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Abstract

Markov jump processes can provide accurate models in many applica-
tions, notably chemical and biochemical kinetics, and population dynam-
ics. Stochastic differential equations offer a computationally efficient way
to approximate these processes. It is therefore of interest to establish re-
sults that shed light on the extent to which the jump and diffusion models
agree. In this work we focus on mean hitting time behaviour in a thermo-
dynamic limit. We study three simple types of reaction where analytical
results can be derived, and we find that the match between mean hitting
time behaviour of the two models is vastly different in each case. In par-
ticular, for a degradation reaction we find that the relative discrepancy
decays extremely slowly; namely, as the inverse of the logarithm of the
system size. After giving some further computational results, we conclude
by pointing out that studying hitting times allows the Markov jump and
stochastic differential equation regimes to be compared in a manner that
avoids pitfalls that may invalidate other approaches.
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1 Introduction

Continuous-time, discrete space Markov jump processes are widely studied as
models in the natural sciences [31], especially in population biology [28]. They
have also found considerable use in cell biology [4, 17, 18, 22, 32], where a chemical
kinetics framework [8, 9, 10, 11, 19, 24] has been adopted. We will use the
chemical kinetics terminology and refer to the discrete space Markov process as
representing the Chemical Master Equation (CME) modeling regime.

When the population size is sufficiently large, it is reasonable to move upscale
from the CME to a stochastic differential equation (SDE). Gillespie [11] shows
how this SDE, which we refer to as the Chemical Langevin equation (CLE), can be
derived under appropriate modeling assumptions, and more rigorous justification
of this type of diffusion limit can also be found [23]. Related issues are also
addressed in [13].

Replacing the CME with the CLE typically makes both analysis and simulation
more tractable, and the development of multi-scale algorithms that combine ele-
ments of both regimes is a highly active research area [2, 3, 4, 5, 30]. It is therefore
extremely useful to obtain insights into how accurately the CLE approximates
the CME. In the case of first order networks, where reaction rates are linear,
the moments of the CME satisfy a closed system of ODEs [6]. Gillespie [10] has
shown that for first order networks involving a single species, the CLE correctly
reproduces first and second moments of the CLE, but not higher moments in
general. This result was generalized in [18], where it was shown that the CLE
preserves first and second moments and correlations for any first order network.

Although means, variances and correlations are clearly important, there are, of
course, many other senses in which we may judge the ability of the continuous-
valued CLE to approximate the discrete-valued CME. In this work we look at
hitting times—how long does it take a population size to reach a specified upper
and/or lower bound? Hitting times arise naturally in many stochastic modeling
scenarios. For example,

• in a bi-stable gene regulation system, how long will it take to switch between
states [33]?

• in an integrate-and-fire model, when is the next firing [27, 29]?

• in mathematical physics, when will a particle cross a potential barrier [7]?

In order to obtain useful analytical expressions, we found it necessary to focus
on simple first order reactions involving a single species. In this case, hitting
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time questions for the CLE can be studied via first-order boundary-value ODEs
and corresponding analysis for the CME reduces to problems in linear algebra or
sequences and series. In sections 2 and 3 we introduce some background material
needed for the analysis, and then in sections 4, 5 and 6 we study the three basic
reaction types. In the final section we emphasize how the presence of square
roots in the CLE can lead to fundamental issues in analysis, and how focusing
on hitting time behaviour avoids possible pitfalls.

2 Background and Notation

We are concerned here with the case of a single species that is involved in one or
more reaction. Each reaction, for 1 ≤ j ≤ L, is specified in terms of

• the stoichiometric vector, which in our case is a scalar νj ∈ R taking the
value −1, 0 or 1, and

• the propensity function, aj(x).

If we let X(t) denote the number of molecules present at time t, then the sto-
ichiometric vector is defined so that the effect of the jth reaction is to update
the state from X(t) to X(t) + νj . Here, νj = −1 if the jth reaction uses up a
molecule and νj = 1 if it creates one. The propensity function has the property
that the probability of this reaction taking place in the infinitesimal time interval
[t, t + dt) is given by aj(X(t))dt. With this set-up, X(t) becomes an integer-
valued, continuous-time stochastic process. If we let pi(t) denote the probability
P (X(t) = i), the process may be characterized through the CME, which is the
set of ODEs

dpi(t)

dt
=

L
∑

j=1

(

aj(i − νj)pi−νj
(t) − aj(i)pi(t)

)

, for j = 0, 1, 2, . . . . (1)

The CLE is then defined according to the Ito SDE

dy(t) =
L

∑

j=1

νjaj(y(t))dt +
L

∑

j=1

νj

√

aj(y(t))dWj(t), (2)

where the Wj(t) are independent Brownian motions. Here, at each time t, the
concentration is represented by the real-valued random variable y(t).

See, for example, [17, 30] for details of how the CME and CLE are defined for
general chemical kinetics systems.
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Gillespie [11] showed how the CLE arises naturally as an approximation to the
CME under certain modeling assumptions; in particular, the number of molecules
in the system is required to be “sufficiently large”. This is intuitively clear, as
the CLE uses a real-valued concentration rather than an integer-valued molecule
count. Consequently, in comparing the two processes, we would anticipate that
the match should be better for large numbers of molecules. We will give results
that formalize this principle in the context of hitting times.

3 Hitting Times for Markov Jump and Diffusion

Process

3.1 Hitting time for a Markov Jump Process

At the CME level, the scalar process that we study may be regarded as a Markov
jump, or birth and death process. Introducing discrete states {0, 1, 2, . . . , M} we
may regard states 0 and M as absorbing, and define a birth and death process
Z(t) with birth rates {bi}M−1

i=1 and death rates {di}M−1
i=1 . This process may be

characterized via the infinitesimal description

P (Z(t + h) = i + 1 | Z(t) = i) = bih + o(h),

P (Z(t + h) = i − 1 | Z(t) = i) = dih + o(h),

P (Z(t + h) = i | Z(t) = i) = 1 − (bi + di)h + o(h),

with b0 = d0 = bM = dM = 0.

It then follows, see for example, [14], that the linear system
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(3)
has a solution U ∈ R

M−1 such that Uj gives the expected time for the process to
be absorbed into state 0 or M given a starting state Z(0) = j.

In our CME framework (1) with a single species present, X(t) records the number
of molecules at time t. We will be concerned with the expected time for the
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molecule count to reach either an upper level b or a lower level a, starting from an
initial number x of molecules. Consequently, the general state i of the absorbing
birth and death process Z(t) is identified with a molecule count of a+ i for X(t),
and we have b − a = M . To avoid confusion when we consider the analogous
hitting times for the process y(t) from the CLE, we introduce the notation

TX
a (x) = inf{t ≥ 0 such that X(t) = a, given X(0) = x},

and for the pair a < b,
TX

a,b(x) = T X
a (x) ∧ T X

b (x).

We then note that E
[

TX
a,b(x)

]

for X(0) = x = a + i can be found from Ui in (3).

3.2 Hitting time for Diffusion

In this section we summarize some existing theory concerning hitting times for
an SDE. For further details, we refer to [7, 21]. For convenience, we introduce
general drift and diffusion coefficients, µ(x) and σ(x), and consider a general
scalar Ito SDE with a single Brownian motion

dy(t) = µ(y)dt + σ(y) dW (t).

When they exist, we may then define the scale function

S(x) =

∫ x

s(l)dl, (4)

where

s(x) = exp

(

−
∫ x 2µ(l)

σ2(l)
dl

)

,

and the speed measure

m(x) =
1

σ2(x)s(x)
. (5)

We introduce the hitting time for the point a and the pair a < b as

T y
a (x) = inf{t ≥ 0 such that y(t) = a, given y(0) = x}

and
T y

a,b(x) = T y
a (x) ∧ T y

b (x).

Next, we define the operator L by

LV = µ(x)
dV

dx
+

1

2
σ2(x)

d2V

dx2
, for a < x < b.
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Given a fixed initial condition x ∈ (a, b), the probability that y(t) hits b before a
has the characterization

P (T y

b (x) < T y
a (x)) =

S(x) − S(a)

S(b) − S(a)
.

Similarly,

P (T y
a (x) < T y

b (x)) =
S(b) − S(x)

S(b) − S(a)
. (6)

Next we let u and w denote the solutions to the two-point boundary value ODEs

Lu = 0, for a < x < b, u(a) = 0, u(b) = 1,

and
Lw = −1, for a < x < b, w(a) = 0, w(b) = 0. (7)

It follows that w(x) characterizes a mean hitting time,

w(x) = E
[

T y

a,b(x)
]

(8)

and we also have

w(x) = 2{u(x)

∫ b

x

[S(b) − S(l)]m(l)dl

+[1 − u(x)]

∫ x

a

[S(l) − S(a)]m(l)dl}. (9)

Finally, we introduce some definitions relating to boundary behaviour.

Definition 3.1. The boundary l is attracting if S(x0) − S(l) < ∞ for any x0 ∈
(l, r).

Definition 3.2. Letting

Σ(l) = lim
aցl

∫ x

b

[S(ξ) − S(a)] m(ξ)dξ, (10)

the boundary l is said to be attainable if Σ(l) < ∞, and unattainable if Σ(l) = ∞.

Definition 3.3. Letting

M(l, x] = lim
aցl

M [a, x] = lim
aցl

∫ x

a

m(s)ds, (11)

the boundary l is said to be absorbing if M(l, x] = ∞, and reflective if M(l, x] =
0.
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3.3 Finite Difference Connection

The linear system (3) may be written in the form

bi + di

2
(Ui+1 − 2Ui + Ui−1) + (bi − di)

Ui+1 − Ui−1

2
= −1, 1 ≤ i ≤ M − 1.

This corresponds to a standard finite difference approximation to the ODE

b(x) + d(x)

2
u′′(x) + (b(x) − d(x)) u′(x) = −1, u(a) = u(b) = 0,

using a mesh spacing of ∆x = 1; see, for example, [26]. Studying the connection
between the discrete linear system and the continuous ODE is the essence of
this work. In a numerical analysis setting, the discrete object is regarded as an
approximation to the continuous, whereas in our context the opposite is true.
However our objective of examining the difference between the two in the large
system size, M → ∞, limit is comparable with traditional convergence theory
in numerical analysis. A major challenge, however, is that the interval (a, b) is
not fixed, and hence the traditional style of error bound, see, for example, [26,
Theorem 6.1.3], is not useful. (Equivalently, if we rescale the ODE to the interval
0 ≤ x ≤ 1, then the ODE itself becomes dependent upon M and the coefficients
do not have bounded Lipschitz constants.) Indeed, as we will see in section 6, to
obtain a positive result in this context it may be necessary to measure the error
relative to the (growing) solution size as M → ∞. Related issues arose in the
small world analysis of [15, 16].

For this reason, we content ourselves with an investigation of specific simple
reactions where the asymptotic behaviour of the discrete and continuous systems
can be found and then compared.

4 Production from a source

Perhaps the simplest chemical reaction has the form

∅ k→ X (12)

Here members of the species X are being generated at a rate that is independent
of the state of the system. (More realistically, X may be generated at a rate
proportional to some some other species Y , where Y is sufficiently abundant that
its level may be regarded as constant.)

7



4.1 Discrete Process

From a population dynamics viewpoint, the CME for (12) defines a pure birth
process, with population-independent birth rate. An infinitesimal description of
this Markov process X(t) is

P (X(t + h) = s + 1 | X(t) = s) = k h + o(h),

P (X (t + h) = s − 1 | X(t) = s) = 0,

P (X (t + h) = s | X(t) = s) = 1 − k h + o(h).

In this simple setting, the times between successive births are independent ex-
ponentially distributed random variables with mean 1/k. This has the following
immediate consequence, which could also be proved from the general system (3).

Lemma 4.1. Given integers b > a ≥ 0, for any integer x ∈ (a, b) the discrete
state Markov process model for (12) with initial molecule count X(t) = x satisfies

E
[

TX
a,b(x)

]

=
b − x

k
. (13)

4.2 Diffusion Process

The CLE for (12) has the form

dy(t) = k dt +
√

k dW (t). (14)

So y(t) is a Brownian motion with drift.

The following lemma characterizes the mean hitting time.

Lemma 4.2. For any 0 ≤ a < x < b, the CLE (14) with initial condition
y(0) = x satisfies

E
[

T y

a,b(x)
]

=
1

k

[−e−2x + e−2a

−e−2b + e−2a

(−e−2b

2

(

e2b − e2x
)

+ b − x

)

+

(

1 − −e−2x + e−2a

−e−2b + e−2a

) (

a − x +
e−2a

2

(

e2x − e2a
)

)]

. (15)
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Proof. The scale function and speed measure have the form S(x) = −e−2x/2 and
m(x) = e2x/k. This gives

∫ b

x

[S(b) − S(l)]m(l)dl =
1

2k

(

−e−2b

2

(

e2b − e2x
)

+ b − x

)

and
∫ x

a

[S(l) − S(a)]m(l)dl =
1

2k

(

a − x +
e−2a

2
(e2x − e2a)

)

,

and the result follows from (9).

We note that unlike the discrete process, X(t), the process y(t) in (14) does not
preserve positivity. For example, using the expression for S(x) it follows in (6)
that

lim
aց0

lim
b→∞

P (T y
a (x) < T y

b (x)) = lim
aց0

lim
b→∞

e−2b − e−2x

e−2b − e−2a
= e−2x.

This limiting probability, however, is small when the initial state is large, in line
with our intuition about the relevance of the CLE.

We wish to formalize a sense in which the two hitting times could be close
when there is a “large” number of molecules. For this purpose, we will con-
sider an asymptotic regime where the upper limit b tends to infinity and the
initial molecule count has the form x = αb ∈ Z for some fixed α ∈ (0, 1). So the
initial data scales linearly with the upper exit level. To keep expressions compact
we will also set a = 0, or, where necessary, take the limit a ց 0. We will refer to
this asymptotic setting as the Large Molecule Count Regime (LMCR).

Theorem 4.1. In the LMCR the mean hitting times in (13) and (15) satisfy
∣

∣E
[

TX
0,b(αb)

]

− E
[

T y

0,b(αb)
]
∣

∣ ≤ Ce−b min{2(1−α),α)}, (16)

for a constant C independent of b.

Proof. Setting x = αb ∈ Z and considering the limit b → ∞, we see in (15) that

E
[

T y

a,b(αb)
]

=
1

k

[(

1 + O(e−2αb)
) (

− 1

2
+ b(1 − α) + O(e−2b(1−α))

)

+
(

1 + O(e−2b(1−α))
) e−2αb

e−2a

(

a − αb +
e2a

2
(e2αb − e2a)

)]

and so

E
[

T y

0,b(αb)
]

=
1

k

[

− 1

2
+ b(1 − α) + O(e−2b(1−αb) + e−2αb) + 1

2
+ O(be−2αb)

]

.

The result then follows from (13).
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Theorem 4.1 shows that in the LMCR the two hitting times, which grow linearly
with b, have an absolute difference that converges exponentially fast. We illustrate
this result in Figure 1. Here we took k = 5, a = 0, α = 1

2
and chose values of b

from 2 to 30 in steps of 2. The hitting time discrepancy on the left-hand side of
(16) is seen to decay faster than linearly on a log-log scale.

5 Production

In the production reaction
X

c→ 2 X, (17)

new individuals are created at a rate proportional to the current state.

5.1 Discrete Process

In the CME setting, an infinitesimal description for the reaction (17) is
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Figure 1: The difference between CME and CLE hitting times for production
from a source (12) in the large molecule count regime of Theorem 4.1, on a log-
log scale. Horizontal axis is b and vertical axis is the absolute difference on the
left-hand side of (16).
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P (X (t + h) = s + 1 | X(t) = s) = c s h + o(h),

P (X(t + h) = s − 1 | X(t) = s) = 0,

P (X (t + h) = s | X(t) = s) = 1 − c s h + o(h).

In population dynamics, this corresponds to a pure birth or Yule process [28].
The following result can be obtained from (3) or by simply observing that the
times between entering and leaving state s are independently and exponentially
distributed random variables with mean 1/(c s).

Lemma 5.1. Given integers b > a ≥ 0, for any integer x ∈ (a, b) the discrete
state Markov process model for (17) with initial molecule count X(t) = x satisfies

E
[

TX
a,b(x)

]

=
1

c

b−1
∑

s=x

1

s
. (18)

5.2 Diffusion Process

The CLE for (17) has the form

dy(t) = c y(t) dt +
√

c y(t)dW (t). (19)

This is an example of a mean-reverting square root processes, and a unique non-
negative solution is guaranteed [25]. The hitting time may be characterised as
follows.

Lemma 5.2. For any 0 < a < x < b, the CLE (19) with initial condition
y(0) = x satisfies

E
[

T y

a,b(x)
]

=
1

c

(

e−2x − e−2a

e−2b − e−2a

(

−e−2b

∫ b

x

e2l

l
dl + ln b − ln x

)

+

[

1 − e−2x − e−2a

e−2b − e−2a

] (

ln a − ln x + e−2a

∫ x

a

e2l

l
dl

))

, (20)

and for a = 0 we may take the limit lim ց 0 in this expression.

Proof. The scale function and speed measure have the form S(x) = −e−2x/2 and
m(x) = e2x/(cx). Hence,

∫ b

x

[S(b) − S(l)]m(l)dl =
1

2c

(

−e−2b

∫ b

x

e2l

l
dl + ln b − ln x

)
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and
∫ x

a

[S(l) − S(a)]m(l)dl =
1

2c

(

ln a − ln x + e−2a

∫ x

a

e2l

l
dl

)

,

and the result follows from (9).

We note that neither (18) nor (20) could be considered as closed form expressions.
However, both characterizations are amenable to asymptotic analysis, and we
may obtain an analogue of Theorem 4.1.

Theorem 5.1. In the LMCR the mean hitting times in (18) and (20) satisfy
∣

∣

∣

∣

E
[

TX
0,b(αb)

]

− lim
aց0

E
[

T y

a,b(αb)
]

∣

∣

∣

∣

≤ Cb−2, (21)

for a constant C independent of b.

Proof. First we note that the Harmonic series has the asymptotic expansion

n
∑

s=1

1

s
= ln n + γ +

1

2n
+ O(n−2), as n → ∞, (22)

where γ = 0.5772 . . . is the Euler-Mascheroni constant [1].

For the CME we have, using (18) and (22)

E
[

TX
0,b(αb)

]

=
1

c

[

b−1
∑

s=1

1

s
−

αb−1
∑

s=1

1

s

]

=
1

c

[

ln(b − 1) + γ +
1

2(b − 1)
− ln(αb − 1) − γ − 1

2(αb − 1)
+ O(b−2)

]

=
1

c

[

− ln α − 1

2b
+

1

2αb
+ O(b−2)

]

. (23)

Next we introduce the exponential integral

Ei(x) =

∫ x

−∞

et

t
dt, for x > 0,

and note the asymptotic result

Ei(x) = γ + ln x + o(1), as x → 0, (24)

see for example, [1]. At the large x extreme, the expansion

Ei(x) =
ex

x

(

1 +
1

x
+ O(x−2)

)

, as x → ∞, (25)
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follows via integration by parts; see, for example, [20, Chapter 1]. We also have
the straightforward identity

∫ x

a

e2l

l
dl = Ei(2x) − Ei(2a). (26)

Then, using (25) and (26), for any fixed 0 < a ≤ a⋆ we have

e−2αb − e−2a

e−2b − e−2a

(

−e−2b

∫ b

αb

e2l

l
dl + ln b − ln αb

)

=
(

1 + O(e−2αb)
)

×
(

− 1

2b
+ ln b − ln αb + O(b−2)

)

= − ln α − 1

2b
+ O(b−2). (27)

Similarly, we find that
(

1 − e−2αb − e−2a

e−2b − e−2a

) (

ln a − ln αb + e−2a

∫ αb

a

e2l

l
dl

)

=
(

e−2αb + O(e−2b)
)

×
(

ln a − ln αb − e−2a (Ei(2αb) − Ei(2a))
)

.

Now it follows from (24) that ln a − e−2aEi(2a) is bounded for all small a, and
hence we find that
(

1 − e−2αb − e−2a

e−2b − e−2a

) (

ln a − lnαb + e−2a

∫ αb

a

e2l

l
dl

)

= e−2αbEi(2αb) + O(b−2)

=
1

2αb
+ O(b−2). (28)

Combining (20), (23), (27) and (28) gives the required result.

In Figure 2 we illustrate Theorem 5.1 in the case where c = 5, a = 10−3 and
α = 1

2
and the upper limit b ranges from 40 to 320 in steps of 40. The hitting

time discrepancy on the left-hand side of (21), plotted with asterisks, appears to
behave linearly on this log-log scale. A reference line of slope −2 is superimposed.
A least squares fit to a power law gave a slope of −2.04 with 2-norm residual of
0.02. This suggests that the O(b−2) rate derived in Theorem 5.1 is sharp.

6 Degradation

The degradation reaction may be written

X
c→ ∅ (29)
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Here a species is undergoing a natural decay process, with a rate that is linearly
proportional to the current population size. Intuitively, because of the inherent
monotone decrease in the molecule count over time, we would not expect to
obtain upper bounds as small as those in Theorems 5.1 and 6.1.

6.1 Discrete Process

In the CME setting, the reaction (29) may be regarded as a pure death process
with propensity proportional to X(t). An infinitesimal description is

P (X (t + h) = s + 1 | X(t) = s) = 0,

P (X(t + h) = s − 1 | X(t) = s) = c s h + o(h),

P (X (t + h) = s | X(t) = s) = 1 − c s h + o(h).

As for the case of production, the time between entering and leaving state s is an
exponentially distributed random variable with mean 1/(cs), and all such times
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Figure 2: The difference between CME and CLE mean hitting times for a produc-
tion reaction in the LMC regime of Theorem 5.1, on a log-log scale. Horizontal
axis is b and vertical axis is the absolute difference on the left-hand side of (21).
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are independent. This leads to the following consequence, which could also be
derived from (3).

Lemma 6.1. Given integers b > a ≥ 0, for any integer x ∈ (a, b) the discrete
state Markov process model for (29) with initial molecule count X(t) = x satisfies

E
[

TX
a,b(x)

]

=
1

c

x
∑

s=a+1

1

s
. (30)

6.2 Diffusion Process

The CLE for (29) has the form

dy(t) = −cy(t) dt −
√

c y(t)dW (t). (31)

This is another special case from the class of mean-reverting square root processes,
and a unique non-negative solution is guaranteed [25]. The hitting time may be
characterised as follows.

Lemma 6.2. For any 0 < a < x < b, the CLE (31) with initial condition
y(0) = x satisfies

E
[

T y

a,b(x)
]

=
e2x − e2a

e2b − e2a

(

1

c

(

e2b

∫ b

x

e−2l

l
dl − ln b + ln x

))

+ [1 − e2x − e2a

e2b − e2a
]

(

1

c

(

lnx − ln a − e2a

∫ x

a

e−2l

l
dl

))

. (32)

Proof. The scale function and speed measure have the form S(x) = e2x/2 and
m(x) = e−2x/(cx). We find that

∫ b

x

[S(b) − S(l)]m(l)dl =
1

2c

(

e2b

∫ b

x

e−2l

l
dl − ln b + ln x

)

and
∫ x

a

[S(l) − S(a)]m(l)dl =
1

2c

(

ln x − ln a − e2a

∫ x

a

e−2l

l
dl

)

,

and the result follows from (9).

We also have

Σ(0) = lim
aց0

1

2c

(

ln x − ln a − e2a

∫ x

a

e−2l

l
dl

)

< ∞

15



and

M(0, x] = lim
aց0

∫ x

a

m(s)ds = ∞,

confirming that zero is an attainable, absorbing boundary.

As in the previous two sections, it is possible to compare mean exit times (30)
and (32) in the LMCR to obtain analogues of Theorems 4.1 and 5.1.

Theorem 6.1. In the LMCR the mean hitting times in (30) and (32) satisfy

lim
aց0

lim
b→∞

(

E
[

TX
0,b(αb)

]

− E
[

T y

a,b(αb)
])

=
− ln 2

c
. (33)

Proof. From (30), for the CME as b → ∞ the expansion (22) gives

E
[

TX
0,b(αb)

]

=
1

c

αb
∑

s=1

1

s
=

1

c
(ln(αb) + γ) + o(1). (34)

For the CLE, we first consider any fixed value of a ∈ (0, a⋆), and look at the limit
b → ∞. Letting

E1(x) =

∫ ∞

x

e−t

t
dt, x > 0,

denote an alternative type of exponential integral, we may use the asymptotic
results

E1(x) = − ln x − γ + o(1), as x ց 0 (35)

and

E1(x) =
e−x

x
+ o

(

e−x

x

)

, as x → ∞, (36)

see, for example, [1, 20]. We also have the identities

∫ b

x

e−2l

l
dl = E1(2x) − E1(2b) and

∫ x

a

e−2l

l
dl = E1(2a) − E1(2x). (37)

Then using (36) and (37) in the first term on the right-hand side of (32), we have

e2αb − e2a

e2b − e2a

(

e2b

∫ b

αb

e−2l

l
dl − ln b + ln αb

)

=
e2αb − e2a

1 − e2(a−b)
(E1(2αb) − E1(2b))

− e2αb − e2a

e2b − e2a
ln α

= o(1), (38)

as b → ∞, uniformly in a.
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For the second term on the right-hand side of (32),

[1 − e2αb − e2a

e2b − e2a
]

(

ln αb − ln a − e2a

∫ αb

a

e−2l

l
dl

)

=
(

1 + O(e−2b(1−α)
)

(lnαb − ln a

−e2a (E1(2a) − E1(2αb))
)

=
(

1 + O(e−2b(1−α)
)

(lnαb − ln a

−e2aE1(2a)
)

. (39)

It follows from (32), (34), (38) and (39) that uniformly in a and for large b,

E
[

TX
0,b(αb)

]

− E
[

T y

a,b(αb)
]

=
1

c

(

γ + ln a + e2aE1(2a) + o(1)
)

.

Taking the limit a ց 0 and using (35), we obtain the required result.

Figure 3 illustrates Theorem 6.1. As for Figure 1 we used c = 5, α = 1

2
and chose

values of b from 2 to 30 in steps of 2. For the CLE hitting time (32) we took lower
limits of a = 10−2, 10−4 and 10−8. We see that as b increases and a decreases,
the absolute value of the hitting time discrepancy on the left-hand side of (33)
approaches the limiting value ln(2)/5 ≈ 0.1386 predicted by the theorem.
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Figure 3: The difference between CME and CLE mean hitting times in the regime
of Theorem 5.1. Lower limit of a = 10−2 asterisks; a = 10−4 circles; a = 10−8

plus signs.
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There is a stark contrast between the results in Theorems 4.1, 5.1 and 6.1. In
the first case, the two mean hitting times converge exponentially quickly in the
large molecule count limit, in the second case they converge only at a polynomial
rate, and in the third case there is a fixed, nonzero limiting absolute error. Since
the two hitting times in Theorem 6.1 grow like ln(b) as b → ∞, this lack of
convergence in an absolute sense translates into convergence in a relative sense—
the ratio of the mean hitting time discrepancy to the actual mean hitting time
tends to zero; albeit at a rate of only 1/ ln b.

7 Two-way Reactions and General Issues

We begin this final section by briefly discussing difficulties arising with the dif-
fusion regime in the case where pairs of reactions are combined. For production
from a source (12) and degradation (29), we obtain the system

∅ k→ X
c→ ∅ (40)

Here, the birth and death rates for the CME are P (X (t + h) = s + 1 | X(t) = s) =
k h + o(h) and P (X (t + h) = s − 1 | X(t) = s) = c s h + o(h), respectively, and
the corresponding CLE has the form

dy(t) = (k − c y(t)) dt +
√

k dW1 −
√

c y(t)dW2, (41)

where W1(t) and W2(t) are independent scalar Brownian motions.

In this case, where there are two noise sources, the theory in section 3.2 carries
through when we interpret σ2(x) in the scale function (4) and speed measure (5)
as the sum of the squares of the two diffusion coefficients.

We then find that

s(x) = e2x(k + cx)
−4k

c ,

m(x) =
exp(−2x)

(k + cx)1− 4k
c

,

S(x) = 2
4k
c
−1e

−2k
c (k + cx)

−4k
c (−k + cx

c
)

4k
c Γ

(

1 − 4k

c
,−2 (k + cx)

c

)

,

where Γ denotes the incomplete Gamma function. Thus, even for this relatively
simple system, the task of performing an asymptotic LMCR expansion of w(x) in
(9) and comparing this with a corresponding asymptotic expansion of the linear
system solution in (3) would be extremely daunting, and perhaps intractable.
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Applying Definition 3.2, we find that zero is an attainable boundary for the SDE
(41). Because the first noise term

√
k dW1 in (41) does not vanish at y = 0,

the process may then break down, no longer producing a real solution. Hence,
a solution to the CLE only makes sense up to a stopping time defined by the
solution reaching zero, and any analysis must acknowledge this fact. The hitting
time framework deals with this difficulty in a natural manner.

Because direct analysis does not seem possible for (40), Figure 4 reports on a
computational test. Here, we took rate constants k = 1 and c = 1. We used a
lower limit of a = b/4 for the exit time, and started with x = b/2 molecules. Val-
ues of b = 4×101, 4×102, 4×103, 4×104, were used. As b increases, we are taking
a larger system size and, since a scales like b, avoiding the case of small molecule
counts. The CME and CLE exit times were computed by solving numerically
the sparse linear system (3) and the boundary value ODE (7), respectively. We
show the absolute and relative difference between CME and CLE exit times on a
log-log scale. In this favourable large molecule regime, we observe convergence of
the two hitting times—a least squares fit gives a power of −1.99 with a residual
of 0.06, suggesting the same rate of b−2 that was rigorously derived in section 5
for a production reaction.
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Figure 4: Absolute and relative difference between CME and CLE exit times for
production from a source combined with degradation (40), on a log-log scale.
Here we have lower limit a = b/4 and starting value x = b/2.
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The failure of the CLE (41) to stay nonnegative is not simply a consequence of
the additive noise term. To see this, we may consider the reversible isometry

X1

c1 X1

⇋
c2 X2

X2 (42)

Here, a molecule of species X1 may convert into a molecule of species X2, with
propensity proportional to the number of X1 molecules, and, similarly, a molecule
of species X2 may convert into a molecule of species X1, with propensity pro-
portional to the number of X2 molecules. In this system, the total number of
molecules remains constant. Hence, if we assume that there is a deterministic
total of K molecules at time zero then we may write a CLE for X1 alone in the
form

dy(t) = (−c1y(t) + c2(K − y(t))) dt−
√

c1y(t)dW1 +
√

c2(K − y(t))dW2. (43)

Gillespie [12] uses this example as the basis for comparing steady state distri-
butions for the CME and CLE. In the CLE case, Gillespie claims to solve the
steady Fokker-Planck equation, and displays analytical solutions for the resulting
distribution. Numerical plots are given to show that the steady CME and CLE
distributions are close. However, that CLE analysis is done under the implicit
assumption that the stochastic process is well behaved for all time and has a
well defined steady distribution. Looking at (43) we see that the noise terms do
not both switch off at the ‘endpoints’: if y(t) = 0 then the diffusion coefficient
√

c2(K − y(t)) is active and if y(t) = K then the diffusion coefficient −
√

c1y(t)
is active. Hence, there is no reason to believe that the SDE will remain in the
range [0, K]. In fact Gillespie’s conclusion [12, Eq(15)] that for c1 = c2 the steady
distribution is normal, contains an inherent contradiction—a normal distribution
allows a nonzero probability of molecule counts outside the range [0, K], in which
case the process is not well behaved. So, while fully agreeing with the comments
in [12] that the CLE is inaccurate in the far tails because this is precisely where
the modelling assumptions used to derive the CLE become invalid, we wish to
make the further point that this invalidity manifests itself even more seriously
through a breakdown in the fundamental existence/uniqueness of the stochastic
process. Of course, it is possible to ‘fix up’ the definition of the CLE by introduc-
ing reflecting boundary conditions or by taking absolute values inside the square
root function, but neither alteration would respect the integrity and elegance of
the first principles modelling approach in [11].

In Figure 5 we test a similar scenario to that in Figure 4, this time for the
reversible isometry (42). In this case, we used the total number of molecules, K,
to control the system size. We took a = K/8 and b = K/2 for the upper and
lower limits, with starting value x = K/4. Rate constants were set to c1 = c2 = 1,
and K was varied over 8 × 101, 16 × 101, 8 × 102, 16 × 102, 8 × 103, 16 × 103, 8 ×
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104, 16×104, 8×105, 16×105. As in Figure 4, by letting the system size increase
and avoiding small numbers of molecules, we observe convergence. In this case a
least squares fit for the absolute difference gives a power of −0.99 with residual
0.04, suggesting a rate of K−1.

Our tenet here is that a systematic comparison of the CME and CLE regimes must
take account of the fact that the square roots in the diffusion coefficients, which
arise perfectly naturally through modelling arguments, cause genuine analytical
difficulties. These difficulties can be traced back to the modelling assumptions,
and they arise when a species becomes scarce. The approach that we take here of
comparing the two regimes in terms of hitting times has the benefit of allowing
us to focus on the diffusion process before it breaks down, and it gives a realistic
way to address the ‘thermodynamic limit’.
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