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Abstract—This article concerns the design of a new elec-
trostatic transducer whose backplate consists of a series of
drilled pipes. A new one-dimensional model is derived which
considers the interaction of the membrane with the air load,
the air cavities, and the drilled pipes in the backplate. Dynamic
equations for the impedance in each component of the device are
calculated analytically and connected using interface conditions
of continuity of pressure and radiation conditions into the air
load. The model is able to produce solutions to the mechanical
impedance of the device and the displacement of the membrane
as a function of the device’s design parameters. Model results
for the output pressure compare well with previous experimental
data. The inverse problem of retrieving the design parameters
for a desired output is discussed.

I. I NTRODUCTION

Electrostatic ultrasonic transducers, or capacitive microma-
chined ultrasonic transducers (CMUTs), are used for the detec-
tion and generation of ultrasonic waves [1]. These transducers
consist of a thin membrane stretched across a conducting back-
plate, which is often rough or grooved. This article considers
a one-dimensional model of an electrostatic transducer whose
backplate consists of a series of drilled pipes, proposed by
Campbellet al. [2]. These pipes act much like tubular sections
in musical instruments which amplify the sound produced.
Figure 1 provides a schematic of the transducer design to
be modelled. The figure describes a dielectric membrane
stretched over a backplate which consists of many cavities
with each cavity being connected to an air conduit. To reduce
the complexity of the model we will consider only one
cavity, yet retain the possibility of one or more pipes per
cavity. The output of the model is then compared with the
experimental results [2] in terms of the pressure transmitted
by the membrane into an air load. Output pressure profiles are
provided for changes in the design parameters of the model
which indicate the possibility of automating the choice of
design parameters given a desired output.

II. M ODEL

We start by adapting the three-dimensional CMUT model
proposed by Carontiet al. [3] to include the effects of the air
load on both sides of the membrane. We reduce the spatial
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Fig. 1. Schematic diagram of the CMUT device being investigated where
the dashed box indicates the specific part of the device modelled in section II.

dimensionality to unity by assuming that the membrane acts
in a piston like manner. We therefore propose the following
model for the displacement of the membrane
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where dm is the membrane thickness,ρs is the membrane
mass density,ξ = ξ(t) is the displacement of the membrane,
Rv is a viscous damping term associated with energy loss in
the membrane,Zcm is the impedance of the air load at the
‘cavity’ side of the membrane,S is the cross-sectional area
of the membrane,Zm is the impedance of the air load at the
‘open’ side of the membrane,ρa is the equilibrium density
of air, c is the speed of sound in air,V0 is the volume of
the cavity, ǫ0 is the permittivity of free space,VDC is the
bias voltage applied to the membrane,d = L + dm/ǫr is
the electrode spacing,L is the length of the cavity,ǫr is the
relative permittivity of the membrane andf(t) is the voltage
driving force applied to the membrane. Using the standard
results for pipe-driver systems [4, p.272], the impedanceZcm

can be calculated in terms of the design parameters of the



device, that is,

Zcm =
ρacS (ZcL + jρacS tan(kL))

ρacS + jZcL tan(kL)
, (2)

wherek is the wavenumber (complex to include the viscous
loss in air) andZcL is the impedance at the cavity/pipe
intersection. This is given by

ZcL =
ρacγ (Zpδ + jρacγ tan(kδ))

N (ρacγ + jZpδ tan(kδ))
, (3)

where γ is the cross-sectional area of the pipe(s),N is the
number of pipes per cavity,δ is the length of the pipe(s) and
Zpδ is the impedance at the pipe/air interface. We assume
in the following that all pipes are identical but the general
model can cope with a distribution of pipe dimensions. The
impedanceZpδ is given by [4, p.186]
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Similarly, the impedanceZm is given by
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Here it is assumed that we operate in the low frequency limit,
that iskS ≪ 1 andkγ ≪ 1.

In order to compare the model with the experimental data
provided by Campbellet al. [2], we seek the velocity (and
hence the pressure output) of the membrane which can be
found via Fourier transforms. Additionally, the forcing func-
tion used in the experimentsf(t) is a single-cycle sinusoid
centred at7.7 kHz [2]. That is

f(t) =
ǫ0VDCV

d2
ejωte−

(t−a)2

b2 , (6)

whereV is the excitation voltage,ω is the wavenumber anda
andb are constants which determine the position and number
of cycles in the time domain.

The pressure in the cavityPc is given by

Pc = ace
j(ωt+k(L−x)) + bce

j(ωt−k(L−x)), (7)

whereac and bc are arbitrary constants which are calculated
by imposing continuity of pressure at each interface and
the radiation conditions (4) and (5). A similar form for the
pressure in the cavityPp can be found.

III. RESULTS

Using Fourier transforms [5, p.28], the frequency domain
impulse response of equation (1) is−1/(jωZ(ω)) where
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By convolving the impulse response with the forcing function
and using the convolution theorem, the frequency domain re-
sponse of the device is given byΞ(ω) = −F (ω)/Z(ω), where
F (ω) is the Fourier transform of the forcing functionf(t). The

Design Parameter Symbol Magnitude Dimensions
Density of Membrane ρs 1392 kg/m3

Speed of Sound in Air c 343 m/s
Length of Pipe(s) δ 22 × 10

−3 m
Number of Pipes per Cavity N 1 -

Length of Cavity L 10
−3 m

Thickness of Membrane dm 5 × 10
−5 m

Damping Coefficient Rv 10
2 kg/ms

Permittivity of Free Space ǫ0 8.85 × 10−12 F/m
DC Voltage VDC 450 V

Density or Air ρa 1.2 kg/m3

Membrane Dielectric Constant ǫr 3.2 -
Magnitude of AC Voltage V 1 V

Constant a 2 × 10
−4 s

Constant b 5 × 10
−5 s

Aspect Ratio of Cavity αc 1.5 -
Aspect Ratio of Pipe αp 5 × 10

−2 -

TABLE I
DESIGN PARAMETER VALUES FOR THECMUT MODEL.
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Fig. 2. Plot showing experimental data from [2] (squares) and the CMUT
model described above (solid line). Here, the pressure output has been
normalised for comparison purposes. We find a good agreementof results even
though the effects of the microphone and electrical load have been neglected
in the model.

output pressurePout is then given byPout = jωΞ(ω)Zm/S.
We introduce two aspect ratios,αc and αp which describe
the relationship between the length of the cavity to its radius,
and length of the pipe to its radius, respectively. That is,
S = π(αcL)2 andγ = π(αpδ)

2. In figure 2 the model output
is compared with experimental data presented in [2]. The
agreement is very good especially when we consider that the
effects of the microphone and the electrical load are neglected
in the model. Here, and in every plot herein, the parameter
values stated in table I are used, unless instructed otherwise.

In order to investigate which design parameters significantly
affect the device performance, three-dimensional plots are
constructed which plot the pressure as a function of several
design parameters: the length of the pipeδ, the length of
the cavityL, the thickness of the membranedm, the aspect
ratio of the cavityαc and the aspect ratio of the pipeαp.
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Fig. 3. Normalised output pressure plotted against frequency and pipe length.
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Fig. 4. Normalised output pressure plotted against frequency and cavity
length.

These plots are found in figures 3, 4, 5, 6 and 7, respectively.
Here, all design parameters are as stated in table I unless being
varied. It can be seen that each of these design parameters can
significantly affect the output pressure.

Figure 3 shows the dependence of the device on the oc-
currence and length of pipes. It is quite clearly seen that
incorporating pipes into the device significantly increases the
pressure output. Also, optimal pipe lengths can be seen,
providing evidence of being able to optimise the devise for
a maximum pressure output.

Figure 4 shows the dependence of the device on the length
of the cavity. Similarly to the results shown for the pipe
length, we can see that the occurrence of cavities increasesthe
pressure output and an optimal cavity length can be found.

The dependence of the device on the membrane thickness
can be seen in figure 5. Again, optimal membrane thickness
can be calculated from the results presented.

It can be seen from figures 6 and 7 that the ratio of the radius
to the length of the cavity (and the pipe) does not significantly
affect the pressure output. The change in output pressure seen
in figure 6 can be attributed to the rising surface area of the
membrane.
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Fig. 5. Normalised output pressure plotted against frequency and membrane
thickness.
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Fig. 6. Normalised output pressure plotted against frequency and aspect ratio
of cavity.
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Fig. 7. Normalised output pressure plotted against frequency and aspect ratio
of pipe.

IV. CONCLUSION

This article has presented an analytical theory to model the
resonant behaviour of a capacitive michromachined ultrasound
transducer (CMUT) incorporating fluidic amplification. The
results of the model compared well with the experimental data
and the model also allows us to investigate the dependence



of the device performance on the design parameters. This
modelling approach can also be extended to model more than
one cavity, with the possibility of more than one pipe per
cavity. In doing so, a desired pressure output profile could
be realised by varying the size distribution of the pipes. This
inverse problem is the subject of ongoing investigations.
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