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Anisotropic creep model for soft soils

M. LEONI*, M. KARSTUNEN† and P. A. VERMEER*

In this paper a new anisotropic model for time-dependent
behaviour of soft soils is presented. The formulation is
based on a previously developed isotropic creep model,
assuming rotated Modified Cam Clay ellipses as contours
of volumetric creep strain rates. A rotational hardening
law is adopted to account for changes in anisotropy due
to viscous strains. Although this will introduce some new
soil parameters, they do not need calibration as they can
be expressed as functions of basic soil parameters
through simple analytical expressions. To start with, the
one-dimensional response of the model is discussed, mak-
ing it possible to explore how the model is capable of
capturing key features of viscous soft soil behaviour.
Subsequently, the three-dimensional generalisation of the
model is presented, followed by comparison with experi-
mental data, showing good agreement in both triaxial
undrained compression and extension. In the authors’
opinion, the simple formulation of the model makes it
attractive for use in engineering practice.

KEYWORDS: anisotropy; clays; compressibility; constitutive
relations; creep; numerical modelling and analysis; time
dependence

Dans la présente communication, un nouveau modèle
anisotrope pour le comportement des sols meubles en
fonction du temps est présenté. Cette formulation est
basée sur un modèle de fluage isotrope développé précé-
demment avec l’hypothèse que le Modified Cam Clay
devient elliptique sous forme de courbes de niveau de
vitesse de déformation volumétrique. Une loi d’écrouis-
sage rotatoire est appliquée afin de prendre en compte
les changements en anisotropie dus aux déformations
visqueuses. Bien que cela introduise de nouveaux para-
mètres relatifs au sol, ceux-ci ne nécessitent aucune
calibration car ils peuvent être exprimés comme des
fonctions de paramètres de base du sol à l’aide d’expres-
sions analytiques simples. Dans un premier temps, la
réponse 1D du modèle est discutée, afin d’examiner
comment le modèle est en mesure de saisir les caractéris-
tiques essentielles du comportement visqueux des sols
meubles. Ensuite, la généralisation tridimensionnelle du
modèle est présentée, suivie d’une comparaison avec des
données expérimentales qui montre un bonne adéquation
pour les compressions et extensions triaxiales en condi-
tions non drainées. Les auteurs estiment que grâce à sa
formulation simple, il s’agit d’un modèle attrayant pour
des applications de type ingéniérie.

INTRODUCTION
When dealing with geotechnical design on soft soils, long-
term deformations have to be considered in order to avoid
future serviceability or stability problems. Strain-rate effects
are also important in laboratory and field testing, and need
to be taken into account in the interpretation of the results.
Because of its practical importance, the creep and strain rate
dependence of soft soils in general has been studied by
many researchers and practitioners since the early 1920s.
Many mathematical formulations of the phenomenon have
been proposed, starting from the pioneering work of
Buisman (1936), Bjerrum (1967) and Garlanger (1972). In
most cases the proposed formulae were obtained by direct
integration of differential laws of consolidation, therefore
providing a useful tool that was valid for only a restricted
range of cases, such as one-dimensional loading or constant
effective stress.

The first simplified rheological models were developed
mainly in materials science, based on simple elements such
as elastic springs, plastic sliders and viscous dashpots. The
model equations were usually formulated in differential
form, thus allowing a basic understanding of the physical
phenomenon and providing a simple tool for settlement
predictions under particular boundary conditions. A further
step forward was the introduction by Šuklje (1957) of the
isotache concept. Following this concept, many creep models

have been proposed, and experimental data have confirmed
the validity of this approach (Den Haan, 1996; Leroueil,
2006). Experimental studies of soft soil behaviour have
resulted in empirical laws that are able to model the material
behaviour (Leroueil et al., 1985; Mesri & Choi, 1985a,
1985b; Mesri & Feng, 1986; Leroueil, 1987).

The overstress concept, first introduced by Malvern (1951)
and then enhanced by Perzyna (1966), was one of the most
innovative concepts in the study of viscous soil behaviour,
and the basis for many general constitutive models to be
used in finite element calculations. Most of those formula-
tions were based on isotropic Cam Clay (Sekiguchi & Ohta,
1977) or Modified Cam Clay models (Adachi & Okano,
1974; Adachi & Oka, 1982; Nova, 1982; Vermeer & Neher,
1999; Yin & Graham, 1999). A comprehensive review of
creep models can be found in Liingaard et al. (2004).

Models based on isotropy may work reasonably well when
dealing with reconstituted soils under fixed loading condi-
tions. Natural soils, however, tend to exhibit anisotropy that
is related to their fabric, that is, the arrangement of particles
and the interparticle contacts. This affects the stress–strain
behaviour of the soils in terms of viscous behaviour and
deformations, and therefore needs to be taken into account.
Time-dependent anisotropic models, which assume fixed
anisotropy, have been proposed (e.g. Sekiguchi & Ohta,
1977; Zhou et al., 2006). In parallel, time-independent
anisotropic models accounting for both initial and evolving
anisotropy have been proposed (e.g. Pestana & Whittle,
1999; Wheeler et al., 2003; Dafalias et al., 2006). Based on
Wheeler et al.’s (2003) model, a new anisotropic viscous
model is proposed herein, aimed at modelling the rate-
dependent behaviour of normally consolidated and lightly
overconsolidated soft soils. The one-dimensional formulation

Manuscript received 16 March 2007; revised manuscript accepted
29 November 2007.
Discussion on this paper closes on 1 October 2008, for further
details see p. ii.
* Institut für Geotechnik, University of Stuttgart, Germany.
† University of Strathclyde, UK.



of the model is first discussed, followed by the three-
dimensional generalisation, resulting in the proposed aniso-
tropic creep model. The new model, which has been imple-
mented in a finite element code, has been validated by
comparing the model response with laboratory data.

ONE-DIMENSIONAL CREEP MODEL
By first concentrating on one-dimensional compressibility

of soils, the viscous behaviour of fine-grained soils can be
fully investigated before describing the extension of the
model to three-dimensional conditions. The one-dimensional
version of the model is based on work by Vermeer and his
co-workers (Stolle et al., 1997; Vermeer et al., 1998) and
has some elegant features, as elaborated below.

Basic equations
As in classical elasto-plasticity, the usual decomposition

of total strains into elastic and inelastic components is
assumed. The elastic component is directly observed in fast
unloading and recompression, whereas the other component
of strain is irreversible and time dependent. In this formula-
tion the inelastic component is assumed to be purely
viscous. In terms of void ratio this implies that

_ee ¼ _eee þ _eec (1)

where e is the void ratio; a dot over a symbol implies
differentiation with respect to time; and superscripts e and c
refer to the elastic and creep components respectively. In the
following, the formulation is presented in terms of void ratio
unless explicitly stated otherwise, and the soil mechanics
sign convention (compression positive) is adopted.

The elastic change of void ratio is formulated as

_eee ¼ � Cs

ln 10

_�� 9

� 9
(2)

where �9 is the effective stress and Cs is the swelling index.
The second deformation type is due to the viscous behaviour
of the material, which is modelled by the power law

_eec ¼ � CÆ

� ln 10

� 9

� 9p

� ��

with � ¼ Cc � Cs

CÆ
(3)

where CÆ is the well-known secondary compression index
(also referred to as the creep index), Cc is the compression
index, � is the creep exponent, and � is a reference time,
which can usually be taken equal to one day, as shown in
the following section.

An important soil characteristic, as observed for states of
normal consolidation, concerns the normal consolidation
line. On this line the preconsolidation stress � 9p increases
during creep according to the differential equation

_�� 9p
� 9p

¼ � ln 10

Cc � Cs

_eec (4)

The integrated form of this equation is

� 9p ¼ � 9p0 � exp � ln 10 � ˜ec

Cc � Cs

� �
, ˜ec ¼ ec � ec

0 (5)

where � 9p0 is the initial preconsolidation stress for ec ¼ ec
0.

Equation (3) is similar to the well-known creep law

_�� ¼ Æ � � � �0ð Þ� (6)

introduced by Norton (1929) for metals, where �0 is a
threshold stress, and Æ and � are material constants. How-
ever, in contrast to Norton’s law, � 9p in equation (3) is not a

threshold stress as such, because in the proposed model
creep is also assumed to take place in overconsolidated
states. Because of this feature, the model cannot be simply
classified as an overstress model in the sense of Perzyna
(1966). In soil mechanics the concept of states with OCR .
1 is well established, but it is important to realise that states
with OCR , 1 are also possible.

To illustrate the marked effect of the overconsolidation
ratio (OCR) on the creep rate, consider a typical clay of
medium plasticity with Cc ¼ 0.15, Cs ¼ 0.015 and CÆ ¼
0.005, giving a value of � ¼ 27 for the creep exponent in
equation (3). The predicted variation of void ratio with OCR
is shown in Fig. 1. It is apparent that the creep rate is
almost negligible for OCR . 1.3 for the material consid-
ered, whereas by contrast it is notable in the normally
consolidated or lightly overconsolidated state. In the special
case of OCR , 1 the creep rate is very high, as indicated in
Fig. 1 for OCR ¼ 0.77. As discussed later, in a standard
oedometer test with load doubled at each stage, at the end
of primary consolidation OCR is between 0.5 and 1.

Logarithmic creep for �9 ¼ constant
Equation (3) holds for general states of stress and strain,

as both the effective stress �9 and the preconsolidation stress
� 9p may vary as a function of time. In fact the latter
increases monotonically with creep deformation, and for a
better understanding of the model it is convenient to con-
sider the creep law with � 9p eliminated. To this end, the
evolution equation (5) for � 9p is inserted into the creep law
(equation (3)) to give

_eec ¼ � CÆ

� � ln 10

� 9

� 9p0

� ��

exp
ec � ec

0

CÆ=ln 10
(7)

The effective stress �9 may be either larger or smaller than
� 9p0, and it does not need to be constant. In the simplest
case of creep at constant effective stress, the creep rate
reduces monotonically owing to the decreasing void ratio in
the exponential term.

For the special case of a constant effective stress, the
differential creep law (equation (7)) can be integrated in
closed form to obtain

˜ec ¼ ec � ec
0 ¼ �CÆ log 1 þ t

��

� �
(8)

where e ¼ e0 for t ¼ 0 and
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Fig. 1. Variation of creep rate with OCR for � 27
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�� ¼ � � � 9p0

� 9

� ��

¼ � � OCR�
eoc (9)

where the subscript eoc indicates ‘end of (primary) consoli-
dation’.

A logarithmic creep law was first proposed by Buisman
(1936), but the above form with �� was first introduced by
Garlanger (1972). The reference time �� (or rather the time
shift) depends completely on the initial state of overconsoli-
dation. Consider, for example, a standard oedometer test in
which the load is increased daily, as illustrated in Figs 2(a)
and 2(b). Depending on the permeability of the sample, the
end of consolidation may be reached in one or more hours
after loading, but for the remaining part of the day the
sample will creep at a constant effective stress. Equation (5)
is fully valid throughout this creep period, with t ¼ 0 at the
end of (primary) consolidation. In representing the results of
an oedometer test, time is mostly reset to zero at the
beginning of consolidation rather than at the end, as done in
Fig. 2(b).

According to the classification of creep models by
Liingaard et al. (2004), equation (8) belongs to the family of

empirical relations that they would classify as a ‘constant
CÆ’ model. However, it needs to be emphasised that the
reference time �� varies with OCR, as shown in equation
(7), which was not discussed by Liingaard and his co-
authors. In the next section the variation of the slope of
e–log t curves with OCR is discussed.

Overconsolidated states with t � ��
Consider an overconsolidated soil sample being stepwise

recompressed. During recompression the sample is in a state
of overconsolidation, with OCR . 1. In this case equation
(3) predicts a very low creep rate, and consequently there is
very little change of OCR. This is also reflected by the
logarithmic law in equation (8), as it yields

dec

dt
¼ � CÆ

ln 10

1

�� þ t

� �
� � CÆ

ln 10

1

�� for t � �� (10)

Indeed, for overconsolidated states of stress, the reference
time �� is very large, and t, being approximately 1 day, is
consequently small with respect to ��. Hence on a usual
timescale with t � ��, as relevant in laboratory testing,
overconsolidated soils show a very small, nearly constant
creep rate. This behaviour is reflected by the upper set of
curves in Fig. 2(b). In soil mechanics it is often suggested
that even overconsolidated clays show logarithmic creep, but
this is true only on a very large timescale. Indeed, it follows
from equation (8) that the slopes of the curves in Fig. 2(b)
satisfy the equation

dec

d log t
¼ �CÆ �

t

�� þ t
(11)

If the test is run for a longer time so that t � ��, the
behaviour will be similar to that typical for normally con-
solidated soil, as argued in the next section.

Normally consolidated states
In standard oedometer tests, samples are recompressed

until the normal consolidation line is reached. Then the load
is increased beyond the NC line, and the sample is left to
consolidate and creep back to the NC line, as indicated in
Fig. 2(a). As oedometer samples are relatively thin, consoli-
dation is generally fast, and most of the deformation occurs
at a constant effective stress. During such a creep period the
overconsolidation ratio increases from the low initial value
at the end of primary consolidation OCReoc , 1, up to OCR
¼ 1. In a standard 24 h incremental test the load is daily
doubled so that OCReoc � 0.5. In soil mechanics one is not
always aware of such small OCR values. Even a proper
terminology for such states is lacking. It is herein proposed
to refer to it as the underconsolidated state, but it is
important to realise that it does not relate just to dissipation
of excess pore pressure. In such a situation of underconsoli-
dation, equation (9) indicates that �� is extremely small, and
the testing is done on a timescale with t � ��. In this case
equation (11) reduces to

dec

d log t
� �CÆ for t � �� (12)

Therefore the creep index CÆ can be measured directly from
load steps in the normally consolidated range.
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Fig. 2. Standard oedometer test with stepwise loading: (a)
effective vertical stress against void ratio; (b) evolution of void
ratio against time with time reset to zero for every load step
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Meaning of reference time � and time shift ��
Whereas the use of the parameters Cc, Cs and CÆ is well

established, the meaning of reference time � may be obscure,
and therefore it merits further description. Up to now it has
been indicated that the reference time � in equation (3) is
mostly equal to 1 day. In this section it is shown that the
reference time relates to the definition of the NC surface,
and that the usual definition of this surface implies a
reference time of 1 day. In order to show this, the creep in a
particular load step of a conventional oedometer test is
considered. On eliminating the void ratio variation ˜e be-
tween equations (5) and (8), one obtains

�� þ t

�� ¼ � 9p
� 9p0

� ��

(13)

Together with equation (9) for �� it is found that

OCR ¼ �� þ t

�

� �1=�

(14)

For normally consolidated states �� is very small, as already
argued in the previous section. Then equation (14) reduces
to the very simple expression

OCR � t

�

� �1=�

for t � �� (15)

which was first put forward by Mesri & Choi (1985a).
Hence OCR will rapidly increase from its initial small value
of OCReoc up to OCR ¼ 1. In oedometer testing the load is
most often increased every 24 h, and consolidation takes
typically a few hours. In such a test the creep time for
reaching the normal consolidation line would be around 20 h
or roughly 1 day. On substituting OCR ¼ 1 and t ¼ 1 day
into equation (15), one obtains � ¼ 1 day. No doubt oed-
ometer tests may also be carried out with 12 h or 48 h load
steps to find somewhat shifted NC lines with � ¼ 12 or � ¼
48 h respectively. It is worth mentioning that the value
assumed for preconsolidation pressure is related to the dura-
tion of the test, and a different testing time would lead to
different values.

Constant rate of strain test
Instead of defining the normal consolidation line of a

particular clay on the basis of a multi-stage loading test, one
may use a constant rate of strain test. Data by Hanzawa
(1989) in Fig. 3 demonstrate that these so-called CRS tests
give oedometer curves that resemble those of multi-stage
loading tests (MSL). CRS tests are done relatively quickly,
and the results tend to overshoot the NC line from a 24 h
MSL test, as can be seen in Fig. 3. However, any CRS test
line can be adopted as the NC line, provided that an
appropriate reference time � is assigned to this line, as will
be shown in the following. Considering a CRS test with a
particular constant rate of change of void ratio, it follows
from equations (1), (2) and (4) that

_ee ¼ _eee þ _eec ¼ � Cs

ln 10

_�� 9

� 9
� Cc � Cs

ln 10

_�� 9p
� 9p

(16)

It can be shown that _�� 9=� 9 ¼ _�� 9p=� 9p, and from this it
follows that the elastic strain rate is given by Cs/(Cc � Cs)
times the creep rate. This can be used to write

_ee ¼ Cc

Cc � Cs

� _eec ¼ � Cc

Cc � Cs

� CÆ

� � ln 10

� 9

� 9p

� ��

(17)

For � 9 ¼ � 9p we are on the NC line, and consequently

_eec
nc ¼ � Cc

Cc � Cs

� CÆ

� ln 10
(18)

If � is assumed to be 1 day, the CRS test has to be carried
out at the appropriate rate according to equation (18). On
the other hand, one may also adjust � to any possible CRS
test. This is clear if equation (18) is rewritten as

� ¼ � Cc

Cc � Cs

� CÆ

ln10
� 1

_eenc

(19)

where CÆ has to be measured in a real creep test with
constant effective stress. On taking the NC line from a CRS
test, the applied deformation rate is assumed to be _eenc and
the corresponding reference time may be computed from
equation (19).

THREE-DIMENSIONAL ISOTROPIC CREEP MODEL
The one-dimensional formulation was extended to a gen-

eral three-dimensional constitutive model based on Modified
Cam Clay type ellipses by Vermeer and his co-workers
(Vermeer et al., 1998). The model was tested on drained and
undrained compression tests on reconstituted soils, showing
an overall good performance (Vermeer & Neher, 1999).
Nevertheless, the assumption of isotropic yield surfaces does
not match experimental evidence for natural soils, as shown
in Fig. 4. Skewed yield surfaces have been observed for a
wide range of soft soils, and are a reflection of initial
anisotropy. The anisotropy has been created by the mechan-
ism of deposition, the shapes of the particles, and any
subsequent loading, often involving one-dimensional consoli-
dation under the soil’s self-weight. It has also been shown
that the initial anisotropy can be erased if the material is
subjected to isotropic straining (Anandarajah et al., 1996;
Bai & Smart, 1996; Wheeler et al., 2003). A more realistic
constitutive model must take the initial anisotropy of the
natural soil into account, as well as its evolution due to
irrecoverable straining.
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ANISOTROPIC CREEP MODEL
In order to match the creep rate contours shown in Fig. 4,

the yield surface of the so-called S-CLAY1 model by
Wheeler et al. (2003) is adopted as the normal consolidation
surface for the anisotropic creep model; see Fig. 5. With
evolution of anisotropy, the use of classical stress invariants
for defining this surface is no longer possible. The simplest
way is to define these surfaces in terms of the deviatoric
stress tensor and mean effective stress (the so-called mixed
formulation) in conjunction with a deviatoric fabric tensor
that describes the arrangement of fabric. The full formula-
tion can be found in the Appendix.

Basic equations
Most experimental testing, however, is done on samples

that are cross-anisotropic: that is, on samples that have been
cut vertically from the ground. Because the stress axes in
triaxial and oedometer tests are fixed, a cross-anisotropic
material will stay cross-anisotropic throughout a test. In this
special case, the expression for the normal consolidation
surface (NCS) can be simplified, and it is still possible to
make use of the well-known stress invariants p9 and q, the

mean effective stress and deviatoric stress. Adopting the
summation convention, the stress invariants p9 and q are
defined as

p9 ¼ � 9ii=3, q ¼ 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sij � sij

p
(20)

where sij is the well-known deviatoric stress tensor.
In this particular case, a scalar quantity Æ (see the

Appendix) can be used to describe the orientation of the
normal consolidation surface. In order to do so, a so-called
equivalent mean stress p9eq is defined as

p9eq ¼ p9þ q� Æ � p9ð Þ2

M2 � Æ2ð Þ � p9
(21)

where M is the stress ratio at critical state. The normal
consolidation surface is now defined as p9eq ¼ p9p, where p9p
is the preconsolidation pressure, as illustrated in Fig. 5.
Strictly speaking, the new surface should be referred to as a
sheared ellipse. However, for the sake of simplicity, the word
‘rotation’ is used herein. Different values of M can be
assumed in triaxial compression and extension by changing
the values of M as (� � Æ) goes from positive to negative,
as discussed by Wheeler et al. (2003). The same form as
equation (20) has been adopted by Zhou et al. (2006) for
their viscoplastic model.

The preconsolidation pressure p9p evolves with volumetric
creep strains �c

vol according to the hardening law

p9p ¼ p9p0 � exp � �c
vol

º� � k�

� �
(22)

where º� ¼ º=(1 þ e0) and k� ¼ k=(1 þ e0) are the modi-
fied compression and swelling indexes respectively. When
p9eq ¼ p9p the current stress lies on the normal consolidation
surface (Fig. 5), and the soil state is normally consolidated.
The ratio p9p= p9eq, referred to as OCR�, gives a measurement
of the distance between the current stress surface and the
normal consolidation surface, being a generalisation of OCR
(the vertical overconsolidation ratio). By formulating the
volumetric strain rate in terms of strains, equation (3)
becomes

_��c
vol ¼

��
�

1

OCR�

� ��

where �� ¼ CÆ

ln 10 1 þ e0ð Þ (23)

�� is referred to as the modified creep index. The deviatoric
component of the creep strain rate vector results simply
from the flow rule, which for the sake of simplicity is
assumed as associated.

Rotational hardening law
The scalar quantity Æ in equation (21) acts like a rota-

tional hardening parameter, and its evolution is governed by
creep strains according to the rotational hardening

_ÆÆ ¼ ø
3q

4p9
� Æ

� �
_��c
vol þ ød

q

3p9
� Æ

� �
_ªªc

" #
(24)

where _ªªc is the deviatoric creep strain rate, defined as
_ªªc ¼ 2

3
_��c
1 � _��c

2

�� �� for triaxial states of stress. The soil con-
stants ø and ød that control the rate of rotation are related
to basic soil parameters, as discussed in subsequent sections.
Experimental evidence for equation (24) has been put for-
ward by Näätänen et al. (1999) and Wheeler et al. (2003). It
is worth noting that in the model proposed by Zhou et al.
(2006) anisotropy is assumed to stay fixed, with _ÆÆ ¼ 0, in
contrast to experimental evidence. The simulations later on
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in this paper also demonstrate the need for a rotational
hardening law, and in particular for modelling strains in
triaxial extension.

Initial condition Æ0 and parameter ød

As commonly assumed in geomechanics, and supported
by ample experimental evidence, an estimate of K0 for
normally consolidated soils is provided by Jaky’s formula

KNC
0 � 1 � sin�9cv (25)

where �9cv is the critical-state friction angle.
Provided that the soil has been one-dimensionally consoli-

dated, a correlation between KNC
0 and the initial rotation of

the ellipse, Æ0, is evident. Assuming an associated flow rule,
and considering that in one-dimensional loading the ratio
between deviatoric and volumetric plastic strain rates is
approximately 2

3
, it follows that (Wheeler et al., 2003)

Æ0 ¼ �2
0 þ 3�0 � M2

3
(26)

where �0 ¼ 3(1 � KNC
0 )=(1 þ 2KNC

0 ) and M ¼ 6 sin�9cv=
(3 � sin�9cv). Moreover, Wheeler et al. (2003) show that

ød ¼ 3

8

4M2 � 4�2
0 � 3�0

�2
0 � M2 þ 2�0

(27)

Therefore the initial inclination Æ0 and the shear rotation
parameter ød are fully determined by the critical-state angle,
and do not need any calibration. When the values for model
parameters have been derived this way, the model implicitly
gives realistic K0 prediction, in contrast to viscoplastic
models using Modified Cam Clay ellipses.

Rate of rotation ø
The parameter ø controls the absolute rate at which the

normal consolidation surface rotates with viscous straining.
A similar parameter is found in anisotropic models by
Pestana & Whittle (1999) and Dafalias et al. (2006). They
also suggested procedures and/or laboratory tests to calibrate
this rotation parameter. Zentar et al. (2002) simply suggested
ø to be a function of the compression index º, so that
calibration is not required.

In the following a relation between ø and º� will be
derived. Experimental evidence shows that the initial aniso-
tropy is erased in isotropic loading up to a pressure that is
two or three times larger than the preconsolidation pressure
(Anandarajah et al., 1996). The volumetric strain for erasing
the anisotropy is thus

˜�c
vol ¼ º� � k�ð Þln p9p

p9p0

¼ º� � k�ð Þln 2 . . . 3ð Þ � º�

(28)

The ratio between deviatoric and volumetric strain rates is
given by the flow rule

_ªªc

_��c
vol

¼ @ p9eq=@q

@ p9eq=@ p9
¼ 2 q=p9� Æð Þ

M2 � q= p9ð Þ2
(29)

Substituting equation (29) into equation (24), and consider-
ing isotropic loading with q ¼ 0, leads to the differential
equation

M2 _ÆÆ

M2Æ � 2Æ2ød

¼ �ø _��c
vol (30)

This differential equation can be integrated in the range
between Æ0 and Æ ¼ Æ0 + ˜Æ to obtain

ln
Æ0=Æ� 2Æ0ød

M2 � 2Æ0ød

¼ ø˜�vol � øº� (31)

Assuming that anisotropy is practically erased when Æ de-
creases to 1/10th of its initial value, which means Æ0/Æ ¼
10, equation (31) can be solved with respect to ø to give

ø ¼ 1

º�
ln

10M2 � 2Æ0ød

M2 � 2Æ0ød

(32)

where Æ0 and ød are fully determined by the critical-state
angle, as specified by equations (26) and (27) respectively.
Hence ø depends exclusively on the modified compression
index º� and on the critical friction angle. Therefore the
value for parameter ø can be conveniently estimated via
equation (32) with no need for calibration.

Undrained shear strength
The capability of the isotropic creep model to simulate

the strain-rate dependence in drained triaxial compression
tests has already been shown by Vermeer & Neher (1999).
For triaxial compression the new anisotropic model behaves
in a very similar manner, since the rotation induced by
shearing in compression is not that significant if starting
from a K0-consolidated state. In the following, only un-
drained triaxial test simulations are considered, and attention
is focused mostly on extension tests.

The material chosen for a first set of simulations is Haney
clay. Most material data shown in Table 1 are derived on the
basis of experimental data by Vaid & Campanella (1977).
The value of ø was estimated from equation (32), and the
initial rotations Æ0 and ød were computed using equations
(26) and (27) respectively. Simulations are carried out start-
ing from a normally consolidated state with KNC

0 estimated
as 0.47 through Jaky’s formula. Starting from a vertical
effective stress of 160 kPa the soil is sheared to failure in
compression, as well as in extension, using two different
strain rates: the usual fast strain rate of 1%/h, and a slow
rate of 0.05%/h. The aim of this first set of analyses is to
inspect the differences between the rate-independent elasto-
plastic S-CLAY1 model and the new anisotropic creep
model.

The computed stress paths as depicted in Fig. 6 show the
typical influence of strain rate: the slower the test, the flatter
the stress path. For the slow test the present viscous model
shows good agreement with the elasto-plastic S-CLAY1
model. However, the resulting undrained shear strengths are
somewhat different, as also shown in Fig. 7. For the range
of strain rates considered, all extension simulations show
more or less the same stiffness, but the behaviour in com-
pression is considerably different.

In addition to the strain rates 1%/h and 0.05%/h consid-
ered so far, an undrained compression test with the rate of
20%/h was simulated. Considering these strain rates, ranging
from 0.05% to 20%, the results are well approximated by
the equation

Table 1. Values for soil parameters and initial inclination Æ0 for
Haney clay

º� k� �� 	9 Mc ø ød Æ0

0.1055 0.0161 0.0044 0.255 1.29 28 0.856 0.493
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cu

cu 1%=h

¼ 1:00 þ 0:09 log _�� (33)

shown in Fig. 8. This is in close agreement with the
experimental data compiled by Kulhawy & Mayne (1990).

During both compression and extension tests the normal
consolidation surface rotates, as expressed by a change of Æ.
In triaxial compression tests Æ decreases very slightly, if
shearing starts from a K0-consolidated state. For the exten-
sion tests, on the other hand, Fig. 9 shows a remarkable
decrease of the Æ-value from 0.49 down to �0.2, towards
the asymptotic value of Mc/3 ¼ �0.43 at very large strains.
All simulations show nearly the same rotation of the normal
consolidation surface. Hence it would seem that the rotation
is virtually independent of the applied strain rate. The rate-
independent S-CLAY1 model predicts the same amount of
rotation as the viscous model.

Comparison with extension test data
In a second set of analyses the response of the anisotropic

model, as well as its isotropic version, is compared with
laboratory data. As for the material, Hong Kong Marine
Deposit is considered, using the test data by Yin & Cheng
(2006). As reported by Yin & Cheng, the material is a dark
grey clayey silt with some shells, with liquid limit wL ¼
57%, plastic limit wP ¼ 25%, and average water content
before testing of w ¼ 54.3%. KNC

0 was chosen as 0.48
according to Jaky’s formula. The full dataset used for the
analyses is summarised in Table 2. This set of soil para-
meters was directly provided by Yin & Cheng (2006), with
the exception of the rotational parameters ød and ø, which
were evaluated from equations (27) and (32) respectively. It
is worth noting that different slopes of the critical-state line
have been assumed in compression (Mc) and in extension
(Me). On performing the numerical analyses, the procedure
described by Yin & Cheng for the laboratory tests was fully
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simulated. The specimen was first consolidated following the
KNC

0 line and then sheared at an axial strain rate of 2%/h in
undrained conditions, both in compression and in extension.
In this paper the original denomination is used, so that the
two sets of tests considered are referred to as E150 and
E400.

The comparisons between predicted and experimental
stress paths are plotted in Fig. 10. The anisotropic model is
in good agreement with the experiments, even if the final
effective mean stress is larger (as an absolute value) than
the one measured in the laboratory. The final inclination of
the path is captured well, and if one were to prolong the
experimental test until the critical state was reached, the
predicted undrained shear strength would match the meas-
ured one. By contrast, the isotropic model shows its inade-
quacy when modelling undrained extension tests. As shown
in Fig. 10, the (mainly) elastic region is too large, and only
when the stress path is already close to critical state does p9
start to decrease towards the critical-state line. Moreover, the
undrained shear strength is clearly exceeded.

The stress–strain plots obtained by using the anisotropic
model are compared with measurements in Fig. 11 and Fig.
12 for E150 and E400 respectively: numerical results deviate
slightly from experimental data, as the real soil appears to
be stiffer within the predominantly elastic range. No doubt
this problem could be fixed by implementing a small-strain

stiffness in the constitutive model. On the other hand, when
the strain becomes large, the predicted stiffness is too high,
thus giving a larger prediction of the undrained shear
strength than the experiment indicates for the same final
strain of 4%. The poor prediction of the isotropic model
already shown in Fig. 10 is reflected in the stress–strain
behaviour of Figs 11 and 12: its predictions are far from the
measurements, from both a qualitative and a quantitative
point of view. Note that the S-CLAY1 model would predict
the same undrained strength as the viscous model, but only
if the strain rate in the test was very low (see Fig. 6).

The results obtained with the anisotropic model are very
encouraging, especially in view of the fact that the match is
achieved without needing to calibrate any material para-
meters in addition to those already used in the isotropic
model.

Importance of rotational hardening
It is worth investigating the importance of having a

rotational hardening law when modelling anisotropy. Indeed,

Table 2. Values for soil parameters and initial inclination Æ0 for
Hong Kong Marine Deposit

º� k� �� Mc Me 	9 ø ød Æ0

0.07933 0.0188 0.00254 1.2431 0.879 0.25 43.15 0.807 0.474
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it is used in existing elasto-plastic models, but not as yet in
creep models. Therefore another simulation is performed by
setting the rate of the rotation parameter ø equal to 0, thus
fixing the normal consolidation surface to its initial rotated
state, as assumed by Zhou et al. (2006). The results for the
E400 test are shown in Fig. 13 as for the predicted stress
path, and Fig. 14 shows the predictions of deviatoric stress
against axial strain. From the latter, one might conclude that
the model with a fixed surface is giving better predictions,
but this is just coincidence, as the observation of Fig. 13
demonstrates that the predicted stress path is far from the
measured one. Consequently, the predicted undrained
strength in triaxial extension is far too low. The anisotropic
elasto-plastic model S-CLAY1 would predict a stress path
qualitatively similar to the viscous model, as illustrated in
Fig. 6, provided that the strain rate was low.

By contrast, the prediction with fixed anisotropy is quali-
tatively very different, and far from the experimental results.
This demonstrates that coupling a viscous formulation with
anisotropy must be accompanied by a suitable evolution law
for anisotropy as a function of viscous strains in order to
predict the undrained shear strength correctly, both in triaxial
extension and in compression.

To complete the investigation into the effectiveness of the
anisotropic creep model, a comparison of the stress path
obtained in an undrained compression test on Hong Kong
Marine Deposit is shown in Fig. 15, and the deviatoric stress
is plotted against axial strain in Fig. 16. As for the previous
tests, the rate of axial strain was 2%/h, and the initial stress
was set to lie on the KNC

0 line. The numerical simulation has
been stopped at the same vertical strain value as the
laboratory test indicates. The agreement between numerical
analysis and measurements is excellent. In particular, the

creep model is able to capture the peak followed by a
reduction in deviator stress, clearly shown in the laboratory
test, and the slope of the curve of post-peak deviatoric stress
against axial strain. The results demonstrate that some of the
apparent post-peak softening observed when testing natural
soils may be constitutive, rather than a result of localisation
and shear banding.

CONCLUSIONS
In this paper an anisotropic creep model for soft soils is

proposed, which accounts for viscous strain-induced aniso-
tropy. First, a complete description of the one-dimensional
formulation of the model is given, focusing on the role
played by the reference time � in defining the normal
consolidation surface. The one-dimensional formulation has
been extended to a general three-dimensional creep model,
in which rotated ellipsoids of the elasto-plastic S-CLAY1
model proposed by Wheeler et al. (2003) are adopted as the
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normal consolidation surface and current stress surface. It is
shown that the new model can be considered as both a creep
version of S-CLAY1 and an anisotropic enhancement of the
isotropic creep model proposed by Vermeer & Neher (1999).
A nice feature of the model is that the additional soil
constants as needed for anisotropy can be assessed on the
basis of simple correlations with the critical-state friction
angle and the modified compression index.

The anisotropic creep model has been implemented in a
finite element code, and several validation tests have been
performed. In particular, the response of the model in
undrained triaxial tests has been compared with the corre-
sponding results obtained with the elasto-plastic S-CLAY1
model, showing a similar behaviour both for the predicted
stress path for slow loading rates and for similar rotation of
the normal consolidation surface. In order to assess the
capability of the model to capture the real behaviour of soft
soils, test data of a marine deposit have been used as a
benchmark. Undrained triaxial extension test results have
been simulated with both the isotropic and the anisotropic
creep model, under the same conditions of the laboratory
tests. The results show how the isotropic model overesti-
mates the undrained strength of the material whereas, in
contrast, the anisotropic creep model gives predictions close
to the experimental data. It was also shown that it is
necessary to account for changes of anisotropy due to
viscous strains to achieve a proper prediction of the un-
drained shear strength in triaxial extension. Another test was
simulated to investigate the behaviour of the model in
undrained compression, showing a satisfactory agreement
between predictions and measurements.

The improvement in the anisotropic formulation is not
limited to a better response in undrained triaxial extension
paths. It is well known that the use of Modified Cam Clay
ellipses with an associated flow rule implies an overestima-
tion of KNC

0 . The introduction of anisotropy ensures a
realistic prediction of KNC

0 while still keeping an associated
flow rule, which is very convenient from the numerical point
of view. The proposed anisotropic formulation, which ac-
counts for evolution of anisotropy with viscous strains,
requires no adjustments to overcome the problem of poor K0

predictions, such as a non-associated flow rule (Muir Wood,
1990) or modification of the shape of the yield surface

(Karstunen et al., 2006). In conclusion, the authors feel that
the proposed anisotropic model is a significant improvement
to the previous isotropic formulation when dealing with soft
soils, without requiring any further calibration.
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NOTATION
Cc compression index

Cijhk compliance matrix
Cs swelling index
CÆ creep index

CSS current stress surface
cu undrained shear strength

Dijhk stiffness matrix
d partial derivative; see equation (38)
E9 Young’s modulus
e0 initial void ratio
_ee rate of change of void ratio

_eenc rate of change of void ratio for normally consolidated
states

G shear modulus
K0 lateral earth pressure at rest

KNC
0 lateral earth pressure at rest for normally consolidated

states
M stress ratio at critical state
Mc stress ratio at critical state in triaxial compression
Me stress ratio at critical state in triaxial extension

NCS normal consolidation surface
OCR vertical overconsolidation ratio

OCR� generalised overconsolidation ratio (¼ p9p=p9eq)
OCReoc OCR at end of primary consolidation

p9 mean effective stress
p9eq equivalent mean stress
p9p preconsolidation pressure as defined in Fig. 5
q deviatoric stress
t time
Æ inclination of CCS and NCS in q/p9 plane
Æx component of fabric tensor (x direction)
Æ y component of fabric tensor (y direction)
Æz component of fabric tensor (z direction)
Æ0 initial inclination in q/p9 plane

eÆd deviatoric fabric tensor
� creep exponent
_ªªc deviatoric creep strain rate

ij Kronecker’s delta
_�� strain rate tensor

�c
vol volumetric creep strain
_��c
vol volumetric creep strain rate
� stress ratio (¼ q/p9)
�0 stress ratio corresponding to K0 state
k� modified swelling index
¸ plastic multiplier
º� modified compression index
�� modified creep index
	9 Poisson’s ratio
�9 effective stress
_�� 9 rate of change of effective stress

e�d deviator stress tensor
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� 9p preconsolidation stress
_�� 9p rate of change of preconsolidation stress
� reference time

�� (creep) time shift
�9cv friction angle at critical state
ø rate of rotation
ød rate of rotation by deviator strains

APPENDIX. EQUATIONS OF ANISOTROPIC CREEP
MODEL

The normal consolidation surface is defined as p9eq ¼ p9p, where
p9p is a preconsolidation pressure as defined in Fig. 5. The
formulation of p9eq is identical to that first suggested by Dafalias
(1986), which was adopted for the elasto-plastic model S-CLAY1
(Wheeler et al., 2003), and can be expressed as

p9eq ¼ p9þ 3

2 p9

fe�d � p9 eÆdgTfe�d � p9 eÆdg

M2 � 3
2
feÆdgTfeÆdg

(34)

where the deviatoric stress tensor is defined as e� d ¼ e� 9� p9 
ij and
the deviatoric fabric tensor is defined as eÆd ¼ eÆ� 
ij, where the
components have a property (Æx + Æ y + Æz)/3 ¼ 1. The scalar
parameter Æ, which defines the inclination of the normal consolida-
tion surface in simplified triaxial stress space, is defined as

Æ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
fÆdgTfÆdg

r
(35)

The rotational hardening law, describing the evolution of the fabric
tensor with creep strains, is expressed in the general form as

e_ÆÆd ¼ ø
3 e�d

4p9
� eÆd

 !
_��c
vol þ ød

e� d

3p9
� eÆd

 !
_ªªc

24 35 (36)

An associated flow rule is chosen, thus giving the direction of
viscous strain rate as

_��c
ij ¼ ¸ � @ p9eq

@� 9ij
(37)

where the viscous multiplier ¸ is defined as

¸ ¼ _��c
vol

d
with d ¼ @ p9eq

@ p9
(38)

Volumetric creep strain rate is assumed as

_��c
vol ¼

��
�

� p9eq

p9p

� ��

with �� ¼ CÆ

ln 10
� 1

1 þ e0

and � ¼ Cc � Cs

CÆ

(39)

Equations (38) and (39) can be inserted into the flow rule (equation
(37)) to obtain

_��c
ij ¼

��
d � �

p9eq

p9p

� �� @ p9eq

@� 9ij
(40)

The total strain rate is the sum of an elastic and a viscous part, i.e.
_��ij ¼ _��e

ij þ _��c
ij.

The elastic part of the strains is modelled by Hooke’s law

_��e
ij ¼ Cijhk _�� 9hk or _�� 9ij ¼ Dijhk _��

e
hk (41)

where

Dijhk ¼
2G	9

1 � 2	9

ij
hk þ G 
ik
 jh þ 
ih
 jk

� �
(42)

with the effective Poisson’s ratio 	9 assumed to be a constant.
The shear modulus G is expressed as a function of the modified

swelling index k� by the equations

G ¼ E9

2 1 þ 	9ð Þ and E9 ¼ 3p9 1 � 2	9ð Þ
k� (43)
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