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Structural instability in an

autophosphorylating kinase switch

Michael Grinfeld

Steven D. Webb

Department of Mathematics, University of Strathclyde, 26 Richmond Street,

Glasgow G1 1XH, U.K.

Abstract

We analyse a simple kinase model that exhibits bistability when there is no protein
turnover, and show analytically that the property of being bistable is not necessarily
conserved when degradation and synthesis of the kinase are taken into account.
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1 Introduction

Multistability is an important characteristic of many biological systems; it ex-
presses their ability to act as switches given an appropriate stimulus. More
precisely, by multistability we mean a situation in which a stimulus can lead
to more than one observable outcome. The outcome may depend on the initial
conditions, that is, the state of the system when the stimulus is applied, or
more generally on the entire past history of the system. Accounting for mul-
tistability is an important necessary step when one wants to understand why
in an isogenic, genetically homogeneous population subject to an interference
such as ionising radiation, different cells react differently.

The literature on detecting multistability or the lack thereof in networks, and
in particular in signal transduction pathways, is growing apace. The reader is
referred, for example, to the work of Feinberg et al. [1] or of Sontag and his
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collaborators [2–4], much of it based on the theory of monotone dynamical
systems [5] and graph-theoretical methods.

In this paper we will discuss a very simple system that exhibits multistability
(in fact, bistability). This is the autophosphorylating kinase example due to
Lisman [6], in which much can be done explicitly. The paper of Lisman is very
well known but his analysis is incomplete. In particular, very surprisingly, this
model, the derivation of which uses only the rules of enzyme kinetics, turns
out not to be structurally stable in the following sense: if kinase turnover is
incorporated into the equations, bistability can disappear for arbitrarily small

values of kinetic constants describing kinase turnover. Observe, in this context,
that the models of [2] and [1] do not take protein turnover into account.

Note that autophosphorylating kinases exist and carry out many important
tasks. One example is provided by ATM, a DNA damage sensor [9], another,
by the calciūm/calmodulin-dependent protein kinase II (CaMKII), which is
considered, for instance, in [7]. In that paper, the fact that protein turnover
causes the switch to reset itself due to the disappearance of bistability, is
clearly acknowledged.

Another paper that deals with this structural instability phenomenon is [10].
There, the authors also suggest a mechanism for enlarging the region of pa-
rameter space where bistability persists on addition of protein turnover; in the
present paper we show analytically that indeed this mechanism, cooperative
stability, will have the effect suggested for it in [10]. We also comment on the
lack of cooperative stability in ATM.

Everywhere below we will be using the following convention: S is the concen-
tration (moles per unit volume) of a species S; Seq will denote the equilibrium
concentration of S.

2 The Lisman Model

Lisman [6] considers the question of stable information storage by unstable
molecules. He suggests a switch comprised of a protein kinase-kinase (KK)
and a protein kinase, which can activate itself by autophosphorylation. This
means that an activated, phosphorylated molecule of the kinase, K∗, can phos-
phorylate an inactive non-phosphorylated molecule K to create two molecules
of K∗; see Figure 1.

With reference to Figure 1, we assume that the kinase-kinase has already
stimulated the kinase (which Lisman calls kinase-1) and so we have a cer-
tain amount of activated phosphorylated kinase K∗. Lisman [6, p. 3056] says
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stimulus

KK KK*

K K*K*

phosphatase

phosphatase

Fig. 1. The Lisman example: dotted arrows indicate catalysis; arrows ending in ∅
denote degradation; arrow that originates in ∅ denotes de novo synthesis.

that if the level of the activated kinase is high enough, we have created a
dynamic switch, which “therefore will not be reset by reasonable levels of
protein turnover. If the switch is on, and kinase-1 is is active, newly synthe-
sized kinase-1 molecules will become activated, thus replacing active kinase-1
molecules destroyed by protein turnover.” Here we investigate this suggestion
in detail.

Let us consider the minimal set of processes that operate here.

1. A molecule of K combines with a molecule of K∗ to give two molecules of
K∗; this is the autophosphorylation step: K + K∗ > 2K∗;

2. A molecule of K∗ combines with a molecule of phosphatase, P, to give a
molecule of phosphatase and a molecule of K: K∗ + P > K + P ;

3. K is destroyed (kinase turnover): K > ∅;
4. K∗ is destroyed (kinase turnover): K∗ > ∅;
5. K is created de novo: ∅ > K.

Thus in particular we are making the assumption that the amount of phos-
phatase is constant in time and that we no longer require the kinase-kinase
KK∗ to activate the kinase K. To translate this list of reactions into an
analysable mathematical model, we must be more explicit about reaction
mechanisms.

(a) For autophosphorylation we assume the following scheme:

K + K∗

r

f1

b1

r CK

f2

> 2K∗.

This is the simplest possible mechanism that is in accordance with the rules of
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enzymes kinetics: K and K∗ create a complex, CK, at the (forward) rate f1; this
complex is either broken back down to its original constituents at rate b1 or
proceeds at rate f2 (which takes into account the ambient ATP concentration)
to phosphorylate the molecule of K and thus create 2 molecules of K∗.

(b) Similarly, for dephosphorylation we have

P + K∗

r

f3

b3

r CP

f4

> P + K.

(c) For protein degradation we shall assume first order kinetics, that is, that
K is degraded at a rate proportional to its amount with a rate constant d and,
similarly that K∗ is degraded at a rate proportional to its amount with a rate
constant d∗. We will see that, as also pointed out in [10], the ratio d∗/d has
an important influence on bistability.

(d) Finally, we assume that K is created at constant rate α (zero order kinet-
ics). In other words, we are assuming that there is no feedback between its
concentration and the rate of its synthesis.

3 The Governing ODEs

Using the laws of mass action kinetics, which of course are only valid when
the numbers of molecules involved are large and the system is well-stirred, we
get the following system of equations:

dK

dt
= α − dK − f1KK∗ + b1CK + f4CP,

dK∗

dt
= − d∗K∗ − f1KK∗ + b1CK + 2f2CK

− f3K
∗(Ptot − CP) + b3CP,

dCP

dt
= f3K

∗(Ptot − CP) − (b3 + f4)CP,

dCK

dt
= f1KK∗ − (b1 + f2)CK.

(1)

We also have the conservation law P + CP = Ptot, where Ptot is the total
concentration of phosphatase, assumed constant.

At equilibrium, from the last two equations of (1) we obtain

(CP)eq =
f3K

∗

eqPtot

f3K∗eq + (b3 + f4)
and (CK)eq =

f1KeqK∗

eq

b1 + f2

. (2)
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Substituting these formulae into the equations for dK/dt and dK∗/dt, we have
that at equilibrium

0 = α − dKeq − βKeqK∗

eq +
VmaxK

∗

eq

K∗eq + KM

,

0 = − d∗K∗

eq + βKeqK∗

eq − VmaxK
∗

eq

K∗eq + KM

.

(3)

Here we have put

β =
f1f2

b1 + f2

, Vmax = f4Ptot and KM =
b3 + f4

f3

.

These parameters are easy to interpret: β measures the strength of auto-
phosphorylation; Vmax is the maximal speed of dephosphorylation by the phos-
phatase, and KM , the Michaelis-Menten constant, is the concentration K∗ for
which the phosphatase is working at half its maximal speed Vmax; thus it
measures the avidity of phosphatase for K∗.

4 The Case of No Kinase Turnover

In this situation in (3) we have α = 0, d = 0 and d∗ = 0. Lisman’s strategy is
to analyse this case and then to suggest that if the turnover parameters are
sufficiently small, the behaviour of the system will not change by much.

In the case of zero turnover parameters, the two equations of (3) are identical;
K∗

eq is always a solution. We need to use the additional conservation law,

d

dt
(K + K∗ + 2CK + CP ) = 0. (4)

Let us call the total concentration of kinase T , and so without kinase turnover
for all time T (t) is constant, and in particular

Keq + K∗

eq + 2(CK)eq + (CP )eq = T =

K(0) + K∗(0) + 2CK(0) + CP (0).

Thus, putting Keq = T −K∗

eq− 2(CK)eq− (CP )eq, with (CP )eq and (CK)eq
given by (2), the study of non-zero equilibria of (3) reduces to that of a single
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equation,

(
K∗

eq
)2

+

(
Vmax

f4

+
2Vmax

f2

− T + KM

)
K∗

eq

+
Vmax

β
− TKM = 0.

(5)

Setting φ = 1 + 2f4/f2, this can be rewritten as

(
K∗

eq
)2

+ (φPtot − T + KM) K∗

eq +
Vmax

β
− TKM = 0. (6)

This is a quadratic in K∗

eq, the simplest form of equilibrium equations that
can give rise to bistability.

To have positive solutions of (6), we must have

T > T0 := KM + φPtot. (7)

At the same time, we must have

T <
Vmax

βKM

. (8)

Thus there is an upper and a lower bound on the total concentration of the
kinase for which there could be bistability. There is another condition: the
discriminant of the quadratic (6) must be positive. This is the condition

(φPtot − T + KM)2 > 4

(
Vmax

β
− TKM

)
. (9)

Condition (9) says that as the strength of dephosphorylation, as measured
by Vmax, is increased, sooner or later there will be no phosphorylated kinase;
similarly, bistability requires sufficient strength of the positive feedback, i.e.
autophosphorylation, as measured by β.

If (Vmax/β −T0KM) ≤ 0, condition (9) is vacuously satisfied. If this is not the
case, there is some smallest value T1 > T0 such that (9) (and thus automati-
cally (7)) holds. Let us put

T∗ =
{

T1 if T1 exists

T0 otherwise.
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Then all the three conditions can be combined to give the following necessary
and sufficient condition for bistability:

T ∈ I :=

(
T∗,

Vmax

βKM

)
. (10)

Note that everything here has the dimensions of concentration. Thus if the
interval I in (10) is empty, or if T is not in that interval, there is no bistability
in (1).

When the interval in (10) is non-empty, using T as the bifurcation parameter,
a typical bifurcation diagram is as in Figure 2: as T is increased, bistability, i.e.
the existence two non-negative stable steady states appears by a saddle-node
bifurcation and disappears in a transcritical bifurcation, leaving only the high
K∗ state. In that Figure, solid lines correspond to stable solutions.

K*

T

eq

Fig. 2. Bifurcation diagram for the Lisman example

To summarise, bistability in (1) without kinase turnover will occur if only if the
initial data {K(0), K∗(0), CK(0), CP (0)} satisfies K(0) + K∗(0) + 2CK(0) +
CP (0) ∈ I.

5 The Case of Non-zero Kinase Turnover

In this case, note that if some, but not all, of α, d, d∗ are non-zero, bistability
is impossible, as

d

dt
(K + K∗ + CP + 2CK) = α − dK − d∗K∗. (11)

So, at equilibrium we have

α − dKeq − d∗K∗

eq = 0,
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and thus, for example, if d = 0, K∗

eq is uniquely defined: K∗

eq = α/d∗. If
all four parameters are non-zero, it is certainly possible to have bistability.
In Figure 3 we plot the equilibrium values of CK , CP , K and K∗ as we vary
d = d∗. Note the trivial branch CKeq = CP eq = K∗

eq = 0, Keq = α/d.
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Fig. 3. One-parameter bifurcation diagrams in the Lisman example with protein
turnover. b1 = b3 = 0.1s−1 and all the other required parameters are taken from the
experiments on CaMKII reported in [7,8], α = 2.5s−1µM, f1 = 3s−1µM, f2 = 3s−1,
f3 = 40s−1µM, f4 = 10s−1, Ptot = 1µM. Solid (dashed) curves indicate stable
(unstable) branches.

In Figure 4 we present the results of a two-parameter continuation of equilibria
in the (d, α) plane, all the rest of the parameters being as in Figure 3.

As we can see from Figure 4, bistability persists only in a wedge in the (d, α)
plane. We will now study this phenomenon in more detail. As the full algebra
with all three of these parameters being non-zero is cumbersome, we will only
deal with two informative particular cases.

(1) We want to understand what is happening when the turnover parameters
are “small”. For that we need to non-dimensionalise the governing equilibrium
equations (3). Setting

K̃eq = KMKeq, K̃∗

eq = KMK∗

eq, β̃ = βK2
M

/Vmax,

and

d̃ = dKM/Vmax, d̃∗ = d∗KM/Vmax, α̃ = α/Vmax,
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Fig. 4. A two-parameter equilibria continuation in the (d, α) plane. The solid curves
denote the boundary of the bistability region and the shading indicates the equi-
librium values for CK (left), CP (left-middle), K (right-middle) and K∗ (right).
White denotes the regions where equilibria either do not exist or are zero. The
slices through α = 2.5 as in Figure 3 are indicated by the dashed line.

we have the non-dimensionalised equivalent of (3),

0 = α̃ − d̃K̃eq − β̃K̃eqK̃∗

eq +
K̃∗

eq

K̃∗

eq + 1
,

0 = − d̃∗K̃∗

eq + β̃K̃eqK̃∗

eq −
K̃∗

eq

K̃∗

eq + 1
.

(12)

Now let all the three parameters α̃, d̃, d̃∗ be O(ǫ), for some small ǫ > 0 while
the ratios γ := d̃∗/d̃ and α̃/d̃∗ are O(1). Performing on (3) an analysis similar
to that in section 4, we have, in the original variables, the following criterion:
there is bistability iff

α

d∗

∈ J :=

(
max

(
KM , 2

√
Vmax

γβ
− KM

)
,

Vmax

γβKM

)
(13)

to O(ǫ). Note that it is the ratio α/d∗ that has the units of concentration, so
that something like (13) had to be expected.

For example, if we set γ = 1, i.e. d = d∗, KM = 1, β = 1, Vmax = 4,
to have bistability, α/d should be in the interval (3, 4) to order ǫ. In other
words, there is a wedge in the (d, α)-plane where bistability occurs. Compare
this with Figure 4(a) of [10]. Also note that one of the main points of that
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paper is reflected in (13). The connection is as follows. In [10, p.9563], the
authors suggest that to increase the “wedge” in the turnover parameter space
where bistability occurs, it is a good idea to make the activated species less
susceptible to degradation, for example, by oligomerisation, which enhances
thermal stability of the subunits and sequesters sites that are recognisable by
proteolytic enzymes. In terms of (13) this corresponds to decreasing γ: since
the lower bound grows as 1/

√
γ and the upper one as 1/γ, the interval of

ratios α/d∗ for which there is bistability, increases.

A numerical example of the shape of the bistability wedge using the parameters
of Figure 3 is presented in Figure 5(a). The asymptotic results of (13) in this
case predict bistability for α/d ∈ (3.30784, 8.5258). As before, the lower curve
is of saddle-node bifurcations and the upper one is of transcritical ones.
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Fig. 5. The bistability wedge in (d, α) plane (a) when d and α are O(10−5) and (b)
when d and α are O(1). The symbols indicate best linear fits with the boundary
curves of the bistability region. All other parameters are as in Figure 3.

In Figure 5(b) we show that the asymptotic estimate α/d ∈ (3.30784, 8.5258)
is in reasonably good agreement with the numerics even if α, d are not par-
ticularly small.

(2) For the particular set of parameters γ = 1, β̃ = 1/4 mentioned above,
one does not need to restrict the parameters α̃ and d̃ to be small (here the
discriminant of the quadratic factors out) to show that that in the (d, α)-plane
bistability occurs if

4
K2

M

Vmax

d2 + 3KMd < α < 4
K2

M

Vmax

d2 + 4KMd,

which is of course consistent with our asymptotics and again can be compared
with Figure 4(a) of [10].
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6 Conclusions and Comments

Equation (13) shows that the system is not structurally stable with respect
to bistability: arbitrarily small rates of kinase synthesis and degradation can
make bistability (defined as the existence of two positive steady states of
(1)) disappear. In other words, suppose that experimentally we cannot detect
kinase turnover as α, d, and d∗ are very small. Then by (10), if

K(0) + K∗(0) + 2CK(0) + CP (0) ∈
(
T∗,

Vmax

βKM

)
,

we would expect the system to be bistable. However, there is no bistability if
there is kinase turnover and α/d∗ 6∈ J (see (13)), no matter how small α, d,
and d∗ are individually.

This situation raises a number of questions. First of all, how wide-spread is
this instability phenomenon; for example, is it also the case in the (conser-
vative) Cdc2/Wee1 system considered in [2]? The second important question
is: What additional control structures must be in place in a mass-conserving
system so that arbitrarily small variations in protein turnover rates do not de-
stroy bistability; certainly postulating cooperative stability as in [10] does not
resolve the problem of structural instability. This question can be rephrased
mathematically as follows: what subclass of mass-conserving multistable sys-
tems still exhibits multistabilty after the introduction of arbitrary, sufficiently
small inflows and outflows?

Note also that our analysis rests on the assumption that synthesis of the kinase
K follows zero order kinetics, while its proteolysis follows first order kinetics.
It would be interesting to verify or falsify these assumptions experimentally
for example, in the case of CaMKII.

It is not clear a priori that characterisation of bistability in terms of equilib-
rium states is the right one in biology. For if all the turnover parameters are
very small, for finite times the system does behave like the one for which they
are zero, i.e. the one in which the total amount of kinase is conserved. So even
if there is no bistability as disclosed to us by an analysis of steady states, for
finite time the system may maintain a high level of K∗, i.e. memory will decay
but slowly; see [7] for a discussion of this phenomenon.

Finally, note that in the case of ATM, it is the activated form that is a
monomer, while inactive protein is found in dimeric units [9]. This situation
would correspond to the case of large γ in (13). In the context of DNA damage
sensing, unlike the case of memory in the CNS, it is very important to switch
ATM off as soon as possible, as it may coopt p53 to sentence the cell to death
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by apoptosis.
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