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Abstract 

Betweenness measures provide quantitative tools to pick out fine details from the massive amount 

of interaction data that is available from large complex networks. They allow us to study the extent 

to which a node takes part when information is passed around the network. Nodes with high 

betweenness may be regarded as key players that have a highly active role. At one extreme, 

betweenness has been defined by considering information passing only through the shortest paths 

between pairs of nodes. At the other extreme, an alternative type of betweenness has been defined 

by considering all possible walks of any length. In this work, we propose a betweenness measure 

that lies between these two opposing viewpoints. We allow information to pass through all 

possible routes, but introduce a scaling so that longer walks carry less importance. This new 

definition shares a similar philosophy to that of communicability for pairs of nodes in a network, 

which was introduced by Estrada and Hatano (Phys. Rev. E 77 (2008) 036111). Having defined 

this new communicability betweenness measure, we show that it can be characterized neatly in 

terms of the exponential of the adjacency matrix. We also show that this measure is closely related 

to a Fréchet derivative of the matrix exponential. This allows us to conclude that it also describes 

network sensitivity when the edges of a given node are subject to infinitesimally small 

perturbations. Using illustrative synthetic and real life networks, we show that the new 

betweenness measure behaves differently to existing versions, and in particular we show that it 

recovers meaningful biological information from a protein-protein interaction network.     



 3 

Introduction 

Characterizing local properties of complex networks is important both in theory and practice [1]. 

While at the global scale we can summarize the overall architecture [2-4], at the local scale we can 

detect which nodes are the most relevant for the organization and functioning of a network [5-8]. 

These local measures are commonly named centrality indices [9] and have proved of great value in 

analyzing the role played by individuals in social networks [10]. We are now in a new era for the 

study of complex networks, which is characterized by the availability of large amounts of data 

representing biological, ecological, social, technological and infrastructural systems, among others 

[2-4]. Centrality measures have therefore become an important tool in identifying essential 

proteins [11-13], keystone species [14, 15], informational hubs or vulnerable infrastructures [16].  

Centrality indices can be motivated by looking at the ability of a node to communicate 

directly with other nodes, or to its closeness at many other nodes or pairs of nodes or, more 

generally, by studying how frequently the node plays the role of intermediary when messages are 

passed around the network [17]. These ideas have given rise to some well-known centrality 

measures such as degree centrality (DC), closeness centrality (CC), and betweenness centrality 

(BC) [9, 18]. Other centrality measures, known as eigenvector centrality (EC), information 

centrality (IC) and the subgraph centrality (SC) were developed by Bonacich [19, 20], Stephenson 

and Zelen [21] and Estrada and Rodríguez-Velázquez [22, 23], respectively.  

The betweenness centrality, BC, is defined as the fraction of shortest paths going through a 

given node [18]. It can be regarded as a measure of the “importance” of a node as a controller of 

the information which is flowing between the other nodes in the network. This measure assumes 

that all the information flowing through the network is going from one site to another following 

only the shortest (or geodesic) paths. However, it may be argued that most of the “information” is 

likely to flow through non-shortest paths. To account for this Freeman et al. [24] introduced the 
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concept of flow betweenness centrality (FBC), which includes contributions from both shortest 

paths and non-shortest paths in the graph. However, Newman showed that the flow betweenness 

can give counterintuitive results in some cases [25], and offered the alternative concept of random-

walk betweenness centrality  (RWBC) [25]. The first two kinds of betweenness can be considered 

as mathematical ones while the third is a sort of statistically defined centrality. 

The random-walk betweenness centrality of a node r  is equal to the number of times that a 

random walk starting and ending at two other nodes p  and q  passes through the node r  along the 

way, averaged over all p  and q . This centrality measure is based on a diametrically opposite 

premise to that of shortest-path betweenness [25]. In the shortest-path betweenness the 

“information” which travels from p  to q  through r  “knows” what is the most effective way to 

reach its target. In the Newman betweenness it is assumed that the “information” does not know 

anything about the best route to arrive at the target. In Newman’s betweenness [25] we travel from 

p  to q  following links at random. Suppose that on the way node r  is visited many times. This 

indicates that node r  plays an important role in the transmission of information between p  and q . 

Averaging over all nodes p  and q produces an overall centrality measure for node r . 

The two approaches, shortest-path and random-walk betweenness, are at opposite ends of a 

spectrum, but each has a valid role in accounting for processes that can take place in the network. 

However, if they are at opposite ends of the betweenness scale it is interesting to ask what is in the 

middle. We believe that the answer is a betweenness centrality based on all walks connecting two 

nodes p  and q  that pass through r  weighted by path length; in other words, a betweenness 

centrality that accounts for the shortest path connecting two nodes, but also acknowledges the 

existence of other (non-shortest) paths, giving them less significance. This can be motivated by the 

idea is that the information travelling from p  to q  through r  knows the best way for arriving at 

the target but is also willing to make use of longer paths in order to deliver the information. The 
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idea of using a weighted sum over walks of all possible lengths has been used successfully to 

define communicability between pairs of nodes [26]. Here we are extending the idea by looking at 

weighted all-walks passing through a third node. In the next section we show how to characterise 

and compute communicability betweenness via the exponential of an adjacency matrix. We then 

show some examples of the practical application of this measure in artificial and real-world 

networks. 

Preliminaries 

The main objective of the current work is to find a betweenness centrality measure that 

accounts for all the traffic which is carried through a particular node. This includes not only the 

shortest paths but every walk connecting the nodes p  and q  that pass through r . In this context 

we start by considering the communicability between a pair of nodes p  and q  [26].  

The communicability between a pair of nodes in a network is usually considered as taking 

place through the shortest path connecting both nodes. However, it is known that communication 

between a pair of nodes in a network does not always take place through the shortest paths but it 

can follow other non-optimal walks. In a previous work we have introduced a communicability 

measure that fulfils these requirements [26]. If Ppq
(s )  is the number of shortest paths between 

distinct nodes p  and q  having length s  and Wpq
(k )  is the number of walks connecting p  and q  

of length sk > , we may consider the quantity 

Gpq =
1

s!
Ppq
(s )
+

1

k!k>s

Wpq
(k )

,                                           (1) 

which was introduced in [26] to measure the communicability between nodes p  and q . This 

expression can be written as the sum of the qp,  entry of the different powers of the adjacency 

matrix 
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Gpq =
Ak( )

pq

k!k=0

,                      (2) 

which converges to, 

( )pq

A

pq eG = .            (3) 

There are several ways of weighting the walks according to their lengths. Some of them are 

now under study by two of the current authors and will be published elsewhere. The weighting 

used in (2) allows a physical interpretation of the communicability by considering a continuous-

time quantum walk on the network. Considering this approach, the communicability between 

nodes p  and q  in the network represents the probability that a particle starting from the node p 

ends up at the node q after wandering on the complex network due to the thermal fluctuation. By 

regarding the thermal fluctuation as some form of random noise, we can identify the particle as an 

information carrier in a society or a needle in a drug-user network. 

Our objective here is to use this communicability function to account for the betweenness 

centrality of a node in a complex network. It is clear that there are several ways for accounting 

such a property of a node. As we have already remarked the shortest-path and the random-walk 

betweenness are two extreme cases. Another possibility is to consider the number of paths or the 

number of self-avoiding walks between any two nodes [27]. Here, however, we consider the use of 

the number of walks connecting every pair of nodes as the basis for the new centrality measure. By 

using this approach we are able to define the betweenness centrality on the basis of the 

communicability function, which can be physically interpreted as the Green’s function of the 

complex network.  

Consequently, in full analogy with (1) we now let prqG  be the corresponding weighted sum 

where we only consider walks that involve node r . The new concept of communicability 

betweenness centrality (CBC) of node r then takes the form 
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r =
1

C

Gprq

Gpqq

,       p q, p r
p

,q r ,                              (4)  

where ( ) ( )11
2

= nnC  is a normalization factor equal to the number of terms in the sum, so 

that r  takes values between zero and one. We show in the next section that this quantity can be 

neatly characterised in terms of the matrix exponential. 

Communicability betweenness 

Let ( )EVG ,=  be a simple graph with Vn =  nodes and Em =  links, and let A  denote its 

adjacency matrix. Let ( ) ( )EVrG = ,  be the graph resulting from removing all edges connected to 

the node Vr , but not the node itself. The adjacency matrix for ( )rG  may be written ( )rEA + , 

where ( )rE  has nonzeros only in row and column r , and in this row and column has -1 wherever 

A  has +1.  For simplicity, we will often write E  instead of ( )rE . 

Analogously to (3), prqG  may be written 

( ) ( )( )pq

r

pqprq eeG EAA +
= ,                    (5)       

so in (4) we have  

r =
1

C

Gprq

Gpqqp

=
1

C

eA( )
pq

eA+E r( )( )
pq

eA( )
pq

qp

,   rqrpqp ,, ,             (6)  

which gives a computable characterisation of CBC. We consider connected graphs only, for which  

( )pqeA  is nonzero. 

It is straightforward to realise that the proportion of communicabilities defining the 

betweenness (see Eq. (6)) is bounded between zero and one, 

0
eA( )

pq
eA+E r( )( )

pq

eA( )
pq

1 .                   (7) 
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The lower bound is obtained when ( ) ( )( )pq

r

pq ee EAA +
= , which indicates that no walks 

connecting the nodes p  and q  pass through the node r . This cannot happen for a connected graph, 

but we will have ( ) ( )( )pq

r

pq ee EAA +  when the walks that connect p  and q  through r  are of very 

long length. 

On the other hand, the upper bound is reached for a graph in which all walks connecting the 

nodes p  and q  pass through the node r . This situation coincides with the selection of the node r  

as the one with degree 1n  in a star with n  nodes, nS . We recall that nS  is the graph having one 

node with degree 1n  (central node) and 1n  nodes of degree 1. In this case if we remove the 

links incident with node r  we obtain the fully disconnected graph. Consequently, ( )( ) 0=
+

pq

re EA  

for every pair of the nodes with degree 1 in the star and we obtain the upper bound for the 

expression (7). 

If we consider now the expression for the communicability betweenness for a node r  in any 

graph we see that  

r =
1

C

eA( )
pq

eA+E r( )( )
pq

eA( )
pq

qp

n 1( ) n 2( )

C
,                           (8) 

which for the normalization constant selected in this work gives 1=r  for the central node of the 

star graph. The upper bound for the communicability betweenness is obtained for the central node 

of nS  for which we have the maximum value of (7) for all pairs of non-hub nodes in the graph. 

This is a desired property of a betweenness measure; optimal centrality should correspond to the 

central hub of a star, through which all the communication between the other pairs of nodes passes. 

It is also clear from the construction that r  increases in any graph if node r  is given an extra edge. 

Although the matrix exponential cannot be computed in finite time, a high-accuracy 

approximation can be obtained from an algorithm that is guaranteed to terminate. The scaling and 
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squaring method for exponentiating a matrix in [28] (Algorithm 10.20) has an operation count that 

is a modest multiple of 3n , so that the overall cost of computing r  in (5) for all nodes in the graph 

scales like 4n . However, if the network is sparse then it will typically not be necessary to store or 

compute with a full nn matrix. The series expansion (2) could be terminated after a 

predetermined number of terms, so that walks of sufficiently long length are ignored. Alternatively, 

existing high quality sparse matrix software, for example, the function EIGS in MATLAB, could be 

used to compute the dominant eigenvalues and corresponding eigenvectors and a truncated spectral 

formulation of the matrix exponential could then be exploited. In this case the efficiency gain 

would be highly dependent on the sparsity structure. 

Communicability betweenness and the Fréchet derivative  

We see from (5) that CBC depends on the relative componentwise changes that occur in the matrix 

exponential when a specific row/column is set to zero. Such a change represents an ( )1O  

perturbation. We will show now that this quantity is closely related to the sensitivity of the matrix 

exponential to small changes in the same direction, which gives another interpretation of the CBC 

measure. 

The effect of making an infinitesimal perturbation to the adjacency matrix exponential in 

the direction E  is given by the directional or Fréchet derivative,  

DE r( ) A( ) = lim
h 0

1

h
e A+hE r( )( ) eA ,                  (9) 

which may be, in different contexts, called the Gáteaux derivative or a linear response [28-30]. The 

Fréchet derivative can also be expressed as a Taylor series as follows [28] 

DE r( ) A( ) =
1

k!k=1

A j 1E r( )Ak j

j=1

k

 .                          (10) 
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We now interpret the right-hand side of (10) in terms of walks through the network. As 

before we consider a pair of distinct nodes, p  and q  that are both different from r . We first note 

that ( ) 1=pqAE  if there is a walk (a path in this case) of the form qrp  and ( ) 0=pqAE  

otherwise. Similarly, ( ) 1=pqEA  if there is a walk of the form qrp  and ( ) 0=pqEA  

otherwise. So, we see that the 1=k  term of the expansion in (10), ( )pqEAAE + , contributes 2  

if there is a walk of length two that connects nodes p  and q  via node r , and contributes 0 

otherwise. Similarly, it may be shown that the 3=k  term, ( )pq

22 EAAEAEA ++ , contributes 

2  times the number of walks  of length three from p  to q  that involve r . For the case k 3 , 

however, the relationship is not quite so simple. These terms are studied in the Appendix and our 

overall conclusion is that the ( )qp,  element of the Fréchet derivative (9), when multiplied by 1 , 

is at least twice as big as the weighted number of walks from p  to q  that involve r . It is 

generally not a lot more than twice as big, because the extra amount comes from walks that 

involve node r  more than once—these will generally be long and hence will have small weights. 

To illustrate this idea, we constructed a network with 8 nodes where 19 edges were 

assigned arbitrarily. Fig. 1 illustrates the adjacency matrix. In this case the ratio of the ( )qp, th 

component of the Fréchet derivate in (9) to the quantity prqG  in (5), as we vary p  to q  and r , 

ranges from 08.2  to 96.2 .  

Insert Fig. 1 about here. 

Overall, we have established a close relation between the limiting 0h  sensitivity in (9) 

and the 1=h  analogue. We emphasize that this relationship hinges on the special nature of the 

direction ( )rE  in which the adjacency matrix is perturbed.  
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Analysis of the communicability betweenness 

We test here three examples that Newman [25] used to introduce the random-walk betweenness, 

plus an extra illustrative example. We first consider the two graphs represented in Fig. 2. These 

were selected by Newman [25] as prototypes of networks in which there are some nodes, like C, 

which are not intermediaries in many shortest paths,  but may play an important role in the flow of 

information between distinct communities.  The betweenness measures for these networks is 

shown in Table 1. We see that for network 1, CBC ranks node X higher than node C, unlike 

RWBC. This can be explained by the fact that node C is never an intermediary in a non-trivial 

shortest length walk, whereas node X is important for walks within its own clique. For network 2, 

node C plays a more significant role in short walks and CBC ranks C only slightly lower than A. 

Insert Fig. 2 and Table 1 about here. 

Network 3, shown in Fig. 3, illustrates that CBC and RWBC can differ dramatically. Here, 

we have two large communities, each consisting of a complete graph of 12 nodes. These 

communities are joined by a short chain through the single node A and also by a long chain of 8 

nodes that has node B at one end and node C in the middle. We see in the Fig. 3 that while both 

measures pick out node A as the most central, the RWBC version ranks node B second and much 

prefers node C to node D while CBC ranks D second and, most notably, attaches very little 

significance to node C. This can be explained by the fact that node C is typically involved in 

relatively long walks that are down-weighted by the CBC measure. This discrepancy between the 

two centrality measures becomes even more pronounced if the size of the complete subgraphs and 

the length of the connecting chain are increased. When node A is removed in the network in Fig. 3, 

CBC  behaves like RWBC in placing node C ahead of node D. 

Insert Fig. 3 about here. 

The fourth example in this section is the network of intermarriages between prominent 

families in early 15
th

 century Florence [31] (see Fig. 4). The four betweenness measures identify 
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Medici as the most central family. However, there are some differences in the ranking for the rest 

of the families. For this specific network the communicability betweenness is highly correlated to 

the random walk one ( 964.02
=r ) and in lower degree with shortest path ( 935.02

=r ) and flow 

( 844.02
=r ) betweenness. The intercorrelation between the different measures is dependent on the 

specific networks we are studying and it should be noted that even when high correlations are 

observed there can be significant differences in the ranking of individual nodes. For instance, the 

random walk betweenness ranks the Strozzi family as the fourth most central only after Medici, 

Guadagni and Albizzi. However, communicability centrality ranks this family as the sixth most 

central after Medici, Guadagni, Albizzi, Ridolfi and Tornabuoni.  

Insert Fig. 4 about here. 

We also study the correlation existing between the various betweenness centralities and the 

degree centrality for the network of marriages in Florence. The lowest correlations are observed 

for the flow ( 662.02
=r ) and shortest path betweenness ( 712.02

=r ) and the largest one for the 

random walk ( 906.02
=r ). The communicability betweenness displays an intermediate correlation 

( 856.02
=r ). Despite these correlations  “there are usually a small number of vertices in a network 

for which betweenness and degree are very different, and betweenness is useful precisely in 

identifying these vertices” [25]. For instance, communicability betweenness is able to differentiate 

the four less central families in this network, which neither of the other betweennesses nor the 

degree are able to differentiate. The communicability betweenness ranks these families in the 

following decreasing order, Acciaiuoli > Lamberteschi > Ginor > Pazzi. 

To investigate more deeply the correlations between the different betweenness measures as 

well as the degree centrality we study a series of real-world networks, including social, 

informational, biological, technological and ecological (see [32] for references about these 
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networks). The names, number of nodes (n), links (m) and a brief description of these networks are 

given in Table 2. 

Insert Table 2 about here. 

We study not only the correlation coefficient but also the relative error for the prediction of 

the CBC based on the other measures. The relative prediction error, in percentage, is expressed as  

RPE %( ) = 100
SEP y( )

y
                   (11) 

where ( )ySEP  is the standard error of predicting the variable y  using a regression model of the 

type baxy +=  and y  is the average of the y -values. Here y  is the communicability 

betweenness centrality and x  is any of the other centrality measures, i.e., DC, BC, FBC and 

RWBC. 

The largest correlations for CBC are degree centrality for which the average correlation 

coefficient is 0.866 (see Table 3). The correlation between degree and betweenness has been 

previously observed by Kitsak et al. to be dependent on the fractal nature of networks [33]. These 

authors have observed that the correlation is much weaker in fractal than in non-fractal networks 

[33]. However, even in this case the relative prediction error is high (51.4%), which indicates that 

both centrality measures account for different aspects of the structure of a network. For instance, 

there are cases like the network of Colorado Springs in which the correlation between both 

measures is very poor ( 589.02
=r ) and the RPE is higher than 100%. In other cases like in the 

transcription network of E. coli the correlation coefficient is high ( 864.02
=r ) but the relative 

error is almost 100% ( %8.95=RPE ). This is because there is a node with very high value of both 

degree and CBC which pulls the line to one extreme making the correlation coefficient very high. 

However, the dispersion for the points below this extreme is very high as indicated by RPE.  

Insert Table 3 about here. 
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The relationships between the CBC and the other betweenness measures are poorer. For 

instance, the average correlation coefficients rank from 0.44 for the flow betweenness to 0.78 for 

the random walks betweenness. However, the relative prediction errors are very high, overpassing 

60% in all cases and reaching 102.8 for the FBC. This clearly indicates that the CBC is an 

independent measure of node betweenness, which accounts for certain topological and structural 

characteristics of nodes not accounted for either of the other measures of betweenness or the 

degree centrality. In the next section we will analyze in more detail how these differences are 

manifested in one particular complex network. 

Betweenness in a protein interaction network 

Here we study the protein-protein interaction network (PIN) of E. coli in more detail. This 

network is formed by 695 validated interactions between 230 proteins in the bacterium E. coli. 

Butland et al. [34] have observed that the most highly conserved proteins in this PIN are the most 

highly connected ones. That is, those proteins that have been evolutionarily conserved in many 

different bacterial genomes are those having the largest degree centrality in the E. coli PIN. The 

conservation of a protein was determined by Butland et al. [34] by searching for homologues in 

148 different genomes using BLAST. These genomes include proteobacteria, bacilli, clostridia, 

actinobacteridae, mycoplasmas, chlamydiaceae, cyanobacteria, archae and eubacteria. These 

authors consider a protein to be conserved if it is detected in at least 125 of the 148 genomes. On 

the contrary, a protein is deemed to be non-conserved if it appears at most in 25 genomes. 

We calculated the degree and betweenness centrality measures for every protein in the E. 

coli PIN. Then we ranked these proteins in decreasing order of their centrality and analysed how 

many proteins are conserved in the top 1/3, the middle 1/3 and the bottom 1/3. We calculated the 

proportion of conserved to non-conserved proteins for each centrality. The results are displayed in 

Fig. 5. We see that the random walk centrality performs the best in detecting the conserved 
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proteins as it identifies more than 7 conserved proteins per each non-conserved one in the top 33% 

of the ranking. In addition it performs very well for the bottom 1/3 of the ranking having the 

lowest proportion of conserved to non-conserved proteins. The second best performance is 

displayed by the communicability betweenness, which identifies more than 5 conserved proteins 

per each non-conserved one in the top 1/3 of the ranking. It also displays the second best 

performance for the bottom 1/3 of the ranking. The worst results in this case are obtained for the 

flow betweenness, which identifies only 2 conserved proteins per each non-conserved one in the 

top 1/3 of the ranking. 

Insert Fig. 5 about here. 

In addition, Butland et al. [34] observed a positive correlation between the number of 

protein interactions, i.e., protein degree, and the number of genomes a homolog was detected in. 

The Pearson correlation coefficient for this relation is 0.24 as illustrated in Fig. 5 of the 

Supplementary material of that paper [34]. We have found here that the communicability 

betweenness displays the same correlation as the degree centrality with the number of genomes in 

which a protein is conserved, i.e., a Pearson correlation coefficient of 0.24. The random-walk 

betweenness displays a correlation coefficient of 0.22, the shortest-path betweenness a correlation 

coefficient of 0.15 and the flow betweenness a correlation coefficient of 0.11. To explore these 

effects further, we may consider the top 20 proteins according to the ranking introduced by the 

centrality measures. In Fig. 6 we illustrate the results obtained for this analysis, where it can be 

seen that the proteins ranked by the communicability betweenness display the largest average 

number of genomes in which such proteins appear. 

Insert Fig. 6 about here. 

The same situation is repeated when we select the top 30 or top 40 proteins according to 

each ranking. These results indicate that the communicability betweenness display the best 

performance in identifying proteins which are conserved in the largest number of genomes. 
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Classifying a protein as highly conserved if it appears in at least 95 of the 148 genomes, we found 

that both the random-walk and communicability betweenness display the best performance in 

identifying the most conserved proteins among the top 1/3 proteins ranked by these measures (see 

Fig. 7). They both identify 54 of the most highly conserved proteins from 76 possible ones, which 

is more than 70%. The second best performance is obtained for the degree centrality and the worst 

is again for the flow centrality. However, if we analyze the top 2/3 proteins ranked by each 

centrality measure, the communicability betweenness overtakes all the other centralities. It 

identifies 95 of the 152 most highly conserved proteins, followed by the degree and shortest-path 

betweenness which identifies 93 of such proteins. For the bottom 1/3 of the ranking the best 

performance is again observed for the communicability betweenness which left only 25 of the 

most highly conserved proteins among the less central ones. The worse performance in this case is 

observed for the random-walk betweenness which left 29 of the most highly conserved proteins 

among the less central ones. 

Insert Fig. 7 about here. 

Conclusion 

One point that should be clear from this and other studies analysing centrality measures in 

complex networks is that there is not one centrality which is the best or worst. Centrality measures 

account for different aspects of the topological relevance of a node. Consequently, a centrality can 

be good for summarizing one network feature and poor for another. This emphasizes the 

importance of (a) providing theoretical justification and analysis, and (b) testing on real complex 

networks, in order to understand what these measures have to offer. We have shown here that the 

communicability betweenness is amenable to both approaches. On the one hand, the 

communicability betweenneess, which measures the changes in the adjacency matrix exponential 

subject to a certain ( )1O  perturbation, is closely related to the instantaneous rate of change. In 
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other words, although communicability betweenness was motivated by looking at what happens 

when the edges for node r  are removed, it also measures the sensitivity of a node’s 

communicability when its edges are subject to infinitesimal changes. (In the latter case, we move 

into the realm of graphs with weighted edges.). On the other hand, we have shown empirically that 

this centrality measure accounts for important topological characteristics of the nodes in real-world 

complex networks. Hence we believe that this new concept has value in the study of centrality in 

complex networks. 

Appendix 

For the general term of (10) where 3k  there is an expression of the form, 

  ( )
= = =

=
n

s

n

s

n

s

qksssssspspq

k

k

kk
eaaaa

1 1 1

1

1

1 2 1

1232211
EA .             

We see that ( ) 11
=pq

k EA  if there is a walk 

qrssssp k 2321 ,                                 (A1)  

for any nodes 221 ,,, ksss , , such that successive nodes are distinct, and  ( ) 01
=pq

k EA  otherwise. 

For the general case, 

( )
= = =

+
=

n

s

n

s

n

s

qssssssssssspspq

jkj

k

kjjjjjj
aaeaaaa

1 1 1

1

1 2 1

1111232211
EAA ,         

we see that  ( ) 11
=pq

jkj EAA  if there is a walk  

qssrssssp kjj + 111321 ,                    (A2) 

or 

qsssrssssp kjjj + 112321 ,                       (A3) 

and is zero otherwise. 

Finally, since         
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 ( )
= = =

=
n

s

n

s

n

s

qssssssspspq

k

k

kkk
aaaae

1 1 1

1

1 2 1

11232211
EA ,            

it follows that ( ) 11
=pq

kEA  if there is a walk  

qssssrp k 1432 ,                           (A4) 

and is zero otherwise. 

Note that any walk appearing in (A1) also appears in the 1= kj  case of (A2), any walk 

appearing in the general ( )1j st instance of (A2) also appears in the j th instance of (A3) and any 

walk appearing in (A2) also appears in the 2=j  case of (A3). This shows that, for general walks 

of length k , (i) each walk involving node r  is counted twice, and (ii) the count involves 

multiplicity: e.g., a walk that involves node r  twice counts as two walks (i.e. counts four times in 

total because of point (i)), and, generally, a walk that involves node r  a total of d  times will count 

as d . 

To illustrate point (ii), the walk qrrp 3  shows up in the form 

qrssp 21  and in the form qssrp 32  (and in each case is counted twice). 

This multiplicity effect is relatively minor because it only arises for walks of length greater than or 

equal to four. (Walks from p  to q  of length two or three cannot involve r  more than once.) 

Hence, because of the !k  scaling in (A2), the multiplicities get down-weighted. 
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Table 1. Values of the different betweenness centrality measures for the nodes labeled in the 

graphs represented in the Fig. 2. 

 

Network                                  Betweenness measure 

 Node BC FBC RWBC CBC 

1 A 0.636 0.631 0.670 0.657 

 C 0.200 0.282 0.333 0.140 

 X 0.200 0.068 0.269 0.216 

      

2 A 0.265 0.269 0.321 0.166 

 C 0.243 0.004 0.267 0.157 

 X 0.125 0.024 0.194 0.128 
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Table 2. Description of the real-world complex networks studied in the current work. 

Name n m description 

Galesburg  31 67 friendship ties among 31 physicians 

High Tech  33 91 friendship ties among the employees in a small hi-tech computer firm which sells, installs, and 

maintains computer systems 

Prison 67 142 social network of inmates in prison who chose “What fellows on the tier are you closest friends with? 

College 32 96 social network among college students in a course about leadership, where the students choose which 

three members they wanted to have in a committee 

Zachary 34 78 a network of friendship between members of the Zachary karate club 

ColoSpring 324 347 risk network of persons with HIV infection during its early epidemic phase in Colorado Springs, USA 

(sexual and injecting drugs partners) from 1985-1999 

Centrality 118 613 citation network of papers published in the field of Network Centrality 

Small World 233 994  papers that cite S. Milgram's 1967 Psychology Today paper or use Small World in the title 

Electronic1 

Electronic2 

122 

252 

189 

399 

electronic sequential logic circuits parsed from the ISCAS89 benchmark set, where nodes represent 

logic gates and flip-flops 

USAir97 332 2126  the airport transportation network between airports in US in 1997 

PIN-Afulgidus 32 36 protein-protein interaction network of A. fulgidus 
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PIN-Bsubtilis 84 98  protein-protein interaction network of B. subtilis 

PIN-E.coli 230 695  protein-protein interaction network of the bacterium E. coli 

Neurons 280 456 the neuronal synaptic network of the nematode C. elegans, including all data except muscle cells and 

using all synaptic connections 

Trans-Ecoli 328 456 the direct transcriptional regulation between operons in Escherichia coli 

Bridge Brook 75 542 represents the pelagic species from the largest of a set of 50 New York Adirondack lake food webs 

Canton Creek 108 613  invertebrates and algae in a tributary, surrounded by pasture, of the Taieri River in the South Island of 

New Zealand 

El Verde 156 1439  the insects, spiders, birds, reptiles and amphibians in a rainforest in Puerto Rico; 

Grassland 75 113  all vascular plants and all insects and trophic interactions found inside stems of plants collected from 

24 sites distributed within England and Wales 

Little Rock 181 2318 the pelagic and benthic species, particularly fishes, zooplankton, macroinvertebrates, and algae of the 

Little Rock Lake, Wisconsin, U.S 

Reef Small 50 503  Caribbean coral reef ecosystem from the Puerto Rico-Virgin Island shelf comple 
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Table 3. Statistical parameters for the correlations between the different centrality measures 

studied here for  22 real-world complex networks.  

Network                  DC                         BC                         FBC                        RWBC 

 2r  ( )%RPE  2r  ( )%RPE  2r  ( )%RPE  2r  ( )%RPE  

Galesburg 0.918 26.5 0.763 45.2 0.426 70.5 0.815 39.49 

HighTech 0.969 17.3 0.644 58.5 0.294 82.6 0.754 47.50 

Prison 0.893 31.8 0.851 36.3 0.202 85.4 0.862 33.49 

Social3 0.941 19.8 0.862 30.5 0.452 61.7 0.837 33.93 

Zackarias 0.957 23.8 0.852 44.0 0.736 59.2 0.955 25.31 

ColoSpg 0.589 146.3 0.990 17.0 0.607 147.1 0.941 16.30 

PIN-Afulgidus 0.887 45.6 0.993 11.5 0.823 57.2 0.966 25.80 

PIN-Bsubtilis 0.871 67.9 0.988 20.4 0.804 83.5 0.923 50.23 

PIN-Ecoli 0.900 58.4 0.298 156.6 0.101 177.5 0.408 152.73 

Neurons 0.828 71.4 0.722 90.0 0.413 131.3 0.711 98.96 

Trans-Ecoli 0.864 95.8 0.953 56.2 0.701 141.6 0.903 77.66 

Centrality 0.957 28.5 0.578 89.8 0.300 115.2 0.756 67.02 

SmallWorld 0.871 68.8 0.503 134.4 0.543 129.1 0.645 115.64 

Electronic1 0.626 74.5 0.989 12.5 0.244 106.1 0.872 42.50 

Electronic2 0.526 108.1 0.995 11.7 0.127 152.2 0.807 79.57 

USAir97 0.940 51.1 0.350 167.4 0.204 186.2 0.561 132.25 

BridgeBrook 0.882 31.7 0.501 65.0 0.297 77.3 0.689 52.19 

Canton 0.960 19.8 0.536 67.7 0.448 74.1 0.771 48.60 

ElVerde 0.957 25.1 0.482 86.1 0.327 98.4 0.643 72.08 

Grassland 0.835 74.5 0.957 35.8 0.768 88.5 0.963 34.25 

LittleRock 0.903 33.8 0.291 91.3 0.127 101.6 0.462 79.11 

ReefSmall 0.976 9.5 0.619 38.2 0.689 34.4 0.860 22.79 
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Fig. 1. Adjacency matrix for a graph with 8 nodes and 19 edges used to illustrate the Fréchet 

derivative. Nonzeros are indicated by dots. 
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Fig. 2. Networks used by Newman [25] as examples for the analysis of the differences between 

centrality measures. The results obtained here including the communicability betweenness are 

given in Table 1. 
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Fig. 3. Network where two large communities are connected through a single node and also 

through a longer chain.

Node RWBC CBC 

A 0.447 0.517 

B 0.275 0.225 

C 0.237 0.129 

D 0.102 0.313 
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Fig. 4. Illustration of the network of intermarriages between prominent families in early 15
th

 

century Florence. 
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Fig. 5. Proportion of conserved to non-conserved proteins in the E. coli PIN detected by the 

ranking of proteins according to different centrality measures studied here.
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Fig. 6. Average number of genomes in which one of the top 20 proteins according to the ranking 

introduced by the centrality measures appears.  
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Fig. 7. Number of genomes in which a protein appears according to the ranking introduced by the 

different centrality measures studied here.  

 

 


