can be written as equation (2.1). Moreover,

|g(x, t)|2 =
m∑
i=1

|Aix|2 ≤ γ|x|2 and |xTg(x, t)|2 =
m∑
i=1

|xTAix|2 ≥ δ|x|4.

The conclusion hence follows from Theorem 2.2 directly. 2

The reader may wonder if the following more general stochastic feedback control

m∑
i=1

(ai + Aix(t))dBi(t)

could be better? Here ai ∈ Rn, 1 ≤ i ≤ n. The answer is not. In fact, we can show in the
same way as the above corollary was proved that under the same conditions of Corollary
3.1, the solution of the following SDE

dx(t) = f(x(t), t)dt+
m∑
i=1

(ai + Aix(t))dBi(t)

still obeys (3.6).

Let us now show that there are many matrices Ai that satisfy conditions (3.4) and
(3.5). First of all, let Ai = σiI for 1 ≤ i ≤ m, where I is the n × n identity matrix and
σi’s are non-negative real numbers which represent the intensity of the noise. In this case,
the stochastically controlled system becomes

dx(t) = f(x(t), t)dt+
m∑
i=1

σix(t)dBi(t). (3.7)

By Corollary 3.1, it is straightforward to show that the solution of system (3.7) obeys

lim sup
t→∞

log(|x(t)|)
log t

≤
∑m

i=1 σ
2
i∑m

i=1 σ
2
i − 2β

a.s.
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Hence, the solution will grow at most polynomially with probability one provided
∑m

i=1 σ
2
i >

2β.

Let us consider a more general case. For each i, choose a positive-definite matrix Di

such that

xTDix ≥
√

3

2
‖Di‖|x|2 ∀x ∈ Rn. (3.8)

Obviously, there are many such matrices. Let σ be a constant large enough for

σ2 >
4β∑m

i=1 ‖Di‖2
.

Set Ai = σDi. Then

m∑
i=1

|Aix|2 ≤ σ2

m∑
i=1

‖Di‖2|x|2 and
m∑
i=1

|xTAix|2 ≥
3σ2

4

m∑
i=1

‖Di‖2|x|4. (3.9)

Thus, by Corollary 3.1, we can conclude that the solution of the stochastically controlled
system (3.3) obeys

lim sup
t→∞

log(|x(t)|)
log t

≤
3σ2

4

∑m
i=1 ‖Di‖2

σ2

2

∑m
i=1 ‖Di‖2 − 2β

a.s.

Summarizing these cases we obtain the following result.

Theorem 3.2 The potentially exponential growth of the solution to a nonlinear system
ẏ(t) = f(y(t), t) can be suppressed by Brownian motions provided (3.2) is satisfied. More-
over, one can even use only a scalar Brownian motion to suppress the exponential growth.

In particular, given any linear ordinary differential equation

dy(t)

dt
= q +Qy(t), t ≥ 0

where q ∈ Rn and Q ∈ Rn×n, we may stochastically perturb it into the linear SDE

dx(t) = (q +Qx(t))dt+
m∑
i=1

Aix(t)dBi(t), (3.10)

where Ai = σDi, Di’s obey (3.8) and σ > 0 is large enough for

σ2 >
4‖Q‖∑m
i=1 ‖Di‖2

. (3.11)

Note that for any sufficiently small ε > 0,

〈x, q +Qx〉 ≤ |q||x|+ ‖Q‖|x|2 ≤ 2|q|2

ε
+ (‖Q‖+ ε)|x|2.

9



Using this and (3.9) we observe, by Corollary 3.1, that the solution of the linear controlled
system (3.10) obeys

lim sup
t→∞

log(|x(t)|)
log t

≤
3σ2

4

∑m
i=1 ‖Di‖2

σ2

2

∑m
i=1 ‖Di‖2 − 2(‖Q‖+ ε)

a.s.

Since ε > 0 is arbitrary, we can therefore conclude that under conditions (3.8) and (3.11),
the solution of the linear controlled system (3.10) obeys

lim sup
t→∞

log(|x(t)|)
log t

≤
3σ2

4

∑m
i=1 ‖Di‖2

σ2

2

∑m
i=1 ‖Di‖2 − 2‖Q‖

a.s.

4 Exponential Growth of SDEs

We have just shown that noise can suppress exponential growth. However, every thing
has two sides. We may therefore wonder if noise can make a given system whose solutions
are bounded become a new system whose solutions will grow exponentially? For example,
consider the n-dimensional linear ordinary differential equation

dy(t)

dt
= q +Qy(t), t ≥ 0 (4.1)

with initial value y(0) = y0 ∈ Rn, where q ∈ Rn and Q ∈ Rn×n. Assume that

−λ := λmax(Q+QT ) < 0. (4.2)

Equation (4.2) can be solved explicitly, which implies easily that

lim sup
t→∞

|y(t)| ≤ |q|. (4.3)

That is, under condition (4.2), the solution of equation (4.1) is asymptotically bounded
and the bound is independent of the initial value. The question is: Can we stochastically
perturb this equation into an Itô SDE

dx(t) = (q +Qx(t))dt+ g(x(t), t)dB(t) (4.4)

so that its solutions will grow exponentially with probability one? Moreover, can the noise
term g(x(t), t)dB(t) be designed to be a linear form of x(t)?

To answer these questions, let us first establish a general result on the exponential
growth of the solutions to stochastic differential equations. As a standing hypothesis in
this section, we assume that the coefficients f and g are smooth enough so that equation
(2.1) has a unique global solution.

Theorem 4.1 Assume that there are non-negative constants c1–c6 such that

c5 > c1, c6 > c2 + 2c4, (4.5)

−2〈x, f(x, t)〉 ≤ c1 + c2|x|2, |xTg(x, t)|2 ≤ c3|x|2 + c4|x|4 (4.6)
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and
|g(x, t)|2 ≥ c5 + c6|x|2 (4.7)

for all (x, t) ∈ Rn × R+. Set

a = c5 − c1, b = c6 − c2 − 2c4, c = c5 − c1 + c6 − c2 − 2c3. (4.8)

(i) If, furthermore,
c ≥ 2(a ∧ b), (4.9)

then the solution of equation (2.1) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥ 1

2
(a ∧ b) a.s. (4.10)

(ii) If (4.9) does not hold but

ab >
1

4
c2, (4.11)

then the solution of equation (2.1) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥ 1

2
min

{
a, b,

ab− 0.25c2

a+ b− c

}
a.s. (4.12)

Proof. By the Itô formula and conditions (4.6) and (4.7), we compute

d[log(1 + |x(t)|2)] =
(2〈x(t), f(x(t), t)〉+ |g(x(t), t)|2

1 + |x(t)|2
− 2|xT (t)g(x(t), t)|2

(1 + |x(t)|2)2

)
dt

− 2xT (t)g(x(t), t)

1 + |x(t)|2
dB(t)

≥
((c5 − c1) + (c6 − c2)|x(t)|2

1 + |x(t)|2
− 2c3|x(t)|2 + 2c4|x(t)|4

(1 + |x(t)|2)2

)
dt

+
2xT (t)g(x(t), t)

1 + |x(t)|2
dB(t)

=
F (|x(t)|2)

(1 + |x(t)|2)2
dt+

2xT (t)g(x(t), t)

1 + |x(t)|2
dB(t), (4.13)

where F : R+ → R is defined by

F (u) = a+ cu+ bu2,

in which the parameters a, b and c have been defined by (4.8). Let us now consider the
two cases:

Case (i): By condition (4.9), we have

F (u) ≥ (a ∧ b)(1 + u)2 on u ≥ 0.

Hence
F (|x(t)|2)

(1 + |x(t)|2)2
≥ (a ∧ b).
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It therefore follows from (4.13) that

log(1 + |x(t)|2) ≥ log(1 + |x0|2) + (a ∧ b)t+M(t), (4.14)

where

M(t) =

∫ t

0

2xT (t)g(x(t), t)

1 + |x(t)|2
dB(t),

which is a continuous martingale with initial value M(0) = 0. By condition (4.6), we
compute its quadratic variation

〈M(t)〉 =

∫ t

0

4|xT (t)g(x(t), t)|
1 + |x(t)|2

dt ≤
∫ t

0

4(c3|x(t)|2 + c4|x(t)|4

1 + |x(t)|2
dt ≤ 4(c3 + c4)t.

Hence, by the strong law of large numbers of martingales (see e.g. [15, Theorem 3.4 on
page 12]),

lim
t→∞

M(t)

t
= 0 a.s. (4.15)

Dividing both sides of (4.14) and then letting t→∞ we then obtain

lim inf
t→∞

1

t
log(1 + |x(t)|2) ≤ (a ∧ b) a.s. (4.16)

which yields the required assertion (4.10) immediately.

Case (ii): Under condition (4.11) we now look for a positive number λ for

F (u) ≥ λ(1 + u)2 ∀u ≥ 0. (4.17)

Write

F (u)− λ(1 + u)2 = a− λ+ (c− 2λ)u+ (b− λ)u2

= (1, u)

(
a− λ 0.5(c− 2λ)

0.5(c− 2λ) b− λ

)(
1
u

)
.

It is therefore clear that (4.17) will hold if

λ ≤ a ∧ b and (a− λ)(c− λ) ≥ 0.25(c− 2λ)2,

namely
λ ≤ a ∧ b and (a+ b− c)λ ≤ ab− 0.25c2.

As (4.9) does not hold, we must have c < 2(a ∧ b) ≤ a + b. We can therefore choose the
positive number

λ = min
{
a, b,

ab− 0.25c2

a+ b− c

}
for (4.17) to hold. Hence

F (|x(t)|2)

(1 + |x(t)|2)2
≥ λ.

It therefore follows from (4.13) that

log(1 + |x(t)|2) ≥ log(1 + |x0|2) + λt+M(t),
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where M(t) is the same as before. This, together with (4.15), implies

lim inf
t→∞

1

t
log(1 + |x(t)|2) ≥ λ a.s. (4.18)

and hence the assertion (4.12) follows. 2

Let us make some comments on the conditions of Theorem 4.1. First of all, we observe
that condition (4.6) can be satisfied by a large class of functions. For example, if both f
and g obey the linear growth condition

|f(x, t)| ∨ |g(x, t)| ≤ K(1 + |x|),

then
−2〈x, f(x, t)〉 ≤ 2|x||f(x, t)| ≤ 2K|x|+ 2K|x|2 ≤ K + 3K|x|2

and
|xTg(x, t)|2 ≤ |x|2|g(x, t)|2 ≤ K2|x|2(1 + |x|)2 ≤ 2K2(|x|2 + |x|4),

that is f and g obey (4.6). In particular, linear SDEs always obey (4.6). However, as
shown in the previous section, there are many linear SDEs whose solutions will grow at
most polynomially but not exponentially with probability one. This of course indicates
that condition (4.7) is very critical in order to have an exponential growth. Nevertheless,
instead of using the linear growth condition, the forms described in (4.6) enable us to
compute the parameters c1–c4 more precisely in many situations as illustrated in the
examples discussed in next section.

5 Noise Expresses Exponential Growth

Let us now begin to answers the questions asked in the beginning of the previous section.
Consider an n-dimensional ordinary differential equation

dy(t)

dt
= f(y(t), t), t ≥ 0. (5.1)

Assume that f is sufficiently smooth and, in particular, it obeys

−2〈x, f(x, t)〉 ≤ c1 + c2|x|2, ∀(x, t) ∈ Rn × R (5.2)

for some non-negative numbers c1 and c2. Our aim here is to perturb this equation
stochastically into an SDE

dx(t) = f(x(t), t)dt+ g(x(t))dB(t) (5.3)

so that its solutions will grow exponentially with probability one. We will design g to be
independent of t so we write g(x, t) as g(x) in this section. Moreover, we shall see that
the noise term g(x(t))dB(t) can be designed to be a linear form of x(t).

First, let the dimension of the state space n be an even number and choose the
dimension of the Brownian motion m to be 2. Design g : Rn → Rn×2 by

g(x) = (ξ, Ax),
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where ξ = (ξ1, · · · , ξn)T ∈ Rn and, of course, ξ 6= 0, while

A =


0 σ
−σ 0

. . .

0 σ
−σ 0


with σ > 0. So the stochastically perturbed system (5.3) becomes

dx(t) = f(x(t), t)dt+ ξdB1 + σ


x2(t)
−x1(t)

...
xn(t)
−xn−1(t)

 dB2(t). (5.4)

For x ∈ Rn, compute

|xTg(x)|2 = (xT ξ)2 + (xTAx)2 = (xT ξ)2 ≤ |ξ|2|x|2

and
|g(x)|2 = |ξ|2 + |Ax|2 = |ξ|2 + σ2|x|2.

That is, conditions (4.6) and (4.7) are satisfied with

c3 = |ξ|2, c4 = 0, c5 = |ξ|2, c6 = σ2. (5.5)

Consequently, the parameters defined by (4.8) becomes

a = |ξ|2 − c1, b = σ2 − c2, c = σ2 − c1 − c2 − |ξ|2.

If we choose
|ξ|2 > c1 and σ2 = c1 + c2 + |ξ|2 (5.6)

then b = |ξ|2 + c1 ≥ a, c = 0 and

ab− 0.25c2

a+ b− c
=
|ξ|4 − c2

1

2|ξ|2
≤ a(|ξ|2 + c1)

2|ξ|2
< a,

and hence, by Theorem 4.1, the solution of equation (5.4) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥ |ξ|

2 − c2
1

4|ξ|2
a.s. (5.7)

Alternatively, if we choose

|ξ|2 > c1 and σ2 = 3|ξ|2 + c2 − c1 (5.8)

then b = 3|ξ|2 − c1 = 2|ξ|2 + a > a, c = 2a and hence, by Theorem 4.1, the solution of
equation (5.4) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥ 1

2
(|ξ|2 − c1) a.s. (5.9)

14



We next let the dimension of the state space n be an odd number but n ≥ 3. Choose
the dimension of the Brownian motion m to be 3 and design g : Rn → Rn×3 by

g(x) = (ξ, A2x,A3x),

where ξ = (ξ1, · · · , ξn)T ∈ Rn and, of course, ξ 6= 0, while

A2 =



0 σ
−σ 0

. . .

0 σ
−σ 0

0


and A3 =



0
0 σ
−σ 0

. . .

0 σ
−σ 0


with σ > 0. So the stochastically perturbed system (5.3) becomes

dx(t) = f(x(t), t)dt+ ξdB1 + σ



x2(t)
−x1(t)

...
xn−1(t)
−xn−2(t)

0


dB2(t) + σ



0
x2(t)
−x3(t)

...
xn(t)
−xn−1(t)


dB3(t). (5.10)

For x ∈ Rn, compute

|xTg(x)|2 = (xT ξ)2 + (xTA2x)2 + (xTA3x)2 = (xT ξ)2 ≤ |ξ|2|x|2

and
|g(x)|2 = |ξ|2 + |A2x|2 + |A3x|2 ≥ |ξ|2 + σ2|x|2.

Hence, conditions (4.6) and (4.7) are satisfied with the same parameters specified by (5.5).
Hence, as shown above, if we choose ξ and σ as (5.6) then the solution of equation (5.10)
obeys (5.7), while if we choose ξ and σ as (5.8) then the solution of equation (5.10) obeys
(5.9).

Summarizing the above arguments, we obtain the following result.

Theorem 5.1 Any nonlinear system ẏ(t) = f(y(t), t) can be stochastically perturbed by
Brownian motions into the SDE (5.3) whose solutions will grow exponentially with prob-
ability one provided (5.2) is satisfied and the dimension of the state space is greater than
1. Moreover, the noise term g(x(t))dB(t) in (5.3) can be designed to be a linear form of
x(t).

In this theorem we require the dimension of the state space be greater than 1. Nat-
urally, we may wonder what happens in the scalar case? More precisely, the question is:
Given a scalar system ẏ(t) = f(y(t), t) whose solutions are bounded, can we stochastically
perturb it into an SDE whose solutions will grow exponentially with probability one? To
answer this question, let us consider a linear ordinary differential equation

ẏ(t) = p− qy(t), t ≥ 0, (5.11)
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where p and q are both positive numbers. It is known that for any given initial value, the
solution of this equation obeys

lim
t→∞

y(t) =
p

q
.

In other words, the solution is asymptotically bounded. Let us now consider the corre-
sponding linear SDE

dx(t) = (p− qx(t))dt+ (u+ vx(t))dB(t), (5.12)

where both u and v are positive numbers while B(t) is a scalar Brownian motion. By
defining f(x, t) = p−qx and g(x, t) = u+vx for (x, t) ∈ R×R+, equation (5.11) becomes
the form of (2.1). Compute

xf(x, t) = px− qx2 ≤ p2

4q
.

Also, for any sufficiently small ε > 0,

|g(x, t)|2 = u2 + 2uvx+ v2x2 ≤ u2 +
u2v2

ε
+ (v2 + ε)x2

and
|xg(x, t)|2 = u2x2 + 2uvx3 + v2x4 ≥ (v2 − ε)x4 − ρ,

where −ρ is a lower bound of u2x2 + 2uvx3 + εx4 on x ∈ R. By Theorem 2.2, we see that
the solution of equation (5.12) obeys

lim sup
t→∞

log(|x(t)|)
log t

≤ v2 − ε
v2 − 3ε

a.s.

Letting ε→ 0 we conclude that the solution of equation (5.12) obeys

lim sup
t→∞

log(|x(t)|)
log t

≤ 1 a.s. (5.13)

That is, the solution of equation (5.12) will grow at most polynomially with probability
one. Similarly, we can show that the solution to the following more general linear SDE

dx(t) = (p− qx(t))dt+
m∑
i=1

(ui + vix(t))dBi(t) (5.14)

also obeys (5.13). In other words, we have shown that the linear stochastic perturbation∑m
i=1(ui + vix(t))dBi(t) may not force the solution of a scalar system ẏ(t) = f(y(t), t) to

grow exponentially.
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