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Zero, One and Two-Switch Models of Gene

Regulation∗

Somkid Intep† Desmond J. Higham ‡

June 8, 2009

Abstract

We compare a hierarchy of three stochastic models in gene regulation.
In each case, genes produce mRNA molecules which in turn produce pro-
tein. The simplest model, as described by Thattai and Van Oudenaarden
(Proc. Nat. Acad. Sci., 2001), assumes that a gene is always active, and uses
a first-order chemical kinetics framework in the continuous-time, discrete-
space Markov jump (Gillespie) setting. The second model, proposed by
Raser and O’Shea (Science, 2004), generalizes the first by allowing the
gene to switch randomly between active and inactive states. Our third
model accounts for other effects, such as the binding/unbinding of a tran-
scription factor, by using two independent on/off switches operating in
AND mode. We focus first on the noise strength, which has been defined
in the biological literature as the ratio of the variance to the mean at
steady state. We show that the steady state variance in the mRNA and
protein for the three models can either increase or decrease when switches
are incorporated, depending on the rate constants and initial conditions.
Despite this, we also find that the overall noise strength is always greater
when switches are added, in the sense that one or two switches are always
noisier than none. On the other hand, moving from one to two switches
may either increase or decrease the noise strength. Moreover, the steady
state values may not reflect the relative noise levels in the transient phase.
We then look at a hybrid version of the two-switch model that uses stochas-
tic differential equations to describe the evolution of mRNA and protein.
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This is a simple example of a multiscale modelling approach that allows for
cheaper numerical simulations. Although the underlying chemical kinetics
appears to be second order, we show that it is possible to analyse the first
and second moments of the mRNA and protein levels by applying a gen-
eralized version of Ito’s lemma. We find that the hybrid model matches
the moments of underlying Markov jump model for all time. By contrast,
further simplifying the model by removing the diffusion in order to obtain
an ordinary differential equation driven by a switch causes the mRNA and
protein variances to be underestimated.

Keywords: diffusion, Fano factor, Gillespie algorithm, intrinsic noise, Markov
jump process, multiscale, stochastic differential equation, transcription, transla-
tion.

1 Introduction

Gene expression is a fundamental biological process that attracts a great deal of
attention from both experimental and theoretical scientists. Because some im-
portant components are present at very low copy numbers, mathematical mod-
els typically involve discrete-valued state variables and have a stochastic nature
[10, 14, 15, 16, 17].

The noise strength or Fano factor is often used to summarise the level of
fluctuations observed in a system; for a random variable X, this is simply the
ratio of variance to mean:

ns[X] :=
var[X]

E[X]
. (1)

Typically, the steady state noise strength in the mRNA or protein level may be
of interest. Experimental or computer simulation-based measurements can then
be recorded for different parameter regimes in order to understand which sources
contribute to enhancing and suppressing intrinsic noise [15, 16, 17].

In this work we are concerned with the way that intrinsic noise depends on
the choice of mathematical model. We look at this issue in two senses.

First, we consider a hierarchy of three continuous-time discrete-space gene
regulation models of increasing complexity, where either zero, one or two switches
affect the activity of the transcription process. In this case we are able to derive
explicit expressions for the first and second moments of the mRNA and protein
at steady state and make clear statements about whether switches increase or
decrease the noise strength. Second, we look at a simple case of a hybrid version
of the two-switch model based on the type of multi-scale approximation that is
commonly used to make simulations more tractable. This leads to a stochastic
differential equation driven by a Markov chain, and we show that a generalized
version of Ito’s lemma can be used to analyse first and second moments.
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The article is organised as follows. The next section motivates and describes
the models. In section 3 we derive an ordinary differential equation (ODE) for
the first and second moments and correlations in the two-switch case. In section 4
we use this ODE along with existing results in order to compare the steady state
noise strengths of the models. Section 5.2 looks at the multiscale model where
mRNA and protein levels are assumed to be relatively abundant and diffusion is
used to describe the stochasticity. In section 6 we summarize our findings and
point to future work.

2 Gene Regulation Model

Figure 1 illustrates a simple schematic of the process by which mRNA is created
through transcription and protein is then created through translation. In this
setting, as used, for example, in [17], an underlying gene is assumed to be creating
mRNA at a constant rate. In the language of chemical kinetics, this gives a first
order reaction network [3] that can be in interpreted as a Markov jump process,
where ∅ → mRNA represents production from a source, mRNA → Protein
represents catalytic production, and mRNA → ∅ and Protein → ∅ represent
degradation.

In Figure 2, we follow [15] by supposing that the gene is not always available
to create mRNA, but rather switches between an active state and an inactive
state. The switch operates independently of the mRNA and protein levels, and
we may regard Active ↔ Inactive as reversible isometric reactions.

The biological mechanisms through which a gene is activated and deactivated
are, of course, extremely complicated, and Figure 2 presents a very simplified
view. Quoting from the Wikipedia website
http://en.wikipedia.org/wiki/Transcription factor:

“In the field of molecular biology, a transcription factor (sometimes
called a sequence-specific DNA binding factor) is a protein that binds
to specific DNA sequences and thereby controls the transfer (or tran-
scription) of genetic information from DNA to RNA. Transcription
factors perform this function alone or with other proteins in a com-
plex, by promoting (as an activator), or blocking (as a repressor)
the recruitment of RNA polymerase (the enzyme which performs the
transcription of genetic information from DNA to RNA) to specific
genes.”

and

“Transcription factors may be activated (or deactivated) through their
signal sensing domain by a number of mechanisms. . . ”
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Figure 1: Zero-switch gene regulation diagram.
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Figure 2: One-switch gene regulation diagram.

This motivates the diagram in Figure 3, where gene activity is controled by a pair
of independent switches in AND mode. We may imagine that the gene is active
only when a transcription factor (TF) is bound and this TF has become active.
Either unbinding or deactivation of the TF will cause the rate at which the gene
produces mRNA to drop to zero. Although we will use the bound/unbound ac-
tive/inactive terminology throughout this work, we mention that the model could
be motivated from other mechanisms, for example [1, Figure 2] describe a circum-
stance where two separate “activators” must operate in tandem for transcription
to occur.

The AND operation in Figure 3 could be regarded as a second order (or bi-
molecular reaction)—the rate at which mRNA is produced depends on the prod-
uct of two {0, 1} valued species. Generally, second order reaction networks are
not amenable to analysis; for example closed form ordinary differential equations
cannot be derived for their moments. However, we will show in this work that
the special structure of this network allows analysis to be performed, both in the
discrete-space Markov jump setting, and in the case where a hybrid stochastic
differential equation (SDE) is used.

To simplify the language, we will say that Figures 1, 2 and 3 represent the
zero, one and two-switch models, respectively.
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3 Moments for Two Switches

Moment analysis for the zero and one-switch models has already appeared in
the literature [9, 11]. In this section, we focus on the new two-switch model.
Interpreting Figure 3 as a discrete-space, continuous-time Markov jump process,
we may introduce scalar processes A(t) and B(t) to record the activation and
binding of the TF: at time t,

• A(t) = 1 if the TF is active and A(t) = 0 if the TF is inactive,

• B(t) = 1 if the TF is bound and B(t) = 0 if the TF is unbound.

Given the rate constants uA, dA, uB, dB, we may characterise these processes by

P(A(t + ∆) = 1 | A(t) = 0) = uA∆ + o(∆),

P(A(t + ∆) = 0 | A(t) = 1) = dA∆ + o(∆),

P(B(t + ∆) = 1 | B(t) = 0) = uB∆ + o(∆),

P(B(t + ∆) = 0 | B(t) = 1) = dB∆ + o(∆).

Now let M(t) denote the level of mRNA at time t. Since mRNA is produced
with rate constant uR only when the TF is bound and active, we have

P (M(t + ∆) = M(t) + 1 | A(t), B(t)) = uRA(t)B(t)∆ + o(∆).

This takes the form of a second order reaction—the rate of production of the
species M(t) depends on the product of the levels of “species” A(t) and B(t). In
general, second order systems are not amenable to analysis [6, Section 2.7.B], but
we will show in this section that the special form of this system can be exploited.
To do this, we introduce artificial species Yi(t) for i = 1, 2, 3, 4, each of which
takes values in {0, 1}. These are defined according to

• Y1(t) = 1 ⇐⇒ A(t) = 0 and B(t) = 0,

• Y2(t) = 1 ⇐⇒ A(t) = 0 and B(t) = 1,

• Y3(t) = 1 ⇐⇒ A(t) = 1 and B(t) = 0, and

• Y4(t) = 1 ⇐⇒ A(t) = 1 and B(t) = 1.

We note that
∑4

i=1 Yi(t) = 1 for all time t. Letting P denote the protein level,
we may write the overall system in the form

Y1
uB→ Y2 (2)

Y1
dB← Y2 (3)

Y1
uA→ Y3 (4)
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Y1
dA← Y3 (5)

Y2
uA→ Y4 (6)

Y2
dA← Y4 (7)

Y3
uB→ Y4 (8)

Y3
dB← Y4 (9)

Y4
uR→ Y4 + M (10)

M
uP→ M + P (11)

M
dR→ ∅ (12)

P
dP→ ∅. (13)

This system now has the form of first-order reaction network. In the terminology
of [3], reactions (2)–(9) are of conversion type, (10) and (11) are of catalytic

production type, and (12) and (13) are of degradation type. So, we may use the
general results in [3] to obtain a closed system of ODEs that express the evolution
of the first and second moments and correlations. In the notation of [3], we have
Ks = 0 ∈ R

6×6,

Kd =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 dR 0
0 0 0 0 0 dP




, Kcat =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 uR 0 0
0 0 0 0 uP 0




,

Kcon =




−(uA + uB) dB dA 0 0 0
uB −(uA + dB) 0 dA 0 0
uA 0 −(uB + dA) dB 0 0
0 uA uB −(dA + dB) 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

K =




−(uA + uB) dB dA 0 0 0
uB −(uA + dB) 0 dA 0 0
uA 0 −(uB + dA) dB 0 0
0 uA uB −(dA + dB) 0 0
0 0 0 uR −dR 0
0 0 0 0 uP −dP
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and

Γ(t) =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 uRE[Y4(t)] 0 0
0 0 0 0 uP E[M(t)] 0




.

Because
∑4

i=1 Yi(t) = 1, Yi(t)
2 = Yi(t) and Yi(t)Yj(t) = 0 for i 6= j, we can

eliminate some redundancy in order to obtain ODEs for the means

d

dt
E[Y2(t)] = uB − (uA + uB + dB)E[Y2]− uBE[Y3]− (uB − dA)E[Y4], (14)

d

dt
E[Y3(t)] = uA − uAE[Y2]− (uA + uB + dA)E[Y3]− (uA − dB)E[Y4], (15)

d

dt
E[Y4(t)] = uAE[Y2] + uBE[Y3]− (dA + dB)E[Y4], (16)

d

dt
E[M(t)] = uRE[Y4]− dRE[M ], (17)

d

dt
E[P (t)] = uP E[M ]− dP E[P ], (18)

correlations

d

dt
E[Y2(t)M(t)] = uBE[M ]− (uA + uB + dB + dR)E[Y2M ]

− uBE[Y3M ]− (uB − dA)E[Y4M ], (19)

d

dt
E[Y2(t)P (t)] = uBE[P ] + uP E[Y2M ]− (uA + uB + dB + dP )E[Y2P ]

− uBE[Y3P ]− (uB − dA)E[Y4P ], (20)

d

dt
E[Y3(t)M(t)] = uAE[M ]− uAE[Y2M ]

− (uA + uB + dA + dR)E[Y3M ]− (uA − dB)E[Y4M ],(21)

d

dt
E[Y3(t)P (t)] = uAE[P ]− uAE[Y2P ] + uP E[Y3M ]

− (uA + uB + dA + dP )E[Y3P ]− (uA − dB)E[Y4P ], (22)

d

dt
E[Y4(t)M(t)] = uAE[Y2M ] + uBE[Y3M ] + uRE[Y4]

− (dA + dB + dR)E[Y4M ], (23)

d

dt
E[Y4(t)P (t)] = uAE[Y2P ] + uBE[Y3P ] + uP E[Y4M ]

− (dA + dB + dP )E[Y4P ], (24)

d

dt
E[M(t)P (t)] = uRE[Y4P ] + uP E[M2]− (dR + dP )E[MP ], (25)
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and second moments

d

dt
E[M(t)2] = uRE[Y4] + dRE[M ] + 2uRE[Y4M ]− 2dRE[M2], (26)

d

dt
E[P (t)2] = uP E[M ] + dP E[P ] + 2uP E[MP ]− 2dP E[P 2]. (27)

We are now in a position to compare the noise strengths of the three models.

4 Comparing Noise Strengths

4.1 One-Switch versus Zero-Switch

The one-switch model in Figure 2 may be interpreted as the first order reaction
system

D
uC→ D⋆ (28)

D⋆ dC→ D (29)

D⋆ uR→ D⋆ + M (30)

M
uP→ M + P (31)

M
dR→ ∅ (32)

P
dP→ ∅ (33)

where D and D⋆ denote the inactive and active states of the gene, respectively.
Here, the initial condition for the gene must be either D(0) = 1 and D⋆(0) = 0
(inactive) or D(0) = 0 and D⋆(0) = 1 (active), and D(t) + D⋆(t) ≡ 1 for all
time. A closed, stable linear system of ODEs describing the evolution of the first
and second moments and correlations can be found in [11]. Using M̃(t) and P̃ (t)
to denote the mRNA and protein levels for this system (28)–(33), in order avoid
confusion with M(t) and P (t) from the two-switch model, we find that the steady
state moments have the form

lim
t→∞

E[M̃(t)] =
uCuR

dR(uC + dC)
, (34)

lim
t→∞

E[P̃ (t)] =
uPuCuR

dP dR(uC + dC)
, (35)

lim
t→∞

E[M̃ (t)2] =
uRuC

dR(uC + dC)
+

u2
RuC

dR(uC + dC)(uC + dC + dR)

+
u2

Ru2
C

d2
R(uC + dC)(uC + dC + dR)

, (36)

lim
t→∞

E[P̃ (t)2] =
uPuRuC(dR + dP + uP )

(uC + dC)(dR + dP )dRdP

8



+
u2

Pu2
Ru2

C

(uC + dC)(uC + dC + dP )(dR + dP )dRd2
P

+
u2

Pu2
RuC(dR + uC)(dR + uC + dC + dP )

(uC + dC)(uC + dC + dR)(uC + dC + dP )(dR + dP )d2
RdP

,(37)

lim
t→∞

E[M̃ (t)P̃ (t)] =
u2

Ru2
CuP

(uC + dC)(uC + dC + dP )(dR + dP )dRdP

+
u2

RuPuC(uC + dR)(uC + dC + dP + dR)

(uC + dC)(uC + dC + dR)(uC + dC + dP )(dR + dP )d2
R

+
uP uRuC

(uC + dC)(dR + dP )dR

. (38)

The zero-switch case in Figure 1 can be written as the reaction network

D̂
uR→ D̂ + M (39)

M
uP→ M + P (40)

M
dR→ ∅ (41)

P
dP→ ∅ (42)

where D̂(t) ≡ 1 for all time. A linear ODE system for the first and second
moments is given in [9]. Letting M⊕(t) and P⊕(t) denote the mRNA and protein
levels for this model, we find the steady state values

lim
t→∞

E[M⊕(t)] =
uR

dR

, (43)

lim
t→∞

E[P⊕(t)] =
uPuR

dPdR

, (44)

lim
t→∞

E[M⊕(t)2] =
uR

dR

+
u2

R

d2
R

, (45)

lim
t→∞

E[P⊕(t)2] =
u2

Pu2
R

d2
Pd2

R

+
uPuR(uP + dR + dP )

(dR + dP )dRdP

, (46)

lim
t→∞

E[M⊕(t)P⊕(t)] =
uPuR

dR(dR + dP )
+

uP u2
R

dP d2
R

. (47)

Comparing the steady state mRNA and protein variances from the two mod-
els, we find that

var[M̃ ]− var[M⊕] =
uRuC(d2

R + uRuC + dRuC + dRdC + dRuR)

d2
R(uC + dC)(uC + dC + dR)

−
u2

Ru2
C

d2
R(uC + dC)2

−
uR

dR

and

var[P̃ ]− var[P⊕] =
uP uRuC(dR + dP + uP )

dRdP (uC + dC)(dR + dP )

9



+
u2

P u2
Ru2

C

dRd2
P (uC + dC)(uC + dC + dP )(dR + dP )

+
u2

Pu2
RuC(uC + dR)(dR + uC + dC + dP )

d2
RdP (uC + dC)(uC + dC + dR)(uC + dC + dP )(dR + dP )

−
u2

Pu2
Ru2

C

d2
Pd2

R(uC + dC)2

−
uPuR(dR + dP + uP )

dRdP (dR + dP )
.

Now recalling the definition of noise strength in (1), some further manipulation
of (34)–(37) and (43)–(46) shows that

ns[M̃ ]− ns[M⊕] =
uRdC

(uC + dC)(uC + dC + dR)
, (48)

ns[P̃ ]− ns[P⊕] =
uPuRdC(uC + dC + dR + dP )

(uC + dC)(dP + dR)(uC + dC + dP )(uC + dC + dR)
.(49)

It is clear that the right hand sides in (48) and (49) are always positive.
Hence, at steady state, adding a switch always increases the noise strength of

both mRNA and protein, for any choice of rate constants. This happens despite

the fact that the variances may increase or decrease. For example, using rate
constants uC = 0.1, dC = 0.01, uR = 0.3, dR = 0.01, uP = 0.3 and dP = 0.001, we
find

var[M̃ ]− var[M⊕] = 3.47,

var[P̃ ]− var[P⊕] = 3.22× 104,

ns[M̃ ]− ns[M⊕] = 0.2273,

ns[P̃ ]− ns[P⊕] = 6.7568,

whereas changing to dC = 0.2 gives

var[M̃ ]− var[M⊕] = −13.55,

var[P̃ ]− var[P⊕] = −1.15× 105,

ns[M̃ ]− ns[M⊕] = 0.6452,

ns[P̃ ]− ns[P⊕] = 18.1799.

Figure 4 illustrates that the conclusion above concerning the relative noise
strengths does not generalize to all t. Here, we chose rate constants uR =
0.3, dR = 0.012, uP = 0.17 from [16], dP = 0.0007 from [2], uC = 0.1 and
dC = 0.9. Deterministic initial conditions were used, with D⋆(0) = 1, M(0) = 20

and P (0) = 40. We see that the time-dependent differences ns[M̃(t)]−ns[M⊕(t)]

and ns[P̃ (t)]−ns[P⊕(t)] can change sign before settling down to a positive value.
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Figure 5 repeats this experiment using rate constants uC = 0.1, dC = 0.1, uR =
10, dR = 5, uP = 10, and dP = 0.1 from [15] with the same initial conditions as in
Figure 4. For these rate constants and initial conditions, the difference between
noise strengths for mRNA and protein remains positive for all time.

4.2 Two-Switch versus Zero-Switch

Equations (14)–(27) give a stable, linear ODE system for the moments of the
two-switch model (2)–(13). Solving for the steady state and comparing with the
result for the zero-switch model (39)–(42), we find that the difference between
mRNA noise strengths is

ns[M ] − ns[M⊕]

=
3dAdBuR(uAdR + dRuB + uAuB)

(uA + dA + dR)(uA + dA)(uB + dB)(uB + dR + dB)(uB + uA + dA + dB + dR)

+
2u2

AuRdB(dR + dA)

(uA + dA + dR)(uA + dA)(uB + dB)(uB + dR + dB)(uB + uA + dA + dB + dR)

+
2dAdBuR(uBdA + uAdB)

(uA + dA + dR)(uA + dA)(uB + dB)(uB + dR + dB)(uB + uA + dA + dB + dR)

+
2u2

BdAuR(dB + dR)

(uA + dA + dR)(uA + dA)(uB + dB)(uB + dR + dB)(uB + uA + dA + dB + dR)

+
dAuRdR(dR + dA)

(uB + uA + dA + dB + dR)(uB + dR + dB)(uA + dA)(uA + dA + dR)

+
uRd2

B(u2
A + d2

A)

(uA + dA + dR)(uA + dA)(uB + dB)(uB + dR + dB)(uB + uA + dA + dB + dR)

+
uAuRdB(d2

A + d2
R)

(uA + dA + dR)(uA + dA)(uB + dB)(uB + dR + dB)(uB + uA + dA + dB + dR)

+
uR(u2

BdA + d2
BdR)

(uB + uA + dA + dB + dR)(uB + dR + dB)(uB + dB)(uA + dA + dR)

+
uAuBuRdR(dA + dB)

(uA + dA + dR)(uA + dA)(uB + dB)(uB + dR + dB)(uB + uA + dA + dB + dR)

+
uBdAuR(d2

B + u2
B)

(uA + dA + dR)(uA + dA)(uB + dB)(uB + dR + dB)(uB + uA + dA + dB + dR)

+
u2

AuRdB(uB + uA)

(uA + dA + dR)(uA + dA)(uB + dB)(uB + dR + dB)(uB + uA + dA + dB + dR)
,

which is clearly positive. The corresponding difference for the protein levels,
ns[P ]−ns[P⊕], is too complicated to display, but is also positive for all parameter
values.

To illustrate the results, in Figure 6, using the same rate constants and initial
conditions as Figure 4, except uA = 0.1, dA = 0.3, uB = 0.3, dB = 0.1 and Y4(0) =
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Figure 3: Two-switch gene regulation diagram.
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Figure 4: Difference in noise strengths between the one and zero-switch models.
Upper: mRNA, ns[M̃(t)]− ns[M⊕(t)]. Lower: protein, ns[P̃ (t)]− ns[P⊕(t)]. The
moments were computed by solving the relevant ODEs. Horizontal lines show
steady state values from (48) and (49). Rate constants are taken from [16] and
[2].
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Figure 5: As for Figure 4 with rate constants taken from [15].

1, we show the difference between noise strengths for mRNA and protein. The
values at steady state are 0.524 and 7.215 for mRNA and protein, respectively,
but we see that the difference between noise strengths changes sign over time.
Figure 7 shows an example where the difference between noise strengths is positive
for all time. Here, the difference at steady state is 1.425 and 43.294 for mRNA
and protein, respectively. In this case we used the same rate constants and initial
conditions as Figure 5 together with uA = 0.1, dA = 0.1, uB = 0.1, dB = 0.1 and
the deterministic initial condition Y4(0) = 1.

In summary, like the one-switch model, the two-switch model always gives
greater noise strengths at steady state than the zero-switch model, but not gen-
erally for all time.

4.3 One-Switch versus Two-Switch

Using the results from the previous subsections, we can characterise the difference
in noise strengths of mRNA and protein between the two-switch model (2)–(13)
and one-switch model (28)–(33). The expressions are too complicated to display,
but a key fact is that they contain both negative and positive terms, and their
overall sign depends on the model parameters.

To illustrate this, in Figure 8 we use the same rate constants and initial
conditions as Figure 6, with uC = uA and dC = dA. We see that the differences
ns[M̃(t)]− ns[M(t)] and ns[P̃ (t)]− ns[P (t)] are negative for all time. The steady
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Figure 6: As for Figure 4, but with the differences between two and zero switches,
ns[M(t)] − ns[M⊕(t)] and ns[P (t)]− ns[P⊕(t)].
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Figure 7: As for Figure 6 with different parameters and initial conditions.
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Figure 8: Difference in noise strengths between the two and one-switch models.

state differences are −0.022 and −0.314 for mRNA and protein, respectively. On
the other hand, Figure 9 shows a case where the differences are positive for all
time. Here we used the same rate constants and initial conditions as in Figure
7 together with uC = uA and dC = dA. In this case, the steady state values
are 0.463 and 9.985 for mRNA and protein, respectively. Figure 10 shows that
the differences in both mRNA and protein can change sign . Here we used the
same rate constants and initial conditions as in Figure 9, except uC = uAuB

and dC = uAdB + dAuB + dAdB. The differences at steady state are −0.064 and
−63.833 for mRNA and protein, respectively.

5 Hybrid Moments

The Markov jump framework gives an accurate microscale-level picture of chem-
ical kinetics, and sample paths can be computed using the well-known Gillespie
algorithm [4, 5]. However, for large or complex systems involving one or more
fast reactions, such simulations may be prohibitively expensive. This has mo-
tivated the use of multiscale models that sacrifice some of the discreteness or
stochasticity by using deterministic or continuous-valued variables. These mod-
eling approximations can be justified when certain species are present in large
numbers.

A simple approach to multiscale modeling and simulation is to model certain
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Figure 9: As for Figure 8 with different parameters.
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reactions as SDEs, also known as Chemical Langevin equations (CLEs) or dif-
fusion approximations [7, 8]. Alternatively, standard ODEs can be used. When
a mixture of these approaches is combined, we obtain a hybrid system. Paszek
[14] argued that in gene regulation systems it may be reasonable to treat either
protein or both mRNA and protein levels as being continuous-valued. In that
reference ODEs were used, but it has been shown in [9, 11] that the SDE setting
is generally better at recovering the moments of the underlying exact model.

Our aim in this section is therefore to study hybrid versions of the new two-
switch model (2)–(13). We will show that, as in the Markov jump setting, al-
though it appears to be a second order reaction network, moments of the hybrid
SDE model can be analysed.

5.1 Hybrid Diffusion Moments

In order to describe the two-switch model as a hybrid SDE, we let r(t) be a
Markov switch with state space S = {1, 2, 3, 4} and let γij denote the transition
rate for the switch from state i to j. Hence, for i 6= j,

P(r(t + ∆) = j | r(t) = i) := γij∆ + o(∆),

and γii = −
∑

j 6=i γij is such that

P(r(t + ∆) = i | r(t) = i) := 1 + γii∆ + o(∆).

Here,

• state 1 corresponds to A(t) = 0 and B(t) = 0,

• state 2 corresponds to A(t) = 0 and B(t) = 1,

• state 3 corresponds to A(t) = 1 and B(t) = 0,

• state 4 corresponds to A(t) = 1 and B(t) = 1.

For this switch, we move from state 1 to 2 when the TF binds, so we have

γ12 = uB.

Similarly, we move from state 1 to 3 when the TF activates, so that

γ13 = uA.

Continuing this manner, we obtain the transition rates in Table 1.
Now, let g(r(t)) be any function such that

g(r(t)) =

{
1 when r(t) = 4,
0 otherwise.
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j

state 1 2 3 4
1 −(uA + uB) uB uA 0

i 2 dB −(uA + dB) 0 uA

3 dA 0 −(dA + uB) uB

4 0 dA dB −(dA + dB)

Table 1: Transition rates γij for switch r(t).

We may then express the two-switch model as

∅
uRg(r(t))
→ M (50)

M
uP→ M + P (51)

M
dR→ ∅ (52)

P
dP→ ∅. (53)

Now we look at a hybrid model based on (50)–(53) where the effect of the TF
is modeled as a Markov jump process r(t), and the evolution of the mRNA and
protein levels, M(t) and P (t), is modeled with the CLE regime. This gives rise
to Ito SDEs driven by an independent switch, of the form

dM⋆(t) = (uRg(r)− dRM⋆)dt +
√

uRg(r)dW1 −
√

dRM⋆dW2, (54)

dP ⋆(t) = (uPM⋆ − dPP ⋆)dt +
√

uPM⋆dW3 −
√

dPP ⋆dW4. (55)

We use M⋆(t) and P ⋆(t) to distinguish this process from the mRNA and protein
levels, M(t) and P (t), arising from the full CME regime, while Wi, i = 1, 2, 3, 4,
are mutually independent Brownian motions that are also independent of r(t).
We refer to [13] for a thorough treatment of the theory and numerics of SDEs
driven by switches. Taking expectations, we find immediately that

d

dt
E[M⋆(t)] = uRE[g(r(t))]− dRE[M⋆(t)], (56)

d

dt
E[P ⋆(t)] = uP E[M⋆(t)]− dP E[P ⋆(t)]. (57)

Since g(r(t)) ≡ Y4(t), comparing (56) and (57) with (17) and (18), we see that
this hybrid diffusion regime gives the same first moments as the full Markov jump
model .

Applying the generalised Ito lemma [13] in (54) and (55), we find

d(M⋆2) = (2M⋆(uRg(r)− dRM⋆) + (uRg(r) + dRM⋆)) dt + d(mart.),

d(M⋆P ⋆) = (P ⋆(uRg(r)− dRM⋆) + M⋆(uP M⋆ − dPP ⋆)) dt + d(mart.),
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d(P ⋆2) = (2P ⋆(uP M⋆ − dPP ⋆) + (uPM⋆ + dP P ⋆)) dt + d(mart.),

d(M⋆g(r)) = (g(r)(uRg(r)− dRM⋆) + M⋆γr,4) dt + d(mart.),

d(P ⋆g(r)) = (g(r)(uPM⋆ − dPP ⋆) + P ⋆γr,4) dt + d(mart.),

where “mart.” denotes a martingale. Therefore,

d

dt
E[M⋆2] = 2uRE[M⋆g(r)]− 2dRE[M⋆2] + uRE[g(r)] + dRE[M⋆], (58)

d

dt
E[M⋆P ⋆] = uRE[P ⋆g(r)]− (dR + dP )E[M⋆P ⋆] + uP E[M⋆2], (59)

d

dt
E[P ⋆2] = 2uP E[M⋆P ⋆]− 2dP E[P ⋆2] + uP E[M⋆] + dP E[P ⋆], (60)

d

dt
E[M⋆g(r)] = uRE[g(r)]− dRE[M⋆g(r)] + E[M⋆γr,4], (61)

d

dt
E[P ⋆g(r)] = uP E[M⋆g(r)]− dP E[P ⋆g(r)] + E[P ⋆γr,4]. (62)

Now, considering the case where r(t) = 4, we have that γr,4 = −(dA+dB), Y2 =
Y3 = 0, Y4 = g(r) = 1, therefore

d

dt
E[M⋆g] = uR − dRE[M⋆]− (dA + dB)E[M⋆],

d

dt
E[Y4M ] = uR − (dA + dB + dR)E[M ],

and

d

dt
E[P ⋆g] = uP E[M⋆]− dP E[P ⋆]− (dA + dB)E[P ⋆],

d

dt
E[Y4P ] = upE[M ]− (dA + dB + dP )E[P ].

So, conditioning on r(t) = 4, E[Y4M ] satisfies the same ODE as E[M⋆g] and
E[Y4P ] satisfies the same ODE as E[P ⋆g]. In a similar manner, conditioning
on the other cases, r(t) = 1, 2, 3, also gives a perfect match. We conclude that
E[Y4M ] = E[M⋆g] and E[Y4P ] = E[P ⋆g] for all time. By comparing (58)–(62)
and (19)–(27) we then conclude that the hybrid diffusion regime preserves the
second moments and correlations of the full Markov jump model.

5.2 Hybrid ODE Moments

In this subsection we consider the case where, as in subsection 5.1, the bind-
ing/unbinding and activation/deactivation of the TF is modeled as a Markov
jump process r(t), but now the evolution of the mRNA and protein levels are
modeled with a simple ODE arising from the law of mass action. This general
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approach was proposed for the zero-switch model in [14], where steady state anal-
ysis was performed, and further time-dependent results were given in [9, 11] for
the zero and one-switch models. Our aim here is to look briefly at the two-switch
model.

In this case, we have two ODEs driven by an independent switch, of the form

dM̂(t) = (uRg(r(t))− dRM̂(t))dt,

dP̂ (t) = (uPM̂(t)− dP P̂ (t))dt.

We use M̂(t) and P̂ (t) to denote the continuous-valued stochastic process that
represent the mRNA and protein levels in this regime.

Applying the generalised Ito lemma [13], we find

d(M̂2) =
(
2M̂(uRg(r)− dRM̂)

)
dt + d(mart.),

d(M̂P̂ ) =
(
P̂ (uRg(r)− dRM̂) + M̂(uPM̂ − dP P̂ )

)
dt + d(mart.),

d(P̂ 2) =
(
2P̂ (uPM̂ − dP P̂ )

)
dt + d(mart.),

d(M̂g(r)) =
(
g(r)(uRg(r)− dRM̂) + M̂γr,4

)
dt + d(mart.),

d(P̂ g(r)) =
(
g(r)(uPM̂ − dP P̂ ) + P̂ γr,4

)
dt + d(mart.).

Therefore,

d

dt
E[M̂ ] = uRE[g(r))]− dRE[M̂ ], (63)

d

dt
E[P̂ ] = uP E[M̂ ]− dP E[P̂ ], (64)

d

dt
E[M̂2] = 2uRE[M̂g(r)]− 2dRE[M̂2], (65)

d

dt
E[M̂P̂ ] = uRE[P̂ g(r)]− (dR + dP )E[M̂P̂ ] + uP E[M̂2], (66)

d

dt
E[P̂ 2] = 2uP E[M̂P̂ ]− 2dP E[P̂ 2], (67)

d

dt
E[M̂g(r)] = uRE[g(r)]− dRE[M̂g(r)] + E[M̂γr,4], (68)

d

dt
E[P̂ g(r)] = uP E[M̂g(r)]− dP E[P̂ g(r)] + E[P̂ γr,4]. (69)

Comparing (17) and (18) with (63) and (64), we see that the hybrid ODE system
preserves the first moments. Also, repeating the arguments from subsection 5.1,
we can show that E[M̂g(r)] matches E[Y4M ], and E[P̂ g(r)] matches E[Y4P ]. If

we then compare (26) and (65), we see that E[M̂2(t)] < E[M2(t)] for all t > 0.
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Then from (25) and (66) we see that E[M̂(t)P̂ (t)] < E[M(t)P (t)], whence (27)

and (67) allow us to conclude that E[P̂ 2(t)] < E[P 2(t)].
In summary, for any set of non-zero rate constants, the hybrid ODE model

underestimates the second moments of the mRNA and protein and the mRNA-
protein correlation, for all time.

6 Summary

Some surprisingly simple stochastic models based on Markov jump processes
have been successful at describing the level of intrinsic noise in gene regulation
activities inside the cell. These models allow the important, and measurable,
noise strength to be characterised in terms of the relative rates of transcription,
translation and degradation.

In this work, we introduced a more general model that attempts to account
more accurately for the indirect control exerted by a transcription factor. This
new model does not fit naturally into the framework of first order reaction net-
works, but we showed that its noise strength is amenable to analysis.

Regarding this model as the two-switch successor to previously studied one-
switch and zero-switch versions, we were able to show the intuitively reasonable
results that, given a set of rate constants,

• the one and two-switch models always have greater steady state mRNA and

protein noise strengths than the underlying zero-switch model, although
the variances may be smaller.

So incorporating transcription factor effects in this way leads to a prediction of
larger intrinsic noise. However, somewhat less intuitively,

• before equilibrium is reached, the noise strengths of the one and two-switch
models may be less than that of the zero-switch model.

Also,

• the two-switch model may be more or less noisy than the one-switch model,
depending on the rate constants.

We also analysed hybrid SDE and ODE approximations to the two-switch
model and showed that it is necessary to retain the diffusion term in order to
avoid underestimating the mRNA and protein variances and correlation.

There are, of course, many ways in which gene regulation models can be
extended, and we are currently considering the case of auto-regulation, where
a protein can affect its own transcription rate [12]. In the hybrid SDE setting
this will give rise to the more technically demanding regime of state-dependent

Markov switching.
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