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Switching and Diffusion Models for Gene

Regulation Networks

Somkid Intep∗ Desmond J. Higham † Xuerong Mao ‡

June 3, 2009

Abstract

We analyze a hierarchy of three regimes for modeling gene regula-
tion. The most complete model is a continuous time, discrete state space,
Markov jump process. An intermediate ‘switch plus diffusion’ model takes
the form of a stochastic differential equation driven by an independent
continuous time Markov switch. In the third ‘switch plus ODE’ model the
switch remains but the diffusion is removed. The latter two models allow
for multi-scale simulation where, for the sake of computational efficiency,
system components are treated differently according to their abundance.
The ‘switch plus ODE’ regime was proposed by Paszek (Modeling stochas-
ticity in gene regulation: characterization in the terms of the underlying
distribution function, Bulletin of Mathematical Biology, 2007), who ana-
lyzed the steady state behavior, showing that the mean was preserved but
the variance only approximated that of the full model. Here, we show that
the tools of stochastic calculus can be used to analyze first and second mo-
ments for all time. A technical issue to be addressed is that the state space
for the discrete-valued switch is infinite. We show that the new ‘switch plus
diffusion’ regime preserves the biologically relevant measures of mean and
variance, whereas the ‘switch plus ODE’ model uniformly underestimates
the variance in the protein level. We also show that, for biologically rele-
vant parameters, the transient behaviour can differ significantly from the
steady state, justifying our time-dependent analysis. Extra computational
results are also given for a protein dimerization model that is beyond the
scope of the current analysis.
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1 Introduction

Gene regulation is typically modeled using the language of chemical kinetics. At
one extreme, discrete-valued stochastic models can be adopted, giving rise to a
Chemical Master Equation (CME), from which sample paths can be simulated
via Gillespie’s algorithm [11, 12, 36]. At the other extreme, continuous-valued
deterministic modeling leads to a set of ordinary differential equations (ODEs)
that are sometimes said to arise through the law of mass action [6].

The ODE framework is typically (a) more amenable to analysis [1, 20], (b)
cheaper to simulate with [32, 33] and (c) better suited to the important inverse
problem of estimating rate constants and comparing models based on sparsely
observed data [34]. However, in the case where small numbers of molecules are
present, the modeling assumptions that give rise to the mass action ODE are not
valid [11, 12, 22] and the discrete/stochastic effects captured by the CME should
not be ignored. For example, the stochastic version of a bi-stable ODE model
can account for switching between “almost stable” states [31, 35].

Although progress is being made on solving the CME [23] and on optimizing
Gillespie’s direct simulation method [9, 15], the fully discrete CME setting re-
mains computationally infeasible for most realistic systems. Tau-leaping [5, 14]
was introduced in an attempt to speed up stochastic simulation without resorting
to a fully deterministic model. This tau-leaping approach can also be used as
a means to derive an intermediate stochastic differential equation (SDE) model,
known as the Chemical Langevin Equation (CLE) [13]. In the more general con-
text of population dynamics this type of diffusion limit has also been defined as
an approximation to a Markov jump process [22, 28].

It is intuitively appealing, and potentially extremely beneficial, to mix to-
gether these modeling regimes so that different species, different reactions or
different time periods are treated by simulation methods that are as cheap as
possible while preserving the overall accuracy [4, 7]. An interesting example that
applies specifically to a simple gene regulation setting was proposed by Paszek
[26]. Here, a hybrid model was put forward that uses the CME regime for low
copy number species and the ODE framework for relatively abundant species. In
this work, which follows on from a simpler context in [18], we exploit the fact
that the hybrid model may be regarded as a system of ODEs driven by an inde-
pendent Markovian switch. The switch has an infinite state space, but we show
that existence and uniqueness, and numerical simulation theories carry through.
This viewpoint makes it possible to analyze the first and second moments of the
model using the tools of stochastic calculus, and to consider an alternative where
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the ODE is replaced by a diffusion approximation. Our main findings are that

• the ‘switch plus ODE’ model uniformly underestimates the variance,

• the steady-state error in the variance for the ‘switch plus ODE’ model may
significantly underestimate the error in the transient,

• replacing the ‘switch plus ODE’ model with a ‘switch plus diffusion’ model
recovers the correct means and variances, for all time.

Overall, by studying a minimal, but biologically relevant, model that is tractable
to analysis, we provide support for the use of the ‘switch plus diffusion’ regime
as a means to incorporate stochasticity in a computationally viable manner.

This work is organized as follows. In the next section we describe the chemical
system that models transcription and translation and state the ODEs for the
evolution of first and second moments of the CME. We then analyze the hybrid
‘switch plus diffusion’ and ‘switch plus ODE’ models. Section 3 considers an
alternative model where genes can alternate between active and inactive states. In
section 4 we give numerical results for two models involving protein dimerization
that lie outside the first order framework analyzed in sections 2 and 3. We give
some conclusions in section 5, and in an appendix we collect some of the technical
results that are needed to establish the validity of modeling and simulation in
the presence of a switch with infinite state space.

We remark that in order to keep the analysis compact, we implicitly assume
that initial conditions are deterministic and equal across all modeling regimes.

2 Gene Regulation Model

In order to understand the effect of intrinsic noise in gene regulation, recent
authors [27, 30, 36] have modeled the processes of transcription and translation
as first order reaction networks involving three species:

M denotes the amount of mRNA, we will also call this X1,

P denotes the amount of protein, we will also call this X2,

D denotes the amount of gene, we will also call this X3.

In particular, Thattai and van Oudenaarden [30] proposed a simple descriptive
set of reactions that takes the form

D
k1→ D + M (1)

M
k2→ M + P (2)

M
k3→ ∅ (3)

P
k4→ ∅ (4)
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In words, (1) says that a gene can create a molecule of mRNA with rate constant
k1, without destroying itself. Reaction (2) says that a molecule of mRNA can
create a protein with rate constant k2, without destroying itself. In (3) and
(4) a molecule of mRNA, or protein, can degrade with rate constant k3 or k4,
respectively.

In this model, the amount of gene stays fixed, so X3 remains constant. We
may therefore take the state vector to be

[
X1

X2

]
.

The stoichiometric vectors [17, 36] for the four reactions are

ν1 =

[
1
0

]
, ν2 =

[
0
1

]
, ν3 =

[
−1
0

]
, ν4 =

[
0
−1

]
,

with corresponding propensity functions

a1(X) = k1X3, a2(X) = k2X1, a3(X) = k3X1, a4(X) = k4X2.

Because X3 is fixed, we will re-name k1X3 as k1.
Although they are clearly gross simplifications of the underlying biological

processes, models such as this have proved useful for characterizing the level of
intrinsic noise in a gene regulation network in various parameter regimes, and we
note that “noise strength” in this context is typically summarized in terms of the
ratio of variance to mean [27, 30].

2.1 Master Equation Moments

In this subsection, we interpret the system (1)–(4) as a Markov jump process
defined by the CME, letting M(t) and P (t) denote the stochastic processes that
specify the levels of mRNA and protein, respectively. The system fits into the
framework of a first-order reaction network. More precisely, (1) and (2) involve
catalytic production from a source, and (3) and (4) are of degradation type. There-
fore we may use the general result of [8] to obtain a closed system of ODEs that
describe the evolution of the first and second moments and correlations. This
gives

d

dt
E[M(t)] = −k3E[M(t)] + k1, (5)

d

dt
E[P (t)] = k2E[M(t)] − k4E[P (t)], (6)

d

dt
E[P (t)2] = k2E[M(t)] + k4E[P (t)] + 2k2E[M(t)P (t)]− 2k4E[P (t)2],(7)

d

dt
E[M(t)2] = k1 + (2k1 + k3)E[M(t)] − 2k3E[M(t)2], (8)

d

dt
E[M(t)P (t)] = k2E[M(t)2] + k1E[P (t)]− (k3 + k4)E[M(t)P (t)]. (9)

4



2.2 Hybrid Diffusion Moments

Now we look at a hybrid model based on (1)–(4) where the number of mRNA
molecules is modeled as a Markov jump process, as in subsection 2.1, but the
evolution of the protein level in (2) and (4) is modeled with the CLE regime.
We are motivated by the assumption that the protein is typically more abundant
than the mRNA—Paszek [26] adopted this approach, but used an ODE in the
protein regime, as discussed in subsection 2.3. This gives rise to an Ito SDE
driven by an independent switch, of the form

dP ⋆(t) = (k2r(t)− k4P
⋆(t))dt +

√
k2r(t)dW1(t)−

√
k4P ⋆(t)dW2(t). (10)

Here, r(t) denotes the number of mRNA molecules present at time t, when reac-
tions (1) and (3) are interpreted through the CME, and P ⋆(t) denotes the number
of protein molecules present at time t, when reactions (2) and (4) are interpreted
through the CLE. We use P ⋆(t) to distinguish this process from the protein level
P (t) arising from the full CME regime; this emphasizes that P (t) and P ⋆(t) are
different stochastic processes; in particular P (t) is discrete-valued and P ⋆(t) is
continuous-valued. In (10), W1(t) and W2(t) are mutually independent Brownian
motions that are also independent of r(t).

The switch r(t) can take values in the set of non-negative integers {0, 1, 2, 3, . . .},
with no upper limit. We let γij denote the transition rate for the switch from
state i to j so that, for i 6= j,

P (r(t + h) = j | r(t) = i) := γijh + o(h), (11)

and γii := −
∑

j 6=i γij is such that

P (r(t + h) = i | r(t) = i) := 1 + γiih + o(h). (12)

For this switch, the only possible changes of state are increase or decrease by
one. The chance of decay is proportional to the current number of molecules,
and new molecules are being produced at a rate that is independent of the state.
We therefore find that

γi,i−1 = ik3, γi,i+1 = k1, γi,i = −ik3 − k1, (13)

and all other transition rates are zero.
Now, let L denote the infinitesimal generator of a Markov process, [10, 37].

Then

Lr(t) = lim
h→0

1

h
E [r(t + h)− r(t) | r(t) = r]

= lim
h→0

1

h

[
∑

j 6=r

j(γrjh + o(h)) + r(1 + γrrh + o(h))− r

]
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= lim
h→0

1

h

[
∞∑

j=0

jγrjh + o(h)

]

=

∞∑

j=0

jγrj. (14)

Therefore, by Dynkin’s formula [37, Theorem 2.7], using (13) and (14),

dr(t) = (Lr(t))dt + d(mart.)

=

(
∞∑

j=0

jγrj

)
dt + d(mart.)

= ((r − 1)γr,r−1 + rγrr + (r + 1)γr,r+1)dt + d(mart.)

= (k1 − k3r)dt + d(mart.), (15)

where mart. denotes a martingale whose precise form is not relevant to our anal-
ysis.

Applying the generalised Ito lemma [37, Section 2.5], we find we have

d(P ⋆r) = (k2r
2 + k1P

⋆ − (k3 + k4)P
⋆r)dt + d(mart.) (16)

and
d(P ⋆2) = (2k2P

⋆r − 2k4P
⋆2 + k2r + k4P

⋆)dt + d(mart.). (17)

So,

d

dt
E[P ⋆(t)] = k2E[r(t)]− k4E[P ⋆(t)],

d

dt
E[P ⋆2(t)] = 2k2E[P ⋆(t)r(t)]− 2k4E[P ⋆2(t)] + k2E[r(t)] + k4E[P ⋆(t)],

d

dt
E[P ⋆(t)r(t)] = k2E[r2(t)] + k1E[P ⋆(t)]− (k3 + k4)E[P ⋆(t)r(t)].

Since the switch r(t) is identical to M(t) from the full CME, we see from (6), (7)
and (9) that this hybrid regime exactly reproduces the first two moments.

2.3 Hybrid ODE Moments

Here we consider the case where, as in subsection 2.2, the number of mRNA
molecules is modeled a Markov jump process, but now the evolution of the protein
level is modeled with the law of mass action. This regime was introduced and
studied by Paszek [26]. We have an ODE driven by an independent switch, of
the form

dP̂ (t) = (k2r(t)− k4P̂ (t))dt, (18)
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where, as in subsection 2.2, r(t) denotes the number of mRNA molecules when

(1) and (3) are modeled through the CME. We use P̂ (t) to denote the continuous-
valued stochastic process that represents the protein level.

Instead of (16) and (17), we now have

d(P̂ r) = (k2r
2 + k1P̂ − (k3 + k4)P̂ r)dt + d(mart)

and
d(P̂ 2) = (2k2P̂ r − 2k4P̂

2)dt + d(mart).

So,

d

dt
E[P̂ (t)] = k2E[r(t)]− k4E[P̂ (t)], (19)

d

dt
E[P̂ 2(t)] = 2k2E[P̂ (t)r(t)]− 2k4E[P̂ 2(t)], (20)

d

dt
E[P̂ (t)r(t)] = k2E[r(t)2] + k1E[P̂ (t)]− (k3 + k4)E[P̂ (t)r(t)]. (21)

Comparing these ODEs to (6), (7) and (9), and recalling that r(t) is identical to
M(t), we see that this hybrid model matches the means and correlation of the
full CME, but does not reproduce the correct second moment.

In the remainder of this section we analyze the discrepancy between the second
moments in the CME and hybrid ‘switch plus ODE’ modes. First, we show that
the error is always one-sided.

Theorem 2.1 For the system (1)–(4), the variances for the protein arising from

the CME and the hybrid model (18), var[P (t)] and var[P̂ (t)], satisfy var[P̂ (t)] ≤
var[P (t)] for all time, independently of the rate constants and initial conditions.

Proof Letting y(t) := var[P (t)] − var[P̂ (t)], because the means match we have

y(t) = E[P 2(t)]− E[P̂ 2(t)]. We then see from (7) and (20) that

dy(t)

dt
= k2E[M(t)] + k4E[P (t)]− 2k4y(t). (22)

Now, by construction, the CME does not allow molecules to become negative, so
h(t) := k2E[M(t)] + k4E[P (t)] ≥ 0. Using an integrating factor in (22) we find
that

y(t) = e−2k4t

∫ t

0

e2k4sh(s)ds,

and the result follows.
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To obtain a precise expression for the error in the variance, we may first solve
for E[M(t)] in (5) and then for E[P (t)] in (6). Substituting in (22) then gives

var[P (t)]− var[P̂ (t)] =
k1k2

k3k4

(
1− e−k4t

)

+

(
E[M(0)]−

k1

k3

)
k2

k4 − k3

(
e−k3t − e−k4t

)

+ E[P (0)]
(
e−k4t − e−2k4t

)
, (23)

when k3 6= k4, and

var[P (t)]− var[P̂ (t)] =
k1k2

k3k4

(
1− e−k4t

)

+

(
E[M(0)]−

k1

k3

)
k2te

−k4t

+ E[P (0)]
(
e−k4t − e−2k4t

)
, (24)

when k3 = k4.
We note from (23) and (24) that limt→∞ var[P (t)]− var[P̂ (t)] = k1k2/(k3k4),

in agreement with the steady state analysis in [26].
To interpret the expressions (23) and (24) further, we focus on the case where

the initial conditions satisfy E[M(0)] = k1/k3 and E[P (0)] > k1k2/(k3k4). The
error in the variance then simplifies to

var[P (t)]− var[P̂ (t)] =
k1k2

k3k4

(
1− e−k4t

)
+ E[P (0)]

(
e−k4t − e−2k4t

)
.

This expression has a unique maximum at time

t⋆ :=
1

k4

log

(
2k3k4E[P (0)]

k3k4E[P (0)]− k1k2

)

and the ratio of the maximum transient error to the steady state error is given
by

var[P (t⋆)]− var[P̂ (t⋆)]

limt→∞ var[P (t)]− var[P̂ (t)]
=

1

2
+

k3k4E[P (0)]

4k1k2
+

k1k2

4k3k4E[P (0)]
. (25)

We see from (25) that the transient error in the variance can exceed the steady
state error when E[P (0)] is large. In Figure 1, using biologically valid rate
constants from [29], which are k1 = 0.3, k2 = 0.1734, k3 = 0.0115 and k4 =
6.42×10−5, we show how the error in the variance evolves when E[M(0)] = k1/k3

and E[P (0)] = 4k1k2/(k3k4). Here the right hand side of (25) is 25/16 ≈ 3/2,
and we see that the maximum temporal error is about 50% above the steady
state value. We also show the case where E[M(0)] = 2 and E[P (0)] = 4, for
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which it can be shown that the steady sate value is an upper bound for the error.
Figure 2 shows similar behaviour for rate constants appearing in [27], which are
k1 = 10, k2 = 10, k3 = 5 and k4 = 0.1.

We conclude this section with the results of some numerical experiments to
demonstrate numerically that an Euler–Maruyama based method can successfully
integrate the ‘switch plus CLE’ model. For the same parameters as Figure 1, we
show in Figure 3 the absolute error in the sample mean for P ⋆(T )2, at T = 5,
arising from the numerical method outlined in the Appendix, for ∆t = 2−4, 2−5,
2−6 and 2−7. The time interval [0, 5] is different from that in Figure 1 because
we are now interested in finite-time convergence of a numerical method and wish
to observe asymptotic, small-stepsize, behavior. We used 107 sample paths and
all 95% confidence intervals, shown as vertical lines, were less than 0.055. The
errors are plotted on a log-log scale, and we see that the results are consistent
with a weak order of 1. A least squares fit gave an error behaviour of ∝ ∆t1.1

with residual of 0.08. Similarly, we show in Figure 4 the second moment of the
error in P ⋆(T )2 for ∆t = 32 × 2−10, 16 × 2−10, 8 × 2−10 and 4 × 2−10. Here, we
used 104 sample paths and all 95% confidence intervals, shown as vertical lines,
were less than 0.04. The errors are plotted on a log-log scale, and we see that the
results are consistent with a strong order of 1

2
; that is, mean-square of order 1. A

least squares fit gave a mean-square error behaviour of ∝ ∆t1.3 with residual of
0.03.

3 A Related Active/Inactive Gene Model

Raser and O’Shea [27] extended the system (1)–(4) to the case where genes may
alternate between an inactive state, where no mRNA is produced, and an active
state. If there are m genes in total, and we let D⋆

i denote the active state of the
ith gene, this system may be written

Di
ka→ D⋆

i

Di
kb← D⋆

i

D⋆
i

k1→ D⋆
i + M





1 ≤ i ≤ m (26)

and

M
k2→ M + P (27)

M
k3→ ∅ (28)

P
k4→ ∅ (29)

Here, the initial condition for the ith gene must be either Di(0) = 0 and D⋆
i (0) = 1

(active) or Di(0) = 1 and D⋆
i (0) = 0 (inactive), and Di(t) + D⋆

i (t) ≡ 1 for all
time.

11



10
−3

10
−2

10
−1

10
−2

10
−1

10
0

∆t

W
ea

k 
S

ec
on

d 
M

om
en

t E
rr

or

Weak convergence
Slope of 1

Figure 3: Weak convergence in the ‘switch plus CLE’ framework using rate con-

stants from [29]. Vertical axis measures the error |E [P ⋆(T )2] − E

[
P̂ ⋆(T )2

]
|,

for T = 5, where P ⋆(t) in (10) denotes the protein level and P̂ ⋆(t) is the nu-
merical approximation with the method described in the appendix. The quantity

E

[
P̂ ⋆(T )2

]
is evaluated via Monte Carlo, and 95% confidence intervals are shown

as vertical lines.

12



10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

∆t

M
ea

n−
sq

ua
re

 E
rr

or

Strong convergence
Slope of 1

Figure 4: As for Figure 3 except that the strong error E

[(
P ⋆(T )2 − P̂ ⋆(T )2

)2
]

is measured. Sample means are shown for 104 paths and 95% confidence intervals
are negligible.

13



Paszek [26] considered a hybrid model with the number of active genes form-
ing a discrete-valued stochastic process in the CME regime, and with the levels
of mRNA and protein taking real values. He chose mass action ODEs for the
reactions involving mRNA and protein, and, as for the simpler system (1)–(4),
found that this ‘switch plus ODE’ hybrid gave a steady-sate variance that does
not match the underlying CME. Higham and Khanin [21] showed that a hybrid
‘switch plus diffusion’ model, where reactions involving mRNA and protein are
treated with the CLE approach, reproduces the exact first and second moments
for all time. Although the active/inactive model is in a sense more complex than
the model in section 2, we emphasize that the number of active genes forms a
switch with a finite state space, and hence it is possible to appeal to standard
work, such as [24] for existence, uniqueness and simulation theory, and stochastic
calculus tools. Our main aim here is to point out that the uniform underesti-
mation of the variance that we established in Theorem 2.1 also applies in this
case.

Following [21], if we let M̂(t) and P̂ (t) denote the mRNA and protein levels

arising from the ‘switch plus ODE’ model, then E[M(t)] = E[M̂(t)], E[P (t)] =

E[P̂ (t)], E[P (t)M(t)] = E[P̂ (t)M̂(t)], and the discrepancy in the second moments

y(t) :=

[
E[M2(t)]− E[M̂2(t)]

E[P 2(t)]− E[P̂ 2(t)]

]

satisfies
d

dt
y(t) = −Ay(t) + g(t),

where

A =

[
γr 0
0 γp

]
and g(t) =

[
krE[r] + γrE[M ]
kpE[M ] + γpE[P ]

]
.

It follows that

y(t) = e−At

∫ t

0

eAsg(s)ds.

Since g(t) ≥ 0 for all t ≥ 0, we conclude that this hybrid model underestimates
the true mRNA and protein variances for all time.

We also note that when the reversible reactions Di → D⋆
i and D⋆

i → Di in (26)
are fast compared with the other reactions in the system; that is, both ka ≫ 1
and kb ≫ 1, with all other rate constants of O(1), then we may introduce a slow-
fast decoupling along the lines of [4]. Here, we replace D⋆

i (t) by its steady state
in the Di-D

⋆
i subsystem, which effectively reduces (26)–(29) to the fixed-gene

system (1)–(4) with the amount of gene equal to D = D⋆(0)ka/(ka + kb). Paszek
[26] refers to this as a thermodynamic limit for the full model. Analysis along
the lines of that developed above can be used to show that this type of modeling
approximation does not have a one-sided effect on the variance; the reduced model
may produce a larger or smaller variance depending on the parameter regimes,
and the error may change sign over time.
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4 Tests with a Second Order Reaction

The results in the previous two sections rely on the first order nature of the
reactions. In this section we give some brief numerical evidence that the ideas
are relevant more generally, when the first two moments do not form a closed
system of ODEs. To do this, we add a protein dimerization stage to the simple
gene regulation models.

For the Thattai and van Oudenaarden model (1)–(4), we add the three reac-
tions

P + P
kp2

→ P2 (30)

P2
k
−p2

→ P + P (31)

P2
γp2

→ ∅. (32)

Here, in (30) two protein molecules combine to form a dimer, P2, and in (31) the
process is reversed. In (32) the dimer decays. We note that it has been argued
that a difference between the momoner and dimer decay rates can explain the
phenomenon of “cooperative stability”, which makes a larger spread of protein
levels available in vivo [2]. We chose rate constants k1 = 0.3, k2 = 0.17, k3 = 0.012
from [29], k4 = 0.0007, kp2 = 0.025, k−p2 = 0.5 from [3], and γp2 = 0.00023 from
[2]. Initial conditions were set to D(0) = 4, M(0) = 2, P (0) = 4 and P2(0) = 4,
and we record the levels at time T = 20.

For the system given by (1)–(4) and (30)–(32), we compared the CME (via
Gillespie’s algorithm) with the full CLE, ‘switch plus diffusion’ and ‘switch plus
ODE’ regimes, using an Euler method with stepsize of 0.004. (Comparable results
were obtained with a larger stepsize.) Table 1 summarizes the results.

Expected values are estimated with Monte Carlo simulation over 105 paths,
and approximate 95% confidence intervals are given for each sample mean. In
addition to moments and variances for the protein and dimer, we also show their
noise strength, ns[P ] and ns[P2], respectively, defined as the ratio of variance to
mean.

We see from Table 1 that the CME, CLE and ‘switch plus diffusion’ regimes
give comparable results for moments and noise strengths, whereas the ‘switch
plus ODE’ regimes significantly underestimates the variance and noise strength
for the protein and dimer.

Table 2 shows the results of an analogous experiment where the Raser and
O’Shea system (26)–(29) was augmented with the dimerization reactions (30)–
(32). We used ka = 0.1 and kb = 0.1 from [27], k1 = 0.3, k2 = 0.17, k3 = 0.012
from [29], k4 = 0.0007, kp2 = 0.025, k−p2 = 0.5 from [3] and γp2 = 0.00023 from
[2]. We see that the conclusions from Table 1 continue to hold.
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CME CLE CLE Switch ODE Switch
E[P ] [26.23, 26.30] [26.22, 26.28] [26.22, 26.29] [26.54, 26.57]
E[P 2] [717.87, 721.55] [717.28, 720.97] [717.31, 721.00] [712.22, 714.11]
E[P2] [14.58, 14.63] [14.56, 14.62] [14.55, 14.61] [14.42, 14.46]
E[P 2

2 ] [231.85, 233.59] [231.20, 232.89] [231.19, 232.91] [217.79, 218.98]
var[P ] [29.60, 30.13] [29.84, 30.39] [29.68, 30.22] [7.97, 8.11]
ns[P ] [1.125, 1.149] [1.136, 1.159] [1.129, 1.152] [0.300, 0.305]
var[P2] [19.28, 19.63] [19.06, 19.40] [19.30, 19.66] [9.80, 9.98]
ns[P2] [1.317, 1.347] [1.304, 1.332] [1.321, 1.351] [0.678, 0.692]

Table 1: 95% confidence intervals for Monte Carlo sample mean approximations
to the first and second moments, variance and noise strength in the CME, CLE,
‘switch plus diffusion’ and ‘switch plus ODE’ formulations for (1)–(4) and (30)–
(32). Average number of switches per path was 27.

CME CLE CLE Switch ODE Switch
E[P ] [19.65, 19.71] [19.67, 19.74] [19.64, 19.70] [20.04, 20.06]
E[P 2] [411.30, 413.91] [412.53, 415.14] [411.15, 413.75] [405.42, 406.41]
E[P2] [8.47, 8.51] [8.47, 8.52] [8.46, 8.50] [8.31, 8.33]
E[P 2

2 ] [83.95, 84.81] [84.14, 84.99] [83.62, 84.47] [71.54, 71.88]
var[P ] [25.10, 25.56] [25.36, 25.82] [25.20, 25.66] [3.98, 4.05]
ns[P ] [1.273, 1.301] [1.285, 1.312] [1.279, 1.306] [0.198, 0.202]
var[P2] [12.16, 12.40] [12.25, 12.49] [12.04, 12.28] [2.52, 2.56]
ns[P2] [1.428, 1.464] [1.438, 1.474] [1.417, 1.452] [0.302, 0.308]

Table 2: 95% confidence intervals for Monte Carlo sample mean approximations
to the first and second moments, variance and noise strength in the CME, CLE,
‘switch plus diffusion’ and ‘switch plus ODE’ formulations for (26)–(29) and (30)–
(32). Average number of switches per path was 8.
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5 Discussion and Conclusions

The diffusion approximation to a Markov jump process is useful both analytically
and computationally. We have shown here that simple multi-scale diffusion/jump
models in gene regulation have advantages over their ODE/jump counterparts.
There are many interesting open questions in this area, including:

• How general is the phenomenon shown here that replacing a Langevin com-
ponent with the reaction rate ODE causes the overall variance to be under-
estimated?

• Is it possible to develop a theory for state-dependent Markov switches,
which arise, for example, when gene activity is regulated by proteins that
are created downstream [16]?

• Is there a general existence/uniqueness/numerical convergence theory for
diffusion coefficients that involve the square root function?

A Appendix: Theory and Simulation for Infi-

nite State Space Switch

A.1 Set-up

Stochastic differential equations (SDEs) driven by switches are becoming more
common as models in science and engineering. A switch typically takes a finite
number of possible values, but in this work we need to consider a countably
infinite state space, enumerated by the non-negative integers. This requires us
to extend the theory for existence, uniqueness and numerical simulation that can
be found, for example, in [24], from finite to countably infinite state spaces. We
begin by setting up our notation and problem formulation.

Let r(t) be a right-continuous Markov chain on a complete probability space
taking values in an infinite state space S̄ = {0, 1, 2, . . .} with generator Γ =
(γij)i,j∈S̄ given by

P{r(t + ∆) = j|r(t) = i} =

{
γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where γij ≥ 0 is the transition rate from state i to j if i 6= j and

γii = −
∑

j 6=i

γij.

We assume that the transition rate γij satisfies the following condition

max
i∈S̄

|γii| <∞.
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Now, consider an autonomous SDE with Markovian switching of the form

dx(t) = f(x(t), r(t))dt + g(x(t), r(t))dW (t), 0 ≤ t ≤ T, (33)

with initial data x(0) = x0 ∈ L
2
Ft0

(Ω; Rn) and r(0) = r0, where r0 is an S̄-valued
F0-measurable random variable and

f : R
n × S̄→ R

n and g : R
n × S̄→ R

n×m.

Here W (t) is an m-dimensional Brownian motion that is independent of the
Markov chain.

A.2 Existence and Uniqueness

We begin with an existence, uniqueness and moment bound result, based on the
finite state treatment in [24]. We make the traditional global Lipschitz assump-
tions on the coefficients. For the case where the diffusion coefficients arise through
the Chemical Langevin regime, these results apply only up to a stopping time—so
that excursions taking population sizes close to zero can be avoided. Deriving
more general results that apply directly to non-globally Lipschitz problems is
currently an active area [19, 25].

Theorem A.1 Assume that f and g satisfy a global Lipschitz condition; that is,
there exists a positive constant K such that

|f(x, i)− f(y, i)| ∨ |g(x, i)− g(y, i)| ≤ K|x− y| (34)

for all x, y ∈ R
n and i ∈ S̄.

Then there exists a unique solution x(t) to equation (33) and, moreover,

E

(
sup

0≤t≤T

|x(t)|2
)
≤ (1 + 3E|x0|

2)e3KT (T+4), (35)

so the solution belongs to M2([0, T ]; Rn).

Note: Mp([a, b]; Rn) means the family of processes {f(t)}a≤t≤b in Lp([a, b]; Rn)

such that E
∫ b

a
|f(t)|pdt < ∞; while Lp([a, b]; Rn) means the family of R

n-valued

Ft-adapted processes {f(t)}a≤t≤b such that
∫ b

a
|f(t)|pdt < ∞ a.s. We also use

the notation [[a, b]] to denote a stochastic closed interval, where a or b may be
random variables; [24, page 14].

Proof Since almost every sample path of r(·) is a right-continuous step function,
there is a sequence {τk}k≥0 of stopping times such that t0 = τ0 < τ1 < τ2 < · · · <
τk < · · · and r(t) = r(τk) for t ∈ [τk, τk+1).
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First, we consider the equation (33) on the interval t ∈ [[τ0, τ1]]; that is,

dx(t) = f(x(t), r0)dt + g(x(t), r0)dW (t), (36)

with initial data x(t0) = x0 and r(t0) = r0. Now, the equation (36) is an SDE
without Markovian switching. So, by Mao and Yuan [24, Theorem 3.8], the equa-
tion (33) has a unique solution which belongs toM2([[τ0, τ1]]; R

n). In particular,
x(τ1) ∈ L2

Fτ1
(Ω; R). After that, we consider the equation (33) on the interval

t ∈ [[τ1, τ2]] which becomes

dx(t) = f(x(t), r(τ1))dt + g(x(t), r(τ1))dW (t), (37)

with initial data x(τ1) and r(τ1). Again by [24, Theorem 3.8], the equation
(33) has a unique solution which belongs toM2([[τ1, τ2]]; R

n). By repeating this
procedure we can see that the equation (33) has a unique solution x(t) on [0, T ].
Finally, the bound (35) follows by arguing in the same way as [24, Lemma 3.1].

A.3 Numerical Simulation

The natural Euler–Maruyama (EM) method for simulating the switching SDE
(33) takes the form

Xk+1 = Xk + f(Xk, r
∆
k )∆ + g(Xk, r

∆
k )∆Wk. (38)

Here, ∆ > 0 is a fixed stepsize, Xk is the approximation to X(tk), with tk = k∆,
r∆
k = r(k∆), ∆Wk = W (tk+1)−W (tk) and the initial conditions for the iteration

are X0 = x0 and r∆
0 = r0.

For the purpose of analysis, it is convenient to work with a continuous time
approximation, X(t), that is defined as

X(t) = X0 +

∫ t

0

f(X̄(s), r̄(s))ds +

∫ t

0

g(X̄(s), r̄(s))dW (s), (39)

where the ‘step processes’ X̄(t) and r̄(t) take the form

X̄(t) = Xk, r̄(t) = r∆
k for t ∈ [tk, tk+1). (40)

Note that X(tk) = X̄(tk) = Xk, so that X(t) and X̄(t) coincide with the discrete
numerical solution at the gridpoints tk.

The following general moment bounds hold for both the exact and numerical
solutions.

Lemma A.1 Assume that f and g satisfy the linear growth condition; that is,
there exists a constant K̄ > 0 such that

|f(x, i)| ∨ |g(x, i)| ≤ K̄(1 + |x|) ∀(x, i) ∈ R
n × S̄. (41)
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Then for any p ≥ 2 there is a constant H, which is dependent on only p, T, K̄, x0

but independent of ∆, such that the exact solution x(t) in (33) and the EM
approximate solution X(t) in (39) have the property that

E

[
sup

0≤t≤T

|x(t)|p
]
∨ E

[
sup

0≤t≤T

|X(t)|p
]
≤ H.

Proof Proving this lemma, we can follow the proof in [24, Lemma 4.1].
This result then allows us to establish a strong convergence result for the

numerical method.

Theorem A.2 Assume that f and g satisfy the global Lipschitz condition (34).
Then,

E

[
sup

0≤t≤T

|X(t)− x(t)|2
]
≤ C∆, (42)

where C is a positive constant independent of ∆.

Proof It is easy to see that the global Lipschitz condition (34) implies the linear
growth condition (41), so that Lemma A.1 applies. Following the proof in [24,
Theorem 4.1] and using Lemma A.1, the required assertion follows.
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