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Abstract. Consider a class of power transformed and threshold GARCH(p,q) (PTTGRACH(p,q)) model,

which is a natural generalization of power-transformed and threshold GARCH(1,1) model in Hwang and

Basawa (2004) and includes the standard GARCH model and many other models as special cases. We

first establish the asymptotic normality for quasi-maximum likelihood estimators (QMLE) of the parameters

under the condition that the error distribution has finite fourth moment. For the case of heavy-tailed errors,

we propose a least absolute deviations estimation (LADE) for PTTGARCH(p,q) model, and prove that

the LADE is asymptotically normally distributed under very weak moment conditions. This paves the way

for a statistical inference based on asymptotic normality for heavy-tailed PTTGARCH(p,q) models. As a

consequence, we can construct the Wald test for GARCH structure and discuss the order selection problem

in heavy-tailed cases. Numerical results show that LADE is more accurate than QMLE for heavy tailed

errors. Furthermore the theory is applied to the daily returns of the Hong Kong Hang Seng Index, which

suggests that asymmetry and nonlinearity could be present in the financial time series and the PTTGARCH

model is capable of capturing these characteristics. As for the probabilistic structure of PTTGARCH(p,q),

we give in the appendix a necessary and sufficient condition for the existence of a strictly stationary solution

of the model, the existence of the moments and the tail behavior of the strictly stationary solution.
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1 Introduction

The autoregressive conditional heteroscedastic (ARCH) model proposed by Engle (1982) has

led to considerable interest in models in which the conditional variance (volatility) of the current

observation, σ2
t , is a function of the past observations. Engle’s ARCH model formulated the con-

ditional variance of the process as “linear” in squared past values. Bollerslev (1986) generalized

ARCH model to allow the conditional variance to depend additionally on its past realizations.

Since then many empirical and theoretical aspects of the ARCH/GARCH model have been devel-

oped. Shephard (1996) and Rydberg (2000) gave excellent surveys of ARCH/GARCH modelling

for financial data. Weiss (1986) and Berkes et al. (2003) established consistency and asymptotic

normality of maximum likelihood estimators for ARCH and GARCH model respectively. The

former assumes that the errors have finite fourth moment and the latter requires a moment of

errors slightly higher than the fourth. Hall and Yao (2003) showed that when the error is heavy

tailed (without finite fourth moment), quasi-maximum likelihood estimators (QMLE) are not

asymptotically normal and suffer from slow convergence rate and complex asymptotic distri-

bution, which do not facilitate, among others, statistical tests and interval estimation in the

standard manner; see Hall and Yao (2003), and Mikosh and Straumann (2006). Peng and Yao

(2003) pointed out that a kind of least absolute deviations estimator (LADE) has asymptotic

normality if the error distribution has finite second moment.

Many extensions and generalizations of the ARCH model have appeared (see Engle and

Bollerslev (1986), Higgins and Bera (1992), Li and Li (1996), Hwang and Kim (2004), and

Hwang and Basawa (2004)). Among all the extensions, the functional form for σ2
t is of great

importance (See Higgins and Bera (1992)). Even Engle (1982) has acknowledged that “it is likely

that other formulations of the variance may be more appropriate for the particular applications”.

Hsieh (1989) found that the GARCH models cannot fit some exchange rates satisfactorily;

Scheinkman and LeBaron (1989) found evidence that volatility in stock market data cannot

be captured completely by linear ARCH models; Gouriéroux (1997, page 90) indicated that

the heteroscedasticity varies depending on whether the error is positive or negative. This leads

to asymmetric threshold ARCH modelling. The study of Li and Li (1996) has showed that

threshold-asymmetric modelling provides better fitting compared with symmetric ARCH in the
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field of financial time series. Therefore, combining the above ideas, Hwang and Kim (2004)

proposed a broad class of power transformed and threshold ARCH model:

Xt = σtεt and σ2δ
t = α0 +

p∑

i=1

α1i(X+
t−i)

2δ +
p∑

i=1

α2i(X−
t−i)

2δ (1.1)

where δ > 0, α0 > 0, α1i ≥ 0, α2i ≥ 0 are unknown parameters, i = 1, · · · , p. Here, {εt} is

a sequence of independent and identically distributed random variables, and εt is independent

of {Xt−k, k ≥ 1} for all t. They studied the geometric ergodicity and existence of moments

of the model, and investigated a large sample test for ARCH structures based on the uniform

local asymptotic normality approach. However, the σt in Hwang and Kim (2004)’s model is

only a function of the past p observations. Hwang and Basawa (2004) introduced a Box-Cox

transformed threshold GARCH(1,1) model by allowing σt to depend on σt−1 and studied the

stationarity and moment structure of the model. Liu (2006) investigated the tail behavior of

the Box-Cox transformed threshold GARCH(1,1) model.

We consider a more general power transformed and threshold GARCH model, in which σt

is a function of not only the past p observations but also the past q values of σt itself. A

power-transformed and threshold GARCH(p,q) model (PTTGARCH(p,q)) is defined as

Xt = σtεt and σ2δ
t = α0 +

p∑

i=1

α1i(X+
t−i)

2δ +
p∑

i=1

α2i(X−
t−i)

2δ +
q∑

j=1

βjσ
2δ
t−j (1.2)

where δ, α0, α1i, α2i, εt are the same as those in model (1.1), and βj ≥ 0, j = 1, · · · , q. As we

can see, besides the standard GARCH model (Bollerslev (1986)) i.e. δ = 1 and α1i = α2i, i =

1, · · · , p, model (1.2) includes diverse nonlinear and asymmetric models as special cases. For

example, it becomes a Box-Cox transformed ARCH model (Higgns and Bera (1992)) when

δ = 2, q = 0, a TARCH model (Li and Li (1996)) when δ = 1/2, q = 0, a power-transformed and

threshold ARCH model (Hwang and Kim (2004)) when q = 0, a Box-Cox transformed threshold

GARCH(1,1) model (Hwang and Basawa (2004)) when p = q = 1.

The main goal of this paper is to study the estimation and tests for model (1.2). We differ

from Hwang and Kim (2004) and Hwang and Basawa (2004) in the following ways.

(a) Our model is not a pure ARCH model or a simple GARCH(1,1). There are q

GARCH terms in model (1.2).
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(b) Instead of the uniform local asymptotic normality approach of maximum likeli-

hood estimation (MLE), we consider Gaussian quasi-maximum likelihood esti-

mation (QMLE) for PTTGARCH(p,q) model and obtain asymptotic normality

of QMLE under the condition that the error distribution has finite fourth mo-

ment.

(c) Our LADE approach relaxes the moment condition for the error distribution to

the minimum. Its asymptotic normality enables us to do statistical inference

on PTTGARCH(p,q) model with heavy-tailed errors.

We also give a necessary and sufficient condition for the existence of a strictly stationary solution

of model (1.2), and study the existence of the moments and the tail behavior of the model.

Furthermore, an order selection method is established by using the Wald statistic based on the

asymptotic normality of LADE for a heavy-tailed PTTGARCH(p,q) model. A simulation study

indicates that the LADE is more accurate than the QMLE when the errors are heavy-tailed. We

give a real data example to illustrate the practicality of our theory. Our results in this paper is

relevant because much empirical evidence shows that financial data often have heavy tails (see

Adler et al. (1997), Mittnik and Rachev (2000)).

The rest of this paper is organized as follows. In Section 2, asymptotic normality of QMLE

and LADE is established. Section 3 investigates tests for GARCH structures and the order

selection problem. Section 4 presents a simulation study and a real data example. All the

proofs of the main results in Section 2 and Section 3 are presented in Section 5. The Appendix

presents the stationarity and existence of moments for PTTGARCH(p,q) model.

In the sequel, L→, P→ and a.s→ denote convergence in distribution, in probability and almost

surely respectively. A′ denotes the transpose of a vector or a matrix A, ‖·‖ denotes the Euclidean

norm unless declared otherwise and C is a constant which may be different at different places.
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2 Estimation

Suppose that the data generating process is model (1.2). To avoid pathological cases, we

assume that α1p or α2p > 0, and βq > 0 if q > 0. Let

φ = (δ, α0, α11, α21, · · · , α1p, α2p, β1, · · · , βq)′

be the parametric vector with true value φ0 = (δ0, α0
0, α

0
11, α

0
21, · · · , α0

1p, α
0
2p, β

0
1 , · · · , β0

q )′. Define

σt(φ) = [α0 +
p∑

i=1

α1i(X+
t−i)

2δ +
p∑

i=1

α2i(X−
t−i)

2δ +
q∑

j=1

βjσ
2δ
t−j(φ)]1/2δ.

Our basic assumptions are as follows.

A1 εt is non-degenerate and symmetrically distributed. Furthermore, E|εt|∆ < +∞
for some ∆ > 0, and

lim
t→0

t−µP{ε2
t ≤ t} = 0, for some µ > 0. (2.1)

A2 Θ is a compact subset of Rd, φ0 is in the interior of Θ, and the Lyapunov

exponent γ(φ) < 0 for all φ ∈ Θ (see (A.4) in the Appendix).

Remark 1. Because of the compactness of Θ, there exist positive constants δ1, δ2, ρ0 such

that 0 < δ1 < δ, α0 < δ2, δ1 ≤
∑q

i=1 βi ≤ ρ0 < 1 for any φ ∈ Θ.

Under Assumption A1-A2, it may be deduced that (1.2) implies that

σt(φ)2δ =
α0

1−∑q
j=1 βj

+
p∑

i=1

α1i(X+
t−i)

2δ +
p∑

i=1

α2i(X−
t−i)

2δ (2.2)

+
p∑

i=1

α1i

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X+

t−i−j1−···−jk
)2δ

+
p∑

i=1

α2i

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X−

t−i−j1−···−jk
)2δ.
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The derivatives of σt(φ)2δ, which are very useful in the sequel, may be deduced from (2.2) as

follows.

∂σt(φ)2δ

∂δ
=

p∑

i=1

α1iX
+2δ
t−i log(X+

t−i)
2 +

p∑

i=1

α2i(X−
t−i)

2δ log(X−
t−i)

2 (2.3)

+
p∑

i=1

α1i

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X+

t−i−j1−···−jk
)2δ log(X+

t−i−j1−···−jk
)2

+
p∑

i=1

α2i

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X−

t−i−j1−···−jk
)2δ log(X−

t−i−j1−···−jk
)2

=: Lφ1
1t (φ) + Lφ1

2t (φ) + Lφ1
3t (φ);

∂σt(φ)2δ

∂α0
=

1
1−∑q

j=1 βj
; (2.4)

∂σt(φ)2δ

∂α1i
= (X+

t−i)
2δ +

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X+

t−i−j1−···−jk
)2δ; (2.5)

∂σt(φ)2δ

∂α2i
= (X−

t−i)
2δ +

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X−

t−i−j1−···−jk
)2δ; (2.6)

∂σt(φ)2δ

∂βj
=

α0

(1−∑q
j=1 βj)2

+
p∑

i=1

α1i

∞∑

k=0

(k + 1)
q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X+

t−i−j−j1−···−jk
)2δ

+
p∑

i=1

α2i

∞∑

k=0

(k + 1)
q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X−

t−i−j−j1−···−jk
)2δ (2.7)

=: L
βj

1t (φ) + L
βj

2t (φ) + L
βj

3t (φ).

In the above expressions, we set (X+
t )2δ log(X+

t )2 = 0 if Xt ≤ 0 and (X−
t )2δ log(X−

t )2 = 0

if Xt ≥ 0. In practice, however, σt(φ) cannot be computed using equation (2.2), since Xt is

only observed for 1 ≤ t ≤ n. We have to use the following approximation for σt(φ) based on

{X1, · · · , Xn}.

σ̃t(φ)2δ =
α0

1−∑q
j=1 βj

+
p∑

i=1

α1i(X+
t−i)

2δ +
p∑

i=1

α2i(X−
t−i)

2δ

+
p∑

i=1

α1i

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X+

t−i−j1−···−jk
)2δI(t− i− j1 − · · · − jk ≥ 1)

+
p∑

i=1

α2i

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X−

t−i−j1−···−jk
)2δI(t− i− j1 − · · · − jk ≥ 1). (2.8)
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2.1 Quasi Maximum Likelihood Estimation (QMLE)

In this subsection, we deal with QMLE of the parameters. The logarithm of the quasi-

likelihood function (omitted some constant) is defined as

Ln(φ) =
n∑

t=1

−1
2
{log σ2

t (φ) +
X2

t

σ2
t (φ)

} =
n∑

t=1

lt(φ), (2.9)

where σt(φ) is defined by (2.2). The QMLE of φ is φ̄n = arg maxφ∈Θ Ln(φ). Define

Λ(φ) = E
{∂2lt(φ)

∂φ∂φ′
}

and Ω(φ) = E
{∂lt(φ)

∂φ

∂lt(φ)
∂φ′

}
.

In order to obtain the consistency and asymptotic normality of φ̄n, we need an additional

condition, namely

A3 Eε2
t = 1, and Eε4

t < ∞.

Remark 2. If εt has density at 0, then (2.1) is satisfied for any µ < 1/2.

The following theorem shows that φ̄n is consistent and asymptotically normal.

Theorem 1. Under assumptions A1-A3, it follows that

(i) φ̄n
a.s→ φ0,

(ii)
√

n(φ̄n − φ0) L→ N(0,Λ−1
0 Ω0Λ−1

0 ), where Λ0 = Λ(φ0) and Ω0 = Ω(φ0).

As mentioned earlier, we can only observe X1, · · · , Xn in practice. So we replace Ln(φ) by

L̃n(φ) =
n∑

t=1

−1
2
{log σ̃2

t (φ) +
X2

t

σ̃2
t (φ)

}.

Similarly, we define φ̃n = arg maxφ∈Θ L̃n(φ). Let

Λ̃(φ) =
1
n

n∑

t=1

∂2 l̃t(φ)
∂φ∂φ′

and Ω̃(φ) =
1
n

n∑

t=1

∂l̃t(φ)
∂φ

∂l̃t(φ)
∂φ′

,

where l̃t(φ) are defined similar to lt(φ) by replacing σt(φ) by σ̃t(φ). The next theorem shows that

our results for φ̃n are the same as those for φ̄n, and Λ̃(φ̃n) and Ω̃(φ̃n) are consistent estimators

of Λ0 and Ω0 respectively.
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Theorem 2. Under assumptions A1-A3, it follows that

(i) φ̃n
a.s→ φ0,

(ii)
√

n(φ̃n − φ0) L→ N(0,Λ−1
0 Ω0Λ−1

0 ),

(iii) Λ̃n ≡ Λ̃(φ̃n) a.s→ Λ0 and Ω̃n ≡ Ω̃(φ̃n) a.s→ Ω0

Based on Theorem 1, we can develop some statistical inference about model (1.2). For

example, we can consider a general form of the linear null hypothesis

H0 : Γφ0 = θ, (2.10)

where Γ is a s × d constant matrix with rank s, and θ is s × 1 constant vector. By Theorem

2 and Theorem 4 in the next section, the asymptotic distributions of the likelihood ratio (LR)

test statistic, the Lagrange multiplier (LM) test statistic and the Wald test statistic are χ2.

Remark 3. From the above discussion, it can be seen that if we apply QMLE, we need

Asumption A3, which is quite restrictive on the parameter vector and excludes the heavy tailed

cases.

2.2 Least Absolute Deviations Estimation (LADE)

We have seen from the above that the QMLE requires stringent moment conditions on εt

and Xt. However, empirical evidence indicates that financial data may have heavy tails. In

recent years, the problem of statistical inference about GARCH-type models with weak moment

conditions on xt and εt has attracted much attention (see Hall and Yao (2003)). We introduce

LADE for PTTGARCH(p,q) model, which only requires conditions for strict stationarity and

assumption A4. Define an objective function as in Peng and Yao (2003)

S̃n(φ) =
n∑

t=u

| log |Xt| − log σ̃t(φ)|,

where u = u(n) is a positive number satisfying u(n) → ∞ and u(n)/n → 0 as n → ∞. The

LADE is a minimizer of the objective function on the parameter space

φ̂n = arg min
φ∈Θ

S̃n(φ).
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Denote

v = (v1, · · · , vd)′ =
√

n(φ− φ0), Q̃t(φ) = log |Xt| − log σ̃t(φ), and Qt(φ) = log |Xt| − log σt(φ),

where d = 2p + q + 2. It is easy to see that φ̂n = φ0 + v̂/
√

n, where v̂ is a minimizer of

T̃n(v) =
n∑

t=u

(|Q̃t(φ0 + n−1/2v)| − |Q̃t(φ0)|).

Define

Dt(φ) = (Dt,1(φ), · · · , Dt,d(φ))′, Σ = E(Dt(φ0)D′
t(φ

0)),

where

Dt,1(φ) = −∂Qt(φ)
∂φ1

= − 1
2δ2

log σ2δ
t (φ) +

1
2δσ2δ

t (φ)
∂σ2δ

t (φ)
∂δ

, (2.11)

Dt,i(φ) = −∂Qt(φ)
∂φi

=
1

2δσ2δ
t (φ)

∂σ2δ
t (φ)
∂φi

, i = 2, · · · , d. (2.12)

We need the following condition on the error distribution instead of Assumption A3.

A4 log |εt| has zero median and a differentiable positive density function f(x) such

that supx∈R |f(x)| < B1 < ∞ and supx∈R |f ′(x)| < B2 < ∞.

Theorem 3. Suppose that conditions A1, A2 and A4 hold. Then for any given positive random

variable M with P (0 < M < ∞) = 1, there exists a local minimizer φ̂ of Sn(φ) which lies in the

random region {φ : ‖φ− φ0 − ξ/
√

n‖ ≤ M/
√

n} for which

√
n(φ̂n − φ0) −→L N

(
0,

1
4f2(0)

Σ−1
)
.

Here ξ is a normal random vector with mean 0 and covariance matrix 1
4f2(0)

Σ−1.

3 Order Selection and Tests for GARCH Structure

The likelihood ratio (LR) test, the Lagrange multiplier (LM) test and the Wald test are the

three standard approaches to constructing test statistics for parametric hypotheses. However,

the first two depend on the likelihood function and MLE, which are very sensitive to heavy

9



tails (see Hall and Yao (2003)). Therefore, we use a Wald test statistic based on LADE for

the heavy-tailed case. We consider a general form of linear null hypothesis (2.10). A Wald test

statistic is defined as

Wn(s) = (Γφ̂n − θ)′
{
Γ

1

4nf̂2(0)
Σ̂−1Γ′

}−1(Γφ̂n − θ).

We reject H0 for large values of Wn(s). In the above expression,

Σ̂ =
1
n

n∑

t=1

D̃t(φ̂n)D̃t(φ̂n)′, f̂(0) =
1

nbn

n∑

t=1

K
( 1
bn

log
|Xt|

σ̃t(φ̂n)

)
, (3.1)

where D̃t(φ̂n) is defined similar to Dt(φ̂n) by replacing σt(φ) by σ̃t(φ), K(·) is a density function

on R, and bn > 0 is a bandwidth. The following theorem gives the limiting distribution of Wn(s)

under H0.

Theorem 4. Suppose the conditions of Theorem 3 hold. If the kernel function K and the

bandwidth bn satisfy the following assumptions

(i) K is Lipschitz continuous and of finite first moment;

(ii) bn → 0 and nb4
n →∞ as n →∞,

then Wn(s) →L χ2
s under H0.

For testing an order (p, q) against a higher order (p,Q0) or (P0, q) with P0 > p and Q0 > q,

we can take a Γ in (2.10) such that

Γφ0 = (β0
q+1, · · · , β0

Q0
)′, or Γφ0 = (α0

1p+1, α
0
2p+1 · · · , α0

1P0
, α0

2P0
)′ (3.2)

and

θ = (0, · · · , 0)′(Q0−q)×1, or θ = (0, · · · , 0)′2(P0−p)×1.

Notice that a GARCH(p,q) model cannot be tested directly against an GARCH(P0, Q0) using

the standard technique because of the identification problem already discussed by Bollerslev

(1986), and the situation is the same for PTTGARCH (p,q) models. As pointed out by Ling

(2005), the above test procedure is very useful in model building. In fact, we can use it to select

the order. Suppose that the order of model (1.2) does not exceed (P0, Q0). For a given significant
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level η, we can take the above test in order for p = P0−1, · · · , s0 and q = Q0−1, · · · , r0 in (3.2)

until p = s0 and q = r0 such that Wn(s) > χ2
s(η). Then we can declare that the order of model

(1.2) is (s0, r0).

Because model (1.2) is a very general framework, we can test whether some special case is

true or not. In the following, we mainly discuss testing problems about GARCH structures for

{Xt}.
(i) Bollerslev’s standard GARCH: δ = 1 and α1i = α2i, i = 1, · · · , p;

(ii) IGARCH: δ = 1, α1i = α2i = αi, i = 1, · · · , p and
∑p

i=1 αi +
∑q

j=1 βj = 1;

(iii) Symmetric GARCH: α1i = α2i, i = 1, · · · , p

(iv) No power transformation: δ = 1.

Let

Γ1 =




1 0 0 0 0 · · · 0 0 0 · · · 0

0 0 1 −1 0 · · · 0 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 · · · 1 −1 0 · · · 0




(p+1)×d

,

Γ2 =




1 0 0 0 0 · · · 0 0 0 · · · 0

0 0 1 −1 0 · · · 0 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 · · · 1 −1 0 · · · 0

0 0 1
2

1
2

1
2 · · · 1

2
1
2 1 · · · 1




(p+2)×d

,

Γ3 =




0 0 1 −1 0 · · · 0 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 · · · 1 −1 0 · · · 0




p×d

,

Γ4 =
(

1 0 0 0 0 0 · · · 0 0 0 0 0
)′

d
,

θ1 = (1, · · · , 0, 0)′p+1, θ1 = (1, 0, · · · , 0, 1)′p+2 θ3 = (0, · · · , 0)′p, θ4 = 1.

Then the above four testing problems can be written in the form with

Hi0 : Γiφ
0 = θi, i = 1, · · · , 4.

11



So the Wald-test provides a simple way to test the null hypothesis of a particular specifica-

tion against wider nonlinear alternatives. For example, we can determine whether Bollerslev’s

standard model provides an adequate description of the data by testing H10.

4 Simulations and empirical results

In this section, we perform a simulation study to demonstrate the accuracy of LADE in heavy-

tailed case and apply the theory in Section 2 and Section 3 to the Hong Kong Hang Seng Index

(HSI) series.

Firstly, we compare numerically LADE and QMLE for the PTTGARCH(1,1) model. The

data are generated by the PTTGARCH(1,1) model

Xt = σtεt and σ2δ
t = α0 + α11(X+

t−1)
2δ + α21(X−

t−1)
2δ + β1σ

2δ
t−1,

with the true parameter (δ0, α0
0, α

0
11, α

0
21, β

0
1)′ = (0.8, 0.2, 0.2, 0.1, 0.4)′. We take the errors εt

to have either a standard normal distribution or a standardized Student’s t-distribution with

degrees of freedom d = 2, 3, 4, 5 . The sample size is n = 600 and we draw 1000 independent

samples. For LADE, u was set to be u = 10.

Figure 1 presents the boxplots of the average absolute error (AAE)
(|δ̂ − 0.8|+ |α̂0 − 0.2|+

|α̂11−0.2|+ |α̂21−0.1|+ |β̂−0.4|)/5 for both LADE and QMLE. For samples with heavy-tailed

errors, i.e., t(2), t(3) and t(4), LADE performs better than QMLE especially for t(2) and t(3).

As expected, QMLE is better when the errors are t(5) and N(0, 1).

Then we apply the PTTGARCH model to daily HSI from 2001 to 2003, which has a total of

738 observations. The return series Xt is defined as the percentage of the log difference of the

index. Figure 2 and figure 3 are the time plots of the index and the return respectively. They

display some drastic shocks, which are caused by the 11/9 terrorist attack on 11 − 09 − 2001

and the severe acute respiratory syndrome (SARS) in China erupted in March 2003.

We first study whether or not {Xt} is heavy-tailed. The Hill estimator and the QQ-plot are

used for this. The Hill estimator is defined as

Hn,m =
[ 1
m

m∑

i=1

log(
X(i)

X(m+1)
)
]−1

, n = 737,
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where X(1) ≥ X(2) ≥ · · · ≥ X(n) are the order statistics of X1, · · · , Xn. We plot {(m,Hn,m), 1 ≤
m ≤ 600} in Figure 4, which suggests that Xt has an infinite fourth moment or even probably

infinite variance, since the estimator is less than 4 for m ≥ 20 and less than 2 for m ≥ 200.

Figure 5 presents the QQ-plot for {Xt}, which suggests that {Xt} is very heavy-tailed.

To test whether {Xt} is white noise, we use the Wald test statistics based on the weighted

least absolute estimators with the weight function

wt =





1, if at = 0;

0.5C3/a3
t , if at 6= 0;

where at =
∑p

i=1 |Xt−i|I(|Xt−i| ≥ C) and C is the 90 percent quantile of the data {Xt} (see Ling

(2005) for details), since the Box-Pierce statistic is not applicable for the heavy-tailed case. Here

and in the following we take the kernel function K(x) = e−x/(1 + e−x) and bn = 1.06n−1/5. We

obtain that Wn(8) = 2.31 and Wn(12) = 2.76. Both are not significant at 0.05 level. However, for

the squared series {X2
t }, we obtain that W 2

n(8) = 105.85 and W 2
n(12) = 108.55, which are highly

significant at the level 0.05. This suggests that the series {Xt} has conditional heteroscedastic

structure.

Now, we fit a PTTGARCH(1,1) model using QMLE to the data. The estimates are

(δ̃, α̃0, α̃11, α̃21, β̃) = (1.6616, 0.3414, 0.0368, 0.1561, 0.7405)

with standard errors 0.0824, 0.1025, 0.0229, 0.1211, and 0.0476 respectively. For the standardized

residuals, we obtain Wn(8) = 4.88 and Wn(12) = 7.28; for the squared standardized residuals,

we obtained W 2
n(8) = 15.21 and W 2

n(12) = 17.64. Based on the 5% significance level of the

χ2(8) and χ2(12) distribution, the PTTGARCH(1,1) model fits the data adequately according

to both statistics W 2
n(8),W 2

n(12),W 2
n(8), and W 2

n(12). Figure 6 shows the Hill estimator of the

standardized residuals, which indicates that the residuals may have infinite fourth moment since

the Hill estimator is less than 3.5 when m ≥ 80. The QQ-plot in Figure 7 also shows that the

residuals are heavy-tailed. Thus, we fit a PTTGARCH model to the data with LADE.

For order selection, we assume that p, q ≤ 3 for simplicity. Using the procedure for order

selection in Section 3, we test p = 3, q = 2 v.s p = 3, q = 3; p = 3, q = 1 v.s p = 3, q = 2; and

p = 2, q = 1 v.s p = 1, q = 1 in order, and all the Wald statistics are less than 1, namely not

13



significant. Then we test p = 1, q = 1 v.s p = 1, q = 0, and the Wald statistic is 34.9, which

rejects the null hypothesis and we take p = 1, q = 1. The LADEs are

(δ̂, α̂0, α̂11, α̂21, β̂) = (0.5384, 0.0495, 0.0189, 0.0899, 0.8642)

with standard errors 0.0524, 0.0123, 0.0296, 0.0571, and 0.0464 respectively. To check the

adequacy of the estimated PTTGARCH(1,1) model, we conduct the white noise test for the

residuals and the squared residuals using the same method as for Xt before. We have Wn(8) =

2.60 and Wn(12) = 3.41 for the residuals and W 2
n(8) = 11.99 and W 2

n(12) = 17.46 for the squared

residuals, which are all not significant at 0.05 level. Hence, the estimated PTTGARCH(1,1)

model is adequate for the data {Xt}. Notice that for both the residuals and the squared residuals,

all the Wald statistics based on LADE are less than those based on QMLE, which suggests that

the fitted model based on LADE is the more adequate. For the fitted model using LADE, we also

test the hypothese δ = 1 and α11 = α21 respectively. The Wald statistic for the former is 14.24

and is highly significant. The Wald statistic for the latter is 2.41 and is not significant, which

may be caused by the small values of α11 and α21. In fact, as we can see from the estimators,

α̂21 is about five times α̂11. This example illustrates that the data are asymmetric and nonlinear

and the PTTGARCH model is capable of capturing these characteristics.

5 Theoretical Proofs

We use the same notation as in the Section 2. Before we prove Theorem 1—Theorem 3, we

introduce some lemmas first.

Lemma 1. Under assumptions A1—A2, there exist positive constants 0 < r < 1 and C > 0

independent from φ such that

sup
φ∈Θ

|σ2δ
t (φ)− σ̃2δ

t (φ)| ≤ C

∞∑

j=t

rt(|Xt−j |2δ2 + 1) (5.1)

and

sup
φ∈Θ

‖∂σ2δ
t (φ)
∂φ

− ∂σ̃2δ
t (φ)
∂φ

‖ ≤ C
∞∑

j=t

rt(|Xt−j |2δ2 + 1), (5.2)

where δ2 is the positive constant in Remark 1.
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Proof. Denote

1 + α11x + · · ·+ α1px
p

1− β1x− · · · − βqxq
=

∞∑

i=0

d1ix
i, |x| ≤ 1

and

1 + α21x + · · ·+ α2px
p

1− β1x− · · · − βqxq
=

∞∑

i=0

d2ix
i, |x| ≤ 1.

By Lemma 3.1 of Berkes et al. (2003), there exist some constants C > 0 and 0 < r < 1 such

that

0 < dit ≤ Crt, i = 1, 2; t = 0, 1, · · · ,

where C and r are both independent of φ. Notice that

σ2δ
t (φ)− σ̃2δ

t (φ) =
∞∑

i=t

d1i(X+
t−i)

2δ +
∞∑

i=t

d2i(X−
t−i)

2δ,

thus (5.1) holds. Similarly, we can show that (5.2) holds.

Lemma 2. Under assumption A1—A2, it follows that

E sup
φ∈Θ

| ∂mQt(φ)
∂φj1 · · · ∂φjm

|h < +∞,

where m, h are any positive integers, 1 ≤ j1, · · · , jm ≤ d and Qt(φ) = log |Xt| − log σt(φ).

Proof. We only prove the case m = 1. The proof of the case m > 1 is similar. From (2.11) and

(2.12), it is sufficient to prove that

E sup
φ∈Θ

| log σ2δ
t (φ)|h < +∞; (5.3)

E sup
φ∈Θ

| 1
σ2δ

t (φ)
∂σ2δ

t (φ)
∂φi

|h < +∞, i = 2, · · · , d; (5.4)

E sup
φ∈Θ

| 1
σ2δ

t (φ)
∂σ2δ

t (φ)
∂δ

|h < +∞. (5.5)

By the definition of σ2δ
t , we have σ2δ

t > α0 ≥ δ1, where δ1 is the positive constant in Remark

1. Notice that for any given positive integers h, there exists M1 > 0 such that (log x)h ≤ xh̃
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for x > M1, where h̃ = min{1, τ/(2δ2)}, τ and δ2 are defined respectively in Theorem 6 and

Remark 1. By Lemma 1, it follows that

δ1 ≤ sup
φ∈Θ

σ2δ
t (φ) ≤ C

∞∑

j=1

rj(|Xt−j |2δ2 + 1).

Noticing that

log(δ1) ≤ log σ2δ
t (φ) ≤ log

(
sup
φ∈Θ

σ2δ
t (φ)

)
,

we have

sup
φ∈Θ

| log σ2δ
t (φ)| ≤ | log δ1|+ log[C

∞∑

j=1

rj(|Xt−j |2δ2 + 1)] ≤ [C +
∞∑

j=1

rjh̃(|Xt−j |τ + 1)]1/h,

which implies (5.3) holds by Theorem 6 (i).

It is obvious that (5.4) holds for i = 2, · · · , 2p+2 by (2.4)—(2.6). From Lemma 5.2 of Berkes

et al. (2003), we can obtain (5.4) for i = 2p + 3, · · · , d.

Now we prove (5.5). Using the same argument as (A.5), we can obtain E supφ∈Θ |L
φ1
1t (φ)

σ2δ
t (φ)

|h <

+∞, where Lφ1
1t (φ) is defined in (2.3). On the other hand,

Lφ1
2t (φ) ≤ ρ0

q∑

j=1

p∑

i=1

α1i

∞∑

k=0

q∑

j1=1

· · ·
q∑

jk=1

βj1 · · ·βjk
(X+

t−i−j−j1−···−jk
)2δ log(X+

t−i−j−j1−···−jk
)2

= ρ0

q∑

j=1

Lt,j(φ),

where ρ0 is the same one as in Remark 1 and Lφ1
2t (φ) is defined in (2.3). From H

..
older inequality

and (5.4), it follows that

(
E sup

φ∈Θ
|Lt,j(φ)
σ2δ

t (φ)
|h)2 ≤ E sup

φ∈Θ
|Lt,j(φ)

L
βj

2t (φ)
|2hE sup

φ∈Θ
|L

βj

2t (φ)
σ2δ

t (φ)
|2h ≤ CE sup

φ∈Θ
|Lt,j(φ)

L
βj

2t (φ)
|2h.

It can be easily verified that

x1 + x2

y1 + y2
≤ max{x1

y1
,
x2

y2
}, for any x1, x2, y1, y2 > 0.
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Let I1 = I{| log X+
t−i−j−j1−···−jk

| ≤ 1} and I2 = 1− I1. Noticing (2.1) holds, We obtain

E sup
φ∈Θ

|Lt,j(φ)

L
βj

2t (φ)
|2h

= E sup
φ∈Θ

{∑p
i=1 α1i

∑∞
k=0

∑q
j1=1 · · ·

∑q
jk=1 βj1 · · ·βjk

(X+
t−i−j−j1−···−jk

)2δ

τL
βj

2t (φ)

· log(X+
t−i−j−j1−···−jk

)2τ (I1 + I2)
}2h

≤ C + CE
{

max
k≥0

max
j1,··· ,jk

| log(X+
t−i−j−j1−···−jk

)τ |I2

k + 1
}2h

≤ C + C

∫ ∞

1
2hy2h−1P{max

k≥0
max

j1,··· ,jk

| log(X+
t−i−j−j1−···−jk

)τ |I2

k + 1
> y}dy

≤ C + C
∞∑

k=0

∫ ∞

1
2hy2h−1P{maxj1,··· ,jk

| log(X+
t−i−j−j1−···−jk

)τ |
k + 1

> y}dy

= C + C

∞∑

k=0

∫ ∞

1
2hy2h−1k[P{(X+

t )τ > e(k+1)y}+ P{(X+
t )τ < e−(k+1)y}]dy

≤ C + C
∞∑

k=0

∫ ∞

1
ky2h−1 · [e−(k+1)yE(X+

t )τ + P{ε+
t < (α0)−1/(2δτ)e−(k+1)y/τ}]dy

≤ C + C

∞∑

k=0

∫ ∞

1
ky2h−1 · [e−(k+1)yE(X+

t )τ + e−µ(k+1)y/τ ]dy

< +∞.

Thus, E supφ∈Θ |L
φ1
2t (φ)

σ2δ
t (φ)

|h < +∞. Similarly, we can obtain that E supφ∈Θ |L
φ1
3t (φ)

σ2δ
t (φ)

|h < +∞. This

completes the proof.

Lemma 3. Suppose that assumptions A1-A2 hold. If E|ε2
t |1+2η < ∞ for some η > 0, it follows

that

E sup
φ∈Θ

| ∂mlt(φ)
∂φj1 · · · ∂φjm

| < +∞,

where 1 ≤ j1, · · · , jm ≤ d.

Proof. We only prove the Lamma for m = 1, noting that similar arguments apply for m > 1.

By the definition of lt(φ), we have

∂lt(φ)
∂φ

= − 1
2σ2

t (φ)
∂σ2

t (φ)
∂φ

+
X2

t

2σ4
t (φ)

∂σ2
t (φ)
∂φ

.
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By similar argument to Lemma 5.1 of Berkes et al. (2003), we can obtain that

E| sup
φ∈Θ

σ2
t (φ

0)
σ2

t (φ)
|1+η < ∞. (5.6)

From Hölder inequality, Lemma 2 and (5.6), we have

E sup
φ∈Θ

‖ X2
t

2σ4
t (φ)

∂σ2
t (φ)
∂φ

‖ = E sup
φ∈Θ

‖σ2
t (φ

0)
σ2

t (φ)
1

2σ2
t (φ)

∂σ2
t (φ)
∂φ

‖

≤ {
E| sup

φ∈Θ

σ2
t (φ

0)
σ2

t (φ)
|1+η

} 1
1+η

{
E sup

φ∈Θ
‖ 1
2σ2

t (φ)
∂σ2

t (φ)
∂φ

‖ 1+η
η

} η
1+η < ∞.

Using Lemma 2 again, we obtain

E sup
φ∈Θ

‖ 1
2σ2

t (φ)
∂σ2

t (φ)
∂φ

‖ < ∞.

Thus, E supφ∈Θ ‖∂lt(φ)
∂φ ‖ < ∞.

Lemma 4. Suppose that assumptions A1-A3 hold, and denote L(φ) = Elt(φ) for all φ ∈ Θ.

Then L(φ) is well defined and φ0 is the unique maximizer of L(φ).

Proof. By Lemma 2 and Lemma 3, it is obvious that L(φ) is well defined.

Maximizing L(φ) is equivalent to minimizing L(φ0)− L(φ). But,

L(φ0)− L(φ) =
1
2
E

{σ2
t (φ

0)
σ2

t (φ)
− log

σ2
t (φ

0)
σ2

t (φ)
}− 1

2
.

Note that the function x − log x > 0 for any x > 0 and reaches its unique minimum value at

x = 1. Since σ2
t (φ) = σ2

t (φ
0) if and only if φ = φ0, we obtain the result.

Lemma 5. If the conditions of Theorem 1 are satisfied, then as n →∞, we have

sup
φ∈Θ

| 1
n

Ln(φ)− L(φ)| a.s→ 0,

sup
φ∈Θ

| 1
n

∂Ln(φ)
∂φ

− ∂L(φ)
∂φ

| a.s→ 0

sup
φ∈Θ

| 1
n

∂2Ln(φ)
∂φ∂φ′

− ∂2L(φ)
∂φ∂φ′

| a.s→ 0.
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Proof. By the ergodic theorem,

1
n

Ln(φ) a.s→ L(φ), (5.7)

for any φ ∈ Θ. Using the mean value theorem, we have

sup
φ1,φ2∈Θ

|Ln(φ1)− Ln(φ2)| 1
‖φ1 − φ2‖

≤ 1
2‖φ1 − φ2‖

n∑

t=1

sup
φ1,φ2∈Θ

{| log σ2
t (φ

1)− log σ2
t (φ

2)|+ | X2
t

σ2
t (φ1)

− X2
t

σ2
t (φ2)

|}

≤ C

2

n∑

t=1

sup
φ∗,φ∗∗∈Θ

{‖ 1
σ2

t (φ∗)
∂σ2

t (φ
∗)

∂φ
‖+ ‖ε2

t σ
2
t (φ

0)
σ4

t (φ∗∗)
∂σ2

t (φ
∗∗)

∂φ
‖},

where φ∗, φ∗∗ lie on the line form φ1 to φ2. We have

E
{

sup
φ∗,φ∗∗∈Θ

[‖ 1
σ2

t (φ∗)
∂σ2

t (φ
∗)

∂φ
‖+ ‖ε2

t σ
2
t (φ

0)
σ4

t (φ∗∗)
∂σ2

t (φ
∗∗)

∂φ
‖]} < ∞

by Lemma 2 and Lemma 3. Then,

sup
φ1,φ2∈Θ

| 1
n

Ln(φ1)− 1
n

Ln(φ2)| 1
‖φ1 − φ2‖ = O(1), a.s,

which shows that Ln(φ)
n is equicontinuous with probability one. Combining this fact, (5.7) and

the compactness of Θ, the uniform convergence of Ln(φ)
n follows. By the same method, we can

prove that the results hold for 1
n

∂Ln(φ)
∂φ and 1

n
∂2Ln(φ)
∂φ∂φ′ .

Lemma 6. If the conditions of Theorem 1 are satisfied, then it follows that

sup
φ∈Θ

| 1√
n

Ln(φ)− 1√
n

L̃n(φ)| a.s.−→ 0,

sup
φ∈Θ

‖ 1√
n

∂Ln(φ)
∂φ

− 1√
n

∂L̃n(φ)
∂φ

‖ a.s.−→ 0,

sup
φ∈Θ

‖ 1√
n

∂2Ln(φ)
∂φ∂φ′

− 1√
n

∂2L̃n(φ)
∂φ∂φ′

‖ a.s.−→ 0.

Proof. Let

U1 =
1√
n

n∑

t=1

sup
φ∈Θ

| log σ2
t (φ)− log σ̃2

t (φ)| and U2 =
1√
n

n∑

t=1

sup
φ∈Θ

| X2
t

σ2
t (φ)

− X2
t

σ̃2
t (φ)

|,
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then

sup
φ∈Θ

| 1√
n

Ln(φ)− 1√
n

L̃n(φ)| ≤ U1 + U2.

By Lemma 1, we have

U1 =
1√
n

n∑

t=1

sup
φ∈Θ

1
δ

∣∣ log(1 +
σ2δ

t (φ)− σ̃2δ
t (φ)

σ̃2δ
t (φ)

)
∣∣

≤ C√
n

n∑

t=1

sup
φ∈Θ

1
δ

|σ2δ
t (φ)− σ̃2δ

t (φ)|
σ̃2δ

t (φ)

≤ C√
n

n∑

t=1

sup
φ∈Θ

|σ2δ
t (φ)− σ̃2δ

t (φ)|

≤ C√
n

n∑

t=1

∞∑

j=t

rt(1 + |Xt−j |δ2)

≤ C√
n

n∑

t=1

rt +
C√
n

n∑

t=1

rt
∞∑

h=0

rh|X−h|δ2

a.s→ 0.

By the mean value theorem, we have

σ2
t (φ)− σ̃2

t (φ) =
(
σ2δ

t (φ)
) 1

δ − (
σ̃2δ

t (φ)
) 1

δ =
1
δ
(σ∗t )

1
δ
−1(σ2δ

t (φ)− σ̃2δ
t (φ)),

where σ∗t lies between σ2δ
t (φ) and σ̃2δ

t (φ). Thus we have U2
a.s→ 0 by a similar way to the proof

of U1
a.s→ 0 from Lemma 1. Therefore,

sup
φ∈Θ

| 1√
n

Ln(φ)− 1√
n

L̃n(φ)| a.s.−→ 0. (5.8)

Using the same method as the proof of (5.8), we get

sup
φ∈Θ

| 1√
n

∂Ln(φ)
∂φ

− 1√
n

∂L̃n(φ)
∂φ

| a.s.−→ 0,

sup
φ∈Θ

‖ 1√
n

∂2Ln(φ)
∂φ∂φ′

− 1√
n

∂2L̃n(φ)
∂φ∂φ′

‖ a.s.−→ 0.

This completes the proof.

Proof of Theorem 1. (i) By Theorem 4.1.1 and the associated in Amemiya (1985), we

have φ̄n
a.s→ φ0 if the following conditions hold
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(a) Θ is a compact parameter space;

(b) Ln(φ,X) is continuous in φ ∈ Θ for all X and is a measurable function of X for all

φ ∈ Θ;

(c) 1
nLn(φ) a.s→ L(φ) uniformly in φ ∈ Θ;

(d) L(φ) attains a unique global maximum at φ0.

By Assumption A2, Lemma 4, and Lemma 5, we know conditions (a)-(d) are satisfied. Thus,

φ̄n
a.s→ φ0.

(ii) By the mean value theorem, we obtain that

∂Ln(φ̄n)
∂φ

=
∂Ln(φ0)

∂φ
+

∂2Ln(ξ)
∂φ∂φ′

(φ̄n − φ0),

where ξ lies between φ0 and φ̄n. But, ∂Ln(φ̄n)
∂φ = 0. Then

∂2Ln(ξ)
∂φ∂φ′

(φ̄n − φ0) = −∂Ln(φ0)
∂φ

.

Using Lemma 3 and the continuity of ∂2Ln(φ)
∂φ∂φ′ , we obtain

(Λ0 + o(1))(φ̄n − φ0) = − 1
n

∂Ln(φ0)
∂φ

.

It can be easily verified that

∂lt(φ0)
∂φ

=
1
2
(1− ε2

t )
1

σ2
t (φ0)

∂σ2
t (φ

0)
∂φ

is a stationary sequence of martingale differences. Therefore, by applying a central limit theorem

of martingale (Hall and Hegde (1980)), we obtain

√
n(φ̄n − φ0) L→ N(0,Λ−1

0 Ω0Λ−1
0 ).

Proof of Theorem 2. (i) By Lemma 5 and Lemma 6, we have

sup
φ∈Θ

| 1
n

L̃n(φ)− L(φ)| ≤ sup
φ∈Θ

| 1
n

Ln(φ)− 1
n

L̃n(φ)|+ sup
φ∈Θ

| 1
n

Ln(φ)− L(φ)| a.s.→ 0.

Imitating the proof of Theorem 3 (i), we obtain the result.

21



(ii) Notice that

1√
n

∂Ln(φ̄n)
∂φ

− 1√
n

∂Ln(φ̃n)
∂φ

= [
1√
n

∂Ln(φ̄n)
∂φ

− 1√
n

∂L̃n(φ̃n)
∂φ

] + [
1√
n

∂L̃n(φ̃n)
∂φ

− 1√
n

∂Ln(φ̃n)
∂φ

].

From Lemma 5 and the mean value theorem, we have

1
n

∂2Ln(ξ∗)
∂φ∂φ′

√
n(φ̃n − φ̄n) a.s.−→ 0.

Thus,
√

n(φ̃n − φ̄n) = o(1) by Lemma 3 and the continuity of ∂2Ln(φ)
∂φ∂φ′ . Then the result follows

from Theorem 1.

(iii)By Lemma 3 and Lemma 6 and Theorem 2 (ii), we have

E sup
φ∈Θ

|Λ̃(φ)− Λ(φ)| a.s→ 0, and [Λ(φ̃n)− Λ(φ0)] = Op(1)(φ̃n − φ0) → 0.

Therefore,

Λ̃(φ̃n) = [Λ̃(φ̃n)− Λ(φ̃n)] + [Λ(φ̃n)− Λ(φ0)] + Λ(φ0) → Λ0.

by applying an ergodic theorem to Λ(φ0). This completes the proof of Theorem 2.

Proof of Theorem 3. Define

Tn(v) =
n∑

t=u

(|Qt(φ0 + n−1/2v)| − |Qt(φ0)|),

T ∗n(v) =
n∑

t=u

(|Qt(φ0)− n−1/2v′Dt| − |Qt(φ0)|),

where Dt ≡ Dt(φ0). By Lemma 1 and the same argument as Lemma 6, we obtain that

Tn(v)− T̃n(v) P−→ 0, (5.9)

uniformly on compact sets. Using the equality

|z − y| − |z| = −ysgn(z) + 2(y − z){I(0 < z < y)− I(y < z < 0)}, z 6= 0, (5.10)
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we have

T ∗n(v) = n−1/2
n∑

t=u

v′Dtsgn(Qt(φ0))

+2
n∑

t=u

(n−1/2v′Dt −Qt(φ0))[I(0 < Qt(φ0) < n−1/2v′Dt)− I(n−1/2v′Dt < Qt(φ0) < 0)]

=: An + Bn.

Since Qt(φ0) = log |εt|, we know {v′Dtsgn(log |εt|)} is a stationary sequence of martingale

differences by assumption A4 and Lemma 2. Therefore, applying a martingale central limit

theorem (Hall and Heyde (1980)), we obtain An →L v′N , where N denotes a N(0,Σ) random

vector.

Now turning to Bn, let

Unt = (n−1/2v′Dt − log |εt|)I(0 < log |εt| < n−1/2v′Dt).

Then

nEU2
nt = nE(E(U2

nt|Ft−1))

= nE
( ∫ n−1/2v′Dt

0
(n−1/2v′Dt − x)2f(x)dx

)

= nE[
∫ n−1/2v′Dt

0
(n−1/2v′Dt − x)2(f(x)− f(0))dx

+
∫ n−1/2v′Dt

0
(n−1/2v′Dt − x)2f(0)dx])

≤ E
(
B2n

−2(v′Dt)4 + B1n
−3/2(v′Dt)3

)
.

By Lemma 2, we have E(v′Dt)4 < ∞ and E(v′Dt)3 < ∞. Therefore, we have proved that

lim sup
n→∞

nEU2
nt = 0. (5.11)

On the other hand, on the set {D′
tv > 0}, we may show that

n∑
t=u

E(Unt|Ft−1) → f(0)
2

E[(v′Dt)2I(v′Dt > 0)],

and

V ar
( n∑

t=u

(Unt − E(Unt|Ft−1))
) → 0.
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Therefore,

n∑
t=u

Unt → f(0)
2

E[(v′Dt)2I(v′Dt > 0)].

Using the same argument for the second indicator in the summands of Bn, we obtain that

Bn
P→ f(0)v′Σv. (5.12)

Let T = f(0)v′Σv + v′N , then the finite dimensional distributions of T ∗n converge to those of T .

But, since T ∗n has convex sample paths, this implies that the convergence is in fact on C(Rd)

(see the proof of Proposition 1 in Davis and Dunsmuir (1997)).

Denote Ht(φ) = ∂2Qt(φ)
∂φ∂φ′ , then we have E‖ supφ∈Θ Ht(φ)‖ < ∞ from Lemma 2. By Taylor

expansion and (5.10), it follows that

Tn(v)− T ∗n(v) =
n∑

t=u

[|Qt(φ0)− n−1/2v′Dt − n−1v′Ht(φ∗)v| − |Qt(φ0)− n−1/2v′Dt|
]

= −
n∑

t=u

n−1v′Ht(φ∗)vsgn
(
log |εt| − n−1/2v′Dt

)

+2
n∑

t=u

(n−1v′Ht(φ∗)v − log |εt|+ n−1/2v′Dt)I
(
0 < log |εt| − n−1/2v′Dt < n−1v′Ht(φ∗)v

)

+2
n∑

t=u

(n−1v′Ht(φ∗)v − log |εt|+ n−1/2v′Dt)I
(
n−1v′Ht(φ∗)v < log |εt| − n−1/2v′Dt < 0

)
.

By a similar argument for S∗∗n (v)− S∗n(v) → 0 in Pan et al. (2005), we can obtain that Tn(v)−
T ∗n(v) P→ 0 uniformly on compact sets, which implies T̃n(v) L→ T on C(Rd) from (5.9). By the

proof of Theorem 1 in Pan et.al. (2005), we obtain the result.

Proof of Theorem 4. Based on Theorem 3, Theorem 4 follows immediately from the

following two assertions

Σ̂ P→ Σ and f̂(0) P→ f(0). (5.13)

For the first assertion, defining

Σn(φ) =
1
n

n∑

t=1

Dt(φ)Dt(φ)′ and Σ̃n(φ) =
1
n

n∑

t=1

D̃t(φ)D̃t(φ)′,
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we have

Σ̂ = [Σ̃n(φ̂n)− Σ̃n(φ0)] + [Σ̃n(φ0)− Σn(φ0)] + Σn(φ0) =: Σ1n + Σ2n + Σ3n.

Obviously, Σ3n
a.s→ σ by the ergodic theorem. But,

Σ1n =
1
n

n∑

t=1

[D̃t(φ̂n)− D̃t(φ0)]D̃t(φ̂n)′ +
1
n

n∑

t=1

D̃t(φ0)[D̃t(φ̂n)− D̃t(φ0)]′

≤ ‖φ̂n − φ0‖ 1
n

n∑

t=1

{‖∂D̃t(φ∗)
∂φ′

‖‖D̃t(φ̂n)‖+ ‖∂D̃t(φ∗∗)
∂φ′

‖‖D̃t(φ0)‖}

≤ ‖φ̂n − φ0‖ 2
n

n∑

t=1

sup
φ∈Θ

‖∂D̃t(φ)
∂φ′

‖ sup
φ∈Θ

‖D̃t(φ)‖ a.s→ 0,

by Lemma 2 and Theorem 3. In the above expression, φ∗ and φ∗∗ lie on the line from φ̂n to φ0.

Using Lemma 1, by a similar argument leading to Lemma 6, we can conclude that Σ2n
a.s→ 0.

The proof of the first assertion is completed.

For the second assertion, defining

f∗(0) =
1

nbn

n∑

t=1

K
( 1
bn

log
|Xt|

σt(φ̂n)

)
,

we have

|f̂(0)− f∗(0)| ≤ C

2nb2
nδ̂

n∑

t=1

| log σ2δ̂
t (φ̂n)− log σ̃2δ̂

t (φ̂n)|

=
C

2nb2
nδ̂

n∑

t=1

log
(
1 +

σ2δ̂
t (φ̂n)− log σ̃2δ̂

t (φ̂n)

σ̃2δ̂
t (φ̂n)

)

≤ C
1

nb2
n

n∑

t=1

|σ2δ̂
t (φ̂n)− σ̃2δ̂

t (φ̂n)|

≤ C
1

nb2
n

n∑

t=1

sup
φ∈Θ

|σ2δ
t (φ)− σ̃2δ

t (φ)| a.s→ 0,

provided nb2
n →∞, by a proof similar to that of Lemma 6. Notice that

|f∗(0)− f(0)| ≤ 1
nbn

n∑

t=1

|K( 1
bn

log
|Xt|

σt(φ̂n)

)−K
( log |εt|

bn

)|+ | 1
nbn

n∑

t=1

K
( log |εt|

bn

)− f(0)|

= L1 + L2.

Due to Theorem 3 (i), it follows from Lemma 2 and Theorem 3 that
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L1 ≤ C

nb2
n

n∑

t=1

| log σ2
t (φ̂)− log σ2

t (φ
0)|

=
C

nb2
n

‖φ̂n − φ0‖
n∑

t=1

‖ 1
σ2

t (φ∗)
∂σ2

t (φ
∗)

∂φ
‖

=
C√
nb2

n

√
n‖φ̂n − φ0‖ · 1

n

n∑

t=1

‖ 1
σ2

t (φ∗)
∂σ2

t (φ
∗)

∂φ
‖

= O(1)
1√
nb2

n

→ 0.

On the other hand, since

E
{ 1

bn
K

( log |εt|
bn

)}
=

∫ ∞

−∞
K(x)f(bnx)dx

=
∫ ∞

−∞
K(x)f(0)dx +

∫ ∞

−∞
K(x)[f(bnx)− f(0)]dx = f(0) + op(1),

it follows that

E(K2)2 =
1
n2

n∑

t=1

E[
1
bn

K(
log |εt|

bn
)− f(0)]2

+
2
n2

∑

1≤i<j≤n

E[(
1
bn

K(
log |εi|

bn
)− f(0))(

1
bn

K(
log |εj |

bn
)− f(0))]

≤ 2
nbn

∫ ∞

−∞
K2(x)f(bnx)dx +

2
n

f2(0)

+
2
n2

∑

1≤i<j≤n

E[
1
bn

K(
log |εi|

bn
)− f(0)]E[

1
bn

K(
log |εj |

bn
)− f(0)] −→ 0

by Assumption A4. Then, K2
P→ 0. This completes the proof of the second assertion.

A Appendix. Probabilistic Properties of PTTGARCH Model

A.1 The Stochastic Recurence Form of The Proposed Model

Model (1.2) can be represented in a form of stochastic recurrence equation. We can always

assume that p ≥ 2, q ≥ 2 because, otherwise, we can add some α1i, α2i or βi which is equal to 0.

Denote

ηt = β1 + α11(ε+
t )2δ + α21(ε−t )2δ,
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Yt = (σ2δ
t+1, · · · , σ2δ

t−q+2, (X
+
t )2δ, (X−

t )2δ, · · · , (X+
t−p+2)

2δ, (X−
t−p+2)

2δ)′ ∈ Rκ (A.1)

B ≡ B(φ) = (α0, 0, · · · , 0)′ ∈ Rκ

At ≡ At(φ) =




ηt β2 · · · βq−1 βq α12 α22 · · · α1p−1 α2p−1 α1p α2p

1 0 · · · 0 0 0 0 · · · 0 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

...

0 0 · · · 1 0 0 0 · · · 0 0 0 0

ε+2δ
t 0 · · · 0 0 0 0 · · · 0 0 0 0

ε−2δ
t 0 · · · 0 0 0 0 · · · 0 0 0 0

0 0 · · · 0 0 1 0 · · · 0 0 0 0

0 0 · · · 0 0 0 1 · · · 0 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

...

0 0 · · · 0 0 0 0 · · · 1 0 0 0

0 0 · · · 0 0 0 0 · · · 0 1 0 0




κ×κ

(A.2)

with κ = 2p + q − 2 and φ = (δ, α0, α11, α21, · · · , α1p, α2p, β1, · · · , βq)′. Then, Xt is a solution of

(1.2) if and only if Yt is a solution of the following equation

Yt = AtYt−1 + B. (A.3)

A.2 Strict Stationarity of The Model

Choose a norm ‖ · ‖ on Rκ, say, ‖x‖ = |x1|+ · · ·+ |xd|, for any x ∈ Rκ. Then for any κ× κ

matrix A, the corresponding operator norm is

‖A‖ = sup
‖x‖=1

‖Ax‖.

The top Lyapunov exponent associated with the sequence {At} given by (A.2) is defined as

γ(φ) = inf{E(
1

t + 1
log ‖A0A−1 · · ·A−t‖), t ∈ N},

provided E log+ ‖A0‖ is finite, which is satisfied under assumption A1.
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Furthermore, under assumption A1, we have

γ(φ) = lim
t→+∞

1
t

log ‖A0A−1 · · ·A−t‖. (A.4)

This enables us to approximate the value of the top Lyapunov exponent numerically by simula-

tion.

Theorem 5. Under assumption A1, the following assertions hold:

(i) There is a unique strictly stationary solution to model (1.2) if and only if the top Lyapunov

exponent γ(φ) given by (A.4) is strictly negative. Moreover, this stationary solution is ergodic.

(ii) If there is a strictly stationary solution to model (1.2), then
∑q

j=1 βj < 1.

Proof. (i) Our proof is similar to that of Bougerol and Picard (1992a). Firstly, we prove that

E log+ ‖A0‖ < +∞, which ensures that the Lyapunov exponent γ(φ) is well defined. Due to the

equivalence of norms of A0, we have

‖A0‖ ≤ C{β1 + α11ε
+2δ
t + α21ε

−2δ
t +

q∑

j=2

βj +
p∑

i=2

(α1i + α2i) + q − 1 + |εt|2δ + 2p− 4}

≤ C(1 + |εt|2δ).

For ∆̃ = min{1, ∆
2δ}, there exists an M̃ > 0 such that log+ x < x∆̃, for x > M̃ . Then, by

assumption A1,

E log+ ‖A0‖ ≤ M̃ + C(1 + E|εt|∆) < +∞. (A.5)

Necessity. Suppose {Xt, t ∈ Z} is a strictly stationary solution of (1.2). Then {Yt, t ∈ Z}
defined by (A.1) is a strictly stationary solution of (A.3). From (A.3), we have, for all t > 0

Y0 = A0Y−1 + B

= A0A−1Y−2 + B + A0B

= · · ·

= A0A−1 · · ·A−tY−t−1 + B +
t−1∑

k=0

A0 · · ·A−kB.

Then for any t > 0,
∑t−1

k=0 A0 · · ·A−kB ≤ Y0 by the nonnegativity of all elements of At, Yt

and B. This indicates that
∑t−1

k=0 A0 · · ·A−tB converges almost surely, as t → ∞. Therefore,
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A0 · · ·A−tB
a.s→ 0 as t → ∞. By Lemma 2.1 of Bougerol and Picard (1992a), it is sufficient to

prove A0 · · ·A−t
a.s→ 0. Let {ei} be the canonical basis of Rκ, and we only need to prove that

lim
t→∞A0 · · ·A−tei = 0, (A.6)

i = 1, · · · , κ. Since B = δe1 and δ > 0, (A.6) holds for i = 1. Notice that

A−teq = βqe1,

A−tej−1 = βj−1e1 + ej , 2 < j ≤ q

A−teκ = α2pe1,

A−teκ−1 = α1pe1,

A−teq+2j = α2,j+1e1 + eq+2j+1, 1 ≤ j ≤ p− 2

A−teq+2j−1 = α1,j+1e1 + eq+2j , 1 ≤ j ≤ p− 2,

we obtain (A.6) holds for 1 ≤ i ≤ κ.

Sufficiency. Assume γ(φ) < 0. Then (A.4) implies that the series
∑∞

k=0 At · · ·At−kB con-

verges almost surely for all t. Define {Yt, t ∈ Z} as follows

Yt = B +
∞∑

k=0

At · · ·At−kB. (A.7)

It is easy to verify that {Yt, t ∈ Z} is a nonnegative solution of (A.3). Let σt = (Y 1
t−1)

1
2δ ,

where Y 1
t−1 is the first component of Yt−1. Then Xt = σtεt is a solution of model (1.2). The

strict stationarity and ergodicity of Xt can be derived by noticing that {(At, εt), t ∈ Z} is strictly

stationary and ergodic. In the following, we will prove Yt is the unique solution of (A.3). Suppose

Ỹt is another strictly stationary solution of (A.3), then we have

‖Y0 − Ỹ0‖ = ‖A0 · · ·A−t(Y−t−1 − Ỹ−t−1)‖ ≤ ‖A0 · · ·A−t‖‖Y−t−1 − Ỹ−t−1‖ P→ 0

So Y0 = Ỹ0 a.s. This shows that (1.2) has a unique stationary solution and the proof of (i) is

completed.

(ii) Let Ã denote the matrix which is obtained by replacing (ε+
t )2δ and (ε−t )2δ with 0 in

the matrices At defined by (A.2). Using the notation in Bougerol and Picard (1992a), we have
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A0A1 · · ·A−t ≥ Ãt+1. By (A.4), we have ‖Ã‖t+1 ≤ ‖A0A1 · · ·A−t‖ → 0, which implies that the

largest eigenvalue of Ã is less than 1. On the other hand, it is easily seen that

Det|λIκ − Ã| = λκ(1−
q∑

i=1

βiλ
−i)

Since the function g(x) = 1−∑q
i=1 βix

i has no zero point on x ∈ [0, 1] and g(0) = 1, we obtain

that g(1) = 1−∑q
i=1 βi > 0.

The proof of Theorem 5 is completed.

Remark A1. For the PTTGARCH(1,1) process, Hwang and Basawa (2004) pointed out

that E[log(β1 + α11(ε+
t )2δ + α21(ε−t )2δ)] < 0 could ensure that the model has a unique strictly

stationary solution. In fact, it is easily verified that γ(φ) = E[log(β1 + α11(ε+
t )2δ + α21(ε−t )2δ)]

provided p = q = 1, which means by Theorem 5 (i) that E[log(β1 + α11(ε+
t )2δ + α21(ε−t )2δ)] < 0

is also a necessary condition for PTTGARCH(1,1) model to define a unique strictly stationary

solution, see also Theorem 2.1 of Liu (2006).

A.3 The existence of Moments

Theorem 6. (i) If {Xt} is a strictly stationary solution of model (1.2) and assumption A1

holds, then there exists a constant τ > 0 such that

E|Xt|τ < +∞.

(ii) Suppose E|εt|2δ < +∞. Then, Model (1.2) has a stationary solution with E|Xt|2δ < +∞ if

and only if
p∑

i=1

[α1iE(ε+
t )2δ + α2iE(ε−t )2δ] +

q∑

j=1

βj < 1. (A.8)

(iii) For any k ∈ N, if E|εt|2kδ < +∞ and E(‖At‖k) < 1, we have E|Xt|2kδ < ∞. Furthermore,

if we assume in addition that
p∑

i=1

[α1i(E(ε+
t )2kδ)

1
k + α2i(E(ε−t )2kδ)

1
k ] +

q∑

j=1

βj < 1, (A.9)
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then

E|Xt|2kδ ≤ αk
0{1−

p∑

i=1

[α1i(E(ε+
t )2kδ)

1
k + α2i(E(ε−t )2kδ)

1
k ]−

q∑

j=1

βj}−kE|εt|2kδ.

Proof. (i) By the definition of γ(φ), there exists an integer m ≥ 1 such that E log ‖A0A1 · · ·Am−1‖ <

0. From the proof of Theorem 5 (i), we know E‖A0‖∆̃ ≤ C < +∞. Therefore,

E‖A0A1 · · ·Am−1‖∆̃ ≤ (E‖A0‖∆̃)m < +∞.

We introduce a function h(x) = E‖A0A1 · · ·Am−1‖x, 0 < x ≤ ∆̃. Since h′(0) = E log ‖A0A1 · · ·Am−1‖ <

0, h(x) decreases in neighborhood of 0. Notice that h(0) = 1, so there exists a ∆∗ such that

0 < ∆∗ < min{∆̃, 1} such that

E‖A0A1 · · ·Am−1‖∆∗ < 1. (A.10)

Using (A.7), we obtain that

‖Y0‖∆∗ ≤ ‖B‖∆∗ +
∞∑

k=0

‖A0A1 · · ·A−k‖∆∗‖B‖∆∗ .

By (A.10), it follows easily that there exist 0 < C0 < ∞ and 0 < ρ < 1 such that E‖A0A1 · · ·A−k‖τ ≤
C0ρ

k for any k, which implies that E‖Y0‖∆∗ < ∞. Let τ = (2δ)∆∗ and we complete the proof

of (i).

(ii) Necessity. Suppose that {Xt, t ∈ Z} is a strictly solution of (1.2) with E|Xt|2δ < ∞.

Then Eσ2δ
t < +∞. Hence we have

Eσ2δ
t = α0 +

p∑

i=1

(α1iEσ2δ
t−iE(ε+

t )2δ + α2iEσ2δ
t−iE(ε−t )2δ) +

q∑

j=1

βjEσ2δ
t−j .

Because {σ2δ
t } is stationary, then

(1−
p∑

i=1

(α1iE(ε+
t )2δ + α2iE(ε−t )2δ)−

q∑

j=1

βj)Eσ2δ
t = α0.

Therefore,

1−
p∑

i=1

(α1iE(ε+
t )2δ + α2iE(ε−t )2δ)−

q∑

j=1

βj > 0.
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Sufficiency. Suppose (A.8) holds. Define

Yt = B +
∞∑

k=0

At · · ·At−kB, and A = EA0.

Notice that EAt · · ·At−k = Ak+1, we only need to prove that ρ(A) < 1. In fact,

Det(λIκ −A) = λκ{1−
p∑

i=1

(α1iE(ε+
t )2δ + α2iE(ε−t )2δ)λ−i −

q∑

j=1

βjλ
−j}.

By (A.8), we have

|Det(λIκ −A)| ≥ 1−
p∑

i=1

(α1iE(ε+
t )2δ + α2iE(ε−t )2δ)−

q∑

j=1

βj > 0

provided |λ| ≥ 1. Thus ρ(A) < 1 and EYt = B +
∑∞

k=0 Ak+1B < ∞, which implies that

E|Xt|2δ < ∞.

(iii) Applying Minkowski’s inequality to (A.7), we obtain

(
E‖Yt‖k

)1/k ≤ ‖B‖+
∞∑

i=0

[
E

(‖At · · ·At−iB‖k
)]1/k

≤ ‖B‖+ ‖B‖
∞∑

i=0

[
E(‖At‖k)

]i/k

< +∞,

since E(‖At‖k) < 1. Therefore, we have E|Xt|2kδ < ∞. In the following, we assume (A.9) holds.

It can be seen from (1.2) that E|Xt|2kδ = Eσ2kδ
t E|εt|2kδ. But, by Minkowski inequality,

(Eσ2kδ
t )

1
k =

(
E

{
α0 +

p∑

i=1

α1i(X+
t−i)

2δ +
p∑

i=1

α2i(X−
t−i)

2δ +
q∑

j=1

βjσ
2δ
t−j

}k
) 1

k

≤ α0 + [
p∑

i=1

α1i(E(ε+
t−i)

2kδ)
1
k +

p∑

i=1

α2i(E(ε−t−i)
2kδ)

1
k +

q∑

j=1

βj ](Eσ2kδ
t )

1
k .

Then,

E|Xt|2kδ ≤ αk
0{1−

p∑

i=1

[α1i(E(ε+
t )2kδ)

1
k + α2i(E(ε−t )2kδ)

1
k ]−

q∑

j=1

βj}−kE|εt|2kδ.

This completes the proof of (iii).
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Remark A2. Notice that E(‖At‖k) = E
(
β1 +α11(ε+

t )2δ +α21(ε−t )2δ
)k provided p = q = 1,

the result of Hwang and Basawa (2004) Theorem 3 (i) is a special case of our result (iii).

A.4 The tail behavior of the model

The following theorem shows that under some regular conditions, the tail of PTTGATCH(p,q)

model is Pareto-like, which indicates that light-tailed input may cause heavy-tailed output.

Theorem 7. Assume that model (1.2) satisfies that α0 > 0, γ(φ) < 0 and not all of the

parameters α1i, α2i, and βj vanish, i = 1, · · · , p; j = 1, · · · , q. If furthermore εt has a positive

density on R such that E|εt|ξ < +∞ for some ξ > 0, then it follows that the limit

lim
x→+∞x2κ0δP

(
X1 > x

)

exists and is positive, where κ0 = 2κ1 and κ1 is the unique solution of

lim
n→+∞

1
n

log E‖An · · ·A1‖κ = 0.

Proof. See the proof of Corollary 3.5 of Basrak et.al (2002).

Remark A3. Liu (2006) studies the tail behavior for PTTGARCH(1,1) model. In this

simple case, the limit in Theorem 7 can be expressed explicitly, see Liu (2006).
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Figure 1: Boxplots of AAE for LADE and QMLE.
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Figure 2: The time plot of the original HSI.
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Figure 3: The time plot of the percentage of the log return of HSI {Xt}.
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Figure 4: The Hill estimator of {Xt}.
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Figure 5: The QQ-plot of {Xt}.
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Figure 6: The Hill estimator of the standardized residuals
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Figure 7: The QQ-plot of the standardized residuals
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