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Abstract

The homotopy analysis method is applied to the Degasperis–Procesi equation in
order to find analytic approximations to the known exact solitary-wave solutions
for the solitary peakon wave and the family of solitary smooth-hump waves. It is
demonstrated that the approximate solutions agree well with the exact solutions.
This provides further evidence that the homotopy analysis method is a powerful
tool for finding excellent approximations to nonlinear solitary waves.
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1 Introduction

The solution of nonlinear problems by analytic techniques is often rather difficult.
Recently, the so-called homotopy analysis method (HAM) has been developed by
Liao [1]. The HAM has been applied successfully to many nonlinear problems in
engineering and science, such as applications in heat transfer [2], solving the gen-
eralized Hirota–Satsuma coupled KdV equation [3], in heat radiation [4], finding
solitary-wave solutions for the fifth-order KdV equation [5], finding solitary wave
solutions for the Kuramoto–Sivashinsky equation [6], finding the root of nonlinear
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equations [7], boundary-layer flows over an impermeable stretched plate [8], un-
steady boundary-layer flows over a stretching flat plate [9], exponentially decaying
boundary layers [10], a nonlinear model of combined convective and radiative cool-
ing of a spherical body [11], and many other problems (see [12–19], for example).

As discussed in [20], the family of equations

ut − uxxt + ( + 1)uux = uxuxx + uuxxx, (1.1)

where  > 1 is a constant, contains only two integrable equations, namely the disper-
sionless Camassa–Holm (dCH) equation for which  = 2 and the Degasperis–Procesi
(DP) equation for which  = 3. Explicit periodic and solitary travelling-wave solu-
tions to the dCH and DP equations were found in [21] and [22], respectively. Weak
travelling-wave solutions of the CH and DP equations, including exotic composite
solutions, have been classified by Lenells [23,24]; these two papers are a useful source
of references regarding properties of the CH and DP equations.

In [25] we found approximate analytic solutions for the family of solitary smooth-
hump waves of the dCH equation by using the HAM. The approximate analytic
solution for the solitary peakon wave, which has a discontinuity at the crest, was
found in [13] by using the HAM.

The aim of this paper is to apply the HAM to the DP equation in order to find
analytic approximations to the solitary peakon wave and the family of solitary
smooth-hump waves, all given in exact form by Vakhnenko and Parkes [22].

In Section 2 we give the exact solution for the solitary peakon, and present the
exact solution for the family of solitary smooth-hump waves in an explicit and
more convenient form than in [22]. In Sections 3 and 4 we formulate the HAM for
finding approximate analytic solutions for the solitary peakon wave and the family
of solitary smooth-hump waves, respectively. A brief conclusion is given in Section
5.

2 Exact solitary-wave solutions

Vakhnenko and Parkes [22] looked for periodic and solitary-wave solutions of the
DP equation

ut − uxxt + 4uux = 3uxuxx + uuxxx (2.1)

by seeking solutions in the form u(x, t) = U(�), where � := x− ct−x0, and c (> 0)
and x0 are constants. They found three types of solitary wave characterized by a
single parameter A [22, Section 2]. For A = 1 there is a corner-wave solution known
as a peakon. For 1 < A < 9/8 there is a family of smooth-hump solitary waves.

In [22] the solitary-wave solutions were presented in terms of a new dependent

2



variable Z(�) related to U(�) by

U(�) = c[1 + Z(�)]. (2.2)

Here we summarize these solutions; the smooth-hump family is presented in an
explicit and more convenient form than in [22].

2.1 The peakon wave

In [22, Section 2.3] the peakon is given by

Z = e−∣�∣ − 1 (2.3)

so that

U = ce−∣�∣. (2.4)

The peakon is shown in [22, Fig. 2(c)].

2.2 A family of smooth-hump solitary waves

The family of smooth-hump solitary waves is given in [22, Section 2.4]. In parametric
form, with � as the parameter, Z is given as an implicit function of � by

Z =
z3 − z4n tanh2 �

1− n tanh2 �
, � =

�z2
s

+ 2 tanh−1(
√
n tanh �), (2.5)

where

n =
z3 − z2
z4 − z2

, s =
1

2

√

(z4 − z2)(z3 − z1) , (2.6)

z1 = z2 = zL < z3 < 0 < z4, zL = b2 − 1, z3 = −b2 − b, z4 = −b2 + b. (2.7)

The family-parameter is b defined by

b2 := (1−
√
9− 8A)/4. (2.8)

With 1 < A < 9/8 we have 0 < b < 1/2. For each member of this family, zL ≤ Z ≤
z3, Z = z3 at the crest where � = 0 (so that � = 0), and Z → zL as ∣� ∣ → ∞ (so
that ∣�∣ → ∞). The member of this family with b = 1/4 is shown in [22, Fig. 2(d)].
As b → 0, the waves tend to the wave of maximum amplitude, namely the peakon
(2.3).

Now, from (2.2) and (2.5)–(2.7), we obtain

U = aW (�) + U∞, (2.9)
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where a := c(z3 − zL) = c(1− b− 2b2) is the amplitude, U∞ := c(1 + zL) = cb2 and
W is given as an implicit function of � by

W =
(1 + b− 2b2)(1− tanh2 �)

(1 + b− 2b2)− (1− b− 2b2) tanh2 �
, (2.10)

� = −2�

√

1− b2

1− 4b2
+ 2 tanh−1

⎛

⎝

√

1− b− 2b2

1 + b− 2b2
tanh �

⎞

⎠ . (2.11)

W is a solitary smooth-hump wave with unit amplitude. W and its derivatives tend
to zero as ∣�∣ → ∞, W (0) = 1 and W ′(0) = 0.

3 The HAM for the peakon solitary wave

In this section we formulate the HAM in order to find from Eq. (2.1) an analytic
approximation to the symmetric solitary peakon wave. It is convenient to introduce
a new dependent variable w(�) defined by

u(x, t) = aw(�), (3.1)

where a is the amplitude. Substitution of u given by (3.1) into Eq. (2.1) gives (with
x0 = 0)

c(w′′′ − w′) + aw(4w′ − w′′′)− 3aw′w′′ = 0. (3.2)

Due to the assumed symmetry of the peakon, in the HAM we consider w(�) only
for � ≥ 0. The first derivative at the crest of the peakon is not continuous. Hence
the appropriate boundary conditions on w for use in the HAM are

w(0) = 1, w(+∞) = 0. (3.3)

Our aim is to use the HAM to find analytic approximations to a and w(�). For
simplicity, in the rest of this section we set c = 1.

According to Eq. (3.2) and the boundary conditions (3.3), the solitary-wave solution
can be expressed in the form

w(�) =
+∞
∑

m=1

dme
−m�, (3.4)

where the dm (m = 1, 2, . . .) are coefficients to be determined. According to the
rule of solution expression denoted by (3.4) and the boundary conditions (3.3), it
is natural to choose

w0(�) = e−� − �[e−2� − e−3�] (3.5)

as the initial approximation to w(�), where � is a parameter to be determined later.
This choice follows the strategy adopted in [13] in the context of the peakon solution
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to the CH equation. We define an auxiliary linear operator ℒ by

ℒ[�(�; p)] =
(

∂3

∂�3
− 3

∂2

∂�2
+ 2

∂

∂�

)

�(�; p). (3.6)

This has the property that

ℒ[C1e
� + C2e

2� + C3] = 0, (3.7)

where C1, C2 and C3 are constants. This choice of ℒ is motivated by (3.4) and the
later requirement that (3.16) should contain only zero constants, i.e. C1 = C2 =
C3 = 0.

From (3.2) we define a nonlinear operator

N [�(�; p), A(p)] :=

(

∂3�

∂�3
− ∂�

∂�

)

+ A(p)�

(

4
∂�

∂�
− ∂3�

∂�3

)

− 3A(p)
∂�

∂�

∂2�

∂�2
(3.8)

and then construct the homotopy

ℋ[�(�; p), A(p)] = (1− p)ℒ[�(�; p)− w0(�)]− ℎ̄pN [�(�; p), A(p)], (3.9)

where ℎ̄ is a nonzero auxiliary parameter. Setting ℋ[�(�; p), A(p)] = 0, we have the
zero-order deformation equation

(1− p)ℒ[�(�; p)− w0(�)] = ℎ̄pN [�(�; p), A(p)], (3.10)

subject to the boundary conditions

�(0; p) = 1, �(+∞; p) = 0, (3.11)

where p ∈ [0, 1] is an embedding parameter. When the parameter p increases from
0 to 1, the solution �(�; p) varies from w0(�) to w(�), and A(p) varies from a0 to
a, where a0 is the initial value of the wave amplitude. If this continuous variation
is smooth enough, the Maclaurin’s series with respect to p can be constructed for
�(�; p) and A(p), and further, if these two series are convergent at p = 1, we have

w(�) = w0(�) +
+∞
∑

m=1

wm(�), a = a0 +
+∞
∑

m=1

am, (3.12)

where

wm(�) =
1

m!

∂m�(�; p)

∂pm

∣

∣

∣

∣

p=0

, am =
1

m!

∂mA(p)

∂pm

∣

∣

∣

∣

p=0

. (3.13)

For brevity, we define the vectors

−→w k = {w0, w1, . . . , wk}, −→a k = {a0, a1, . . . , ak}.
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Differentiating Eqs. (3.10) and (3.11) m times with respect to p, then setting p = 0,
and finally dividing by m! , we obtain the mth-order deformation equation

ℒ[wm(�)− �mwm−1(�)] = ℎ̄Rm(
−→wm−1,

−→a m−1), (m = 1, 2, 3, . . .) (3.14)

subject to the boundary conditions

wm(0) = 0, wm(∞) = 0, (3.15)

where

Rm = w′′′
m−1 − w′

m−1 +
m−1
∑

n=0

n
∑

i=0

ai
(

wn−i[4w
′
m−n−1 − w′′′

m−n−1]− 3w′
n−iw

′′
m−n−1

)

,

and

�m =

⎧



⎨



⎩

0, m ≤ 1,

1, m > 1.

The general solution of Eq. (3.14) is

wm(�) = ŵm(�) + C1e
� + C2e

2� + C3, (3.16)

where C1, C2 and C3 are constants and ŵm(�) is the particular solution of Eq. (3.14)
that contains the unknown term am−1. According to the boundary condition (3.15)
at infinity and the rule of solution expression (3.4), the constants C1, C2 and C3

must be zero. Due to the boundary condition (3.15) at � = 0, the unknown am−1 is
determined by the linear algebraic equation

ŵm(0) = 0. (3.17)

In this way, we derive wm(�) and am−1 for m = 1, 2, 3, . . ., successively. At the
Mth-order approximation, we have the analytic solution of Eq. (3.2), namely

w(�) ≈ WM(�) =
M
∑

m=0

wm(�), a ≈ AM =
M
∑

m=0

am. (3.18)

The auxiliary parameter ℎ̄ can be employed to adjust the convergence region of
the series (3.18) in the homotopy analysis solution. By means of the so-called ℎ̄-
curve, it is straightforward to choose an appropriate range for ℎ̄ which ensures the
convergence of the solution series. As pointed out by Liao [1], the appropriate region
for ℎ̄ is a horizontal line segment.

Our solution series contain the auxiliary parameters ℎ̄ and �. We can choose ap-
propriate values of ℎ̄ and � to ensure that the two solution series converge. For a
given ℎ̄, we can investigate the influence of � on the convergence of a by plotting
the curve of a versus �, as shown in Fig. 1. We find that the appropriate region for
� is −1 < � < 1. In the same way, we can plot ℎ̄-curves for a with any given �, as
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shown in Fig. 2. Clearly, a ≈ 1 which agrees with the expected value c = 1. It now
follows that, for convergent solution series, we can choose ℎ̄ = −3 and � = −0.5,
for example. The corresponding 20th-order approximation for w(�) agrees well with
the exact solution, i.e. w = e−∣�∣, as shown in Fig. 3.

-2 0 2 4

0.5

0.6

0.7

0.8

0.9

1

1.1

a

�

Fig. 1: The curves of the wave amplitude a versus � for the 10th-order
approximation. Solid curve: ℎ̄ = −4; dotted curve: ℎ̄ = −3; dashed curve: ℎ̄ = −2.

-6 -5 -4 -3 -2 -1 0

0.9

1

1.1

1.2

1.3

a

ℎ̄

Fig. 2: The curves of the wave amplitude a versus ℎ̄ for the 15th-order
approximation. Solid curve: � = −0.5; dotted curve: � = −1.5; dashed curve:

� = −1.

4 The HAM for the family of smooth-hump solitary waves

In this section we formulate the HAM in order to find from Eq. (2.1) an analytic
approximation to the family of symmetric solitary smooth-hump waves, with family-
parameter U∞, given exactly in Section 2.2.
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It is convenient to introduce a new dependent variable w(�) defined by

u(x, t) = U(�) := aw(�) + U∞, 0 < U∞ < c/4, (4.1)

where a is the amplitude, u → U∞ as ∣�∣ → ∞, U∞ := cb2 with 0 < b < 1/2,
and w(�) is a solitary smooth-hump wave of unit amplitude such that w(0) = 1,
w′(0) = 0, w → 0 as ∣�∣ → ∞, and w(�) = w(−�). Substitution of u given by (4.1)
into Eq. (2.1) gives

c(w′′′ − w′) + (aw + b2c)(4w′ − w′′′)− 3aw′w′′ = 0. (4.2)

Due to the assumed symmetry of the solitary waves, in the HAM we consider w(�)
only for � ≥ 0. Hence the appropriate boundary conditions on w for use in the
HAM are

w(0) = 1, w′(0) = 0, w(+∞) = 0. (4.3)

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

w

�

Fig. 3: The analytic approximation for w(�) when ℎ̄ = −3 with � = −0.5 and the
exact solution w(�) = −e∣�∣. Solid curve: 20th-order approximation; symbols: exact

solution.

Our aim is to use the HAM to find analytic approximations to a and w(�). We
will demonstrate that these approximations are in good agreement with the exact
expressions c(1− b− 2b2) and W (�), respectively, as derived in Section 2.2.

First we write

w(�) ≈ B exp(−��), as � → ∞, (4.4)

where � > 0 and B are constants. Substituting (4.4) into (4.2) and balancing the
main terms, we have

�2 =
1− 4b2

1− b2
.

Now we put � = �� so that Eq. (4.2) becomes

c(1− 4b2)(w′′′ − w′) + aw(4w′ − �2w′′′)− 3�2aw′w′′ = 0, (4.5)
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where the prime denotes the derivative with respect to �. For simplicity, in the rest
of this section we set c = 1.

According to Eq. (4.5) and the boundary conditions (4.3), the solitary-wave solution
can be expressed in the form

w(�) =
+∞
∑

m=1

dme
−m�, (4.6)

where the dm (m = 1, 2, . . .) are coefficients to be determined.

We define an auxiliary linear operator ℒ by

ℒ[�(�; p)] = (1− 4b2)

(

∂3

∂�3
− ∂

∂�

)

�(�; p), (4.7)

with the property

ℒ[C1e
−� + C2e

� + C3] = 0, (4.8)

where C1, C2 and C3 are constants. This choice of ℒ is motivated by (4.6) and the
later requirement that (4.14) should contain only one non-zero constant, namely
C1.

In this case, the nonlinear operator N [�(�; p)] is defined as

N [�(�; p), A(p)] := (1− 4b2)

(

∂3�

∂�3
− ∂�

∂�

)

+ A(p)�

(

4
∂�

∂�
− �2∂

3�

∂�3

)

−3�2A(p)
∂�

∂�

∂2�

∂�2
, (4.9)

and the homotopyℋ is defined as in (3.9). Also, the zero-order deformation equation
is defined as

(1− p)ℒ[�(�; p)− w0(�)] = ℎ̄pN [�(�; p), A(p)], (4.10)

subject to the boundary conditions

�(0; p) = 1,
∂�(�; p)

∂�

∣

∣

∣

∣

�=0

= 0, �(+∞; p) = 0, (4.11)

where p ∈ [0, 1] is an embedding parameter and w0(�) = 2e−�−e−2�. Differentiating
Eqs. (4.10) and (4.11) m times with respect to p, then setting p = 0, and finally
dividing by m! , we obtain the mth-order deformation equation

ℒ[wm(�)− �mwm−1(�)] = ℎ̄Rm(
−→wm−1), (m = 1, 2, 3, . . .) (4.12)

subject to the boundary conditions

wm(0) = 0, w′
m(0) = 0, wm(∞) = 0, (4.13)
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where Rm is defined as

Rm = (1− 4b2)(w′′′
m−1 − w′

m−1)

+
m−1
∑

n=0

n
∑

i=0

ai
(

wn−i[4w
′
m−n−1 − �2w′′′

m−n−1]− 3�2w′
n−iw

′′
m−n−1

)

.

The general solution of Eq. (4.12) is

wm(�) = ŵm(�) + C1e
−� + C2e

� + C3, (4.14)

where C1, C2 and C3 are constants and ŵm(�) is a particular solution of Eq. (4.12).
Using (4.6), we have C2 = C3 = 0. The unknowns C1 and am−1 are governed by

ŵm(0) + C1 = 0, ŵ′
m(0)− C1 = 0. (4.15)

Thus, the unknown am−1 is obtained by solving the linear algebraic equation

ŵm(0) + ŵ′
m(0) = 0, (4.16)

and thereafter C1 is given by
C1 = −ŵm(0). (4.17)

To ensure of convergence of the HAM, we first focus on how to choose an appropriate
value of ℎ̄. We can investigate the influence of ℎ̄ on the series of a by means of the
ℎ̄-curve. The appropriate region for ℎ̄ in this case is −3.1 < ℎ̄ < −1.2, as shown in
Fig. 4 for b = 1

4
. In this case the exact value of a = c(1−b−2b2) is 0.625. In general,

as long as the series of amplitude is convergent, the corresponding series for w(�) is
also convergent. For example, when ℎ̄ = −2, our analytic solution converges. This is
demonstrated in Fig. 5 where it can be seen that the 10th-order approximation for
w as a function of � (≡ �/�) agrees well with the exact solution given by Eqs. (2.10)
and (2.11).

-4 -3 -2 -1 0 1

0.55

0.575

0.6

0.625

0.65

0.675

0.7

a

ℎ̄

Fig. 4: The ℎ̄-curve for the wave amplitude a at the 15th-order approximation
with b = 1

4
.
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The value of the amplitude is shown in Table 1. The so-called homotopy-Padé
technique (see [1]) is employed, which greatly accelerates the convergence. Clearly,
the amplitude converges to the exact value 0.625.

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

w

�

Fig. 5: The analytic approximation for w when ℎ̄ = −2 with b = 1

4
and the exact

solution given by Eqs. (2.10) and (2.11). Solid curve: the 10th-order
approximation; symbols: exact solution.

Table 1: Results for [m,m] Homotopy-Padé approach

Order of approximation [m,m] a

2 [1,1] 0.644857

4 [2,2] 0.624729

6 [3,3] 0.625302

8 [4,4] 0.624991

10 [5,5] 0.625132

12 [6,6] 0.625

14 [7,7] 0.625

5 Conclusions

We have applied the homotopy analysis method (HAM) to the Degasperis–Procesi
equation (2.1) to obtain analytic approximations to known solitary-wave solutions
as given in [22]. In Sections 3 and 4, the methods used are very similar to the ones
used for the dCH equation in [13] and [25], respectively. For the peakon solution in
Section 3, and the family of smooth-hump waves in Section 4, the amplitude of the
solitary waves was treated as an unknown to be determined by the HAM. In all the
cases considered, the HAM gave excellent agreement with the known solutions.
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In [22] it was shown that the DP equation has a solitary loop-like solution. In [26]
we attempted to formulate the HAM in order to find an analytic approximation to
this exact solution. The formulation involved the introduction of a new indepen-
dent variable as was done in [27] for the short-pulse equation; the resulting equation,
corresponding to (4.2), involved higher-order nonlinearities. We found that the ap-
proximate solution did not agree well with the exact solution. Resolution of this
problem is ongoing.

The HAM provides us with a convenient way to control the convergence of ap-
proximation series; this is a fundamental qualitative difference between the HAM
and other methods for finding approximate solutions. The examples in this paper
give further confirmation of the power of the HAM to solve complicated nonlinear
problems.

Acknowledgements. The authors would like to thank anonymous referees for
valuable suggestions.
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