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RESEARCH ARTICLE

Fractional Transformations of Generalised Functions

Khaula Naeem Khan, Wilson Lamb∗ and Adam C. McBride
Department of Mathematics, University of Strathclyde, Livingstone Tower,

26 Richmond Street, Glasgow G1 1XH, U.K.

A distributional theory of fractional transformations is developed. A constructive approach,
based on the eigenfunction expansion method pioneered by A. H. Zemanian, is used to pro-
duce an appropriate space of test functions and corresponding space of generalised functions.
The fractional transformations that are defined are shown to form an equicontinuous group of
operators on the space of test functions and a weak* continuous group on the space of gener-
alised functions. Integral representations for the fractional transformations are also obtained
under certain conditions. The fractional Fourier transformation is considered as a particular
case of our general theory.
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1. Introduction

In recent years there has been considerable interest in fractional versions of classical
integral transforms, such as the Fourier transform; see [2] and [10]. This has been
prompted by applications of the fractional Fourier transform (FrFT) to problems
arising in signal processing, optics and quantum mechanics. Although the idea of a
fractional power of the Fourier operator dates back to work by Wiener [12] in 1929,
the development of a wide-ranging modern theory, including operational formulae,
stems from a paper by Namias [9] which appeared in 1980.

The approach used by Namias relies primarily on eigenfunction expansions. For
suitable functions φ, the Fourier transform F is defined by

(Fφ)(x) =
1√
2π

∫

R
φ(y)eixy dy . (1)

The integral in (1) exists pointwise for all x ∈ R when φ ∈ L1(R) and is interpreted
as

∫

R
φ(y)eixy dy = lim

Y→∞

∫ Y

−Y
φ(y)eixy dy

for φ ∈ L2(R), where lim denotes the limit in mean square. In the latter case, it is
known that F is a homeomorphism on L2(R) and has eigenvalues

µn = einπ/2, n = 0, 1, . . . .
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with corresponding eigenfunctions

ψn(x) =
1√

2nn!
√

π
e−x2/2Hn(x), (2)

where Hn is the Hermite polynomial of degree n. As {ψn}∞n=0 is an orthonormal
basis for L2(R), it follows that

Fφ =
∑

n

einπ/2(φ, ψn)2ψn ∀φ ∈ L2(R)

and, by repeated application,

F kφ =
∑

n

einπk/2(φ, ψn)2ψn ∀φ ∈ L2(R), k = 2, 3, . . . . (3)

This led Namias to define a family of operators {Fα}α∈R via the formula

Fαφ =
∑

n

einα(φ, ψn)2ψn ∀φ ∈ L2(R). (4)

Clearly, Fα = F when α = π/2 and it is a routine matter to show that

FαFβφ = Fα+βφ , ∀φ ∈ L2(R), ∀α, β ∈ R .

Namias also gave an integral representation of Fαφ and noted that

Fα = eiαE , where E = −1
2
(D2 − x2 + 1), D = d/dx . (5)

As Namias’s innovative ideas and results were developed in a formal manner, they
were later revisited by McBride and Kerr in [4], where a mathematically rigorous
account is presented for the FrFT on the space S of test functions of rapid descent.
It was pointed out in [4] that the integral formula obtained by Namias agreed with
(4) only for certain values of α, not all. To rectify this, McBride and Kerr derived
an alternative integral representation in the form

(Fαφ)(x) =
ei( π

4
α̂−α/2)

√
2π| sinα|e

−i x2

2
cot α

∫ ∞

−∞
e

ixy

sin α e−i y2

2
cot αφ(y) dy, (6)

where α̂ = sgn(sinα), valid in the first instance for 0 < |α| < π. They noted that
(6) reduces to the classical Fourier transform when α = π/2 and to its inverse when
α = −π/2. With

(F0φ)(x) = φ(x), (F±πφ)(x) = φ(−x) (7)

the definition of Fα was extended to all α ∈ R by periodicity. In [5], the resulting
family of operators {Fα}α∈R was proved to be a C0-group of unitary operators on
L2(R), with infinitesimal generator G = iG1, where G1 is the self-adjoint realisation
of the operator E given in (5) with domain

D(G1) = {φ ∈ L2(R) : φ′ ∈ L2(R) and Eφ ∈ L2(R)}.
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This semigroup analysis provided a precise interpretation of the exponential for-
mula (5).

More recently in [13], Zayed used the same aproach as Namias to produce a
more general method for defining fractional versions of a wider class of transforms.
His starting point was to consider a bounded linear operator A on some separable
Hilbert space H, where A is assumed to have a complete orthonormal system of
eigenvectors {ψn} in H with corresponding eigenvalues {µn}. It follows from the
continuity of A that

Akφ =
∑
n

µk
n(φ, ψn)

H
ψn , ∀φ ∈ H, k = 1, 2, 3, . . .

where (·, ·)
H

denotes the inner product in H and the series converges in H. On
choosing an appropriate branch for the power function f(z) = zα, the fractional
operator Aα was defined by

Aαφ =
∑

n

µα
n(φ, ψn)

H
ψn

provided the series converges in H.
Zayed then examined the specific case when H = L2

ρ(I), the Hilbert space con-
sisting of all square integrable functions on I with respect to some measure ρ,
where I = (a, b), −∞ ≤ a < b ≤ ∞. Under the assumption that

∞∑

n=0

|µn|2α|ψn(x)|2 < ∞, ∀x ∈ I,

the function kα, defined by

kα(x, t) :=
∞∑

n=0

µα
nψn(x)ψn(t),

was shown to have the property that kα(x, ·) ∈ L2
ρ(I) for each fixed x ∈ I, and this

led to the integral representation

(Aαφ)(x) =
∫

I
kα(x, t)φ(t)dρ(t).

When µn = eiβn, for some β ∈ R, operators Aα, α ∈ R, were defined by the
formula

(Aαφ)(x) = lim
r→1−

∞∑

n=0

rneinα(φ, ψn)2ψn(x) .

In this case an integral representation for Aα was obtained under the weaker con-
dition that

∞∑

n=0

zn|ψn(x)|2 < ∞, ∀|z| < 1.
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Since

(Aαφ)(x) = lim
r→1−

∞∑

n=0

rneinα(φ, ψn)2ψn(x) =
∞∑

n=0

einα(φ, ψn)2ψn(x)

whenever the series converges, it follows that

(Aαφ)(x) = lim
|z|→1−

∫

I
kα(x, t, z)φ(t)dρ(t) =

∫

I
kα(x, t)φ(t)dρ(t), (8)

where z = |z|eiα = reiα,

kα(x, t, z) :=
∞∑

n=0

znψn(x)ψn(t),

kα(x, t) :=
∞∑

n=0

einαψn(x)ψn(t)

and it is assumed that it is legitimate to take the limit inside the integral in (8).
Zayed noted that, in terms of polar coordinates (r, θ), the kernel kα(x, t) is the
radial limit of kα(x, t, z) as |z| → 1− along the ray θ = α. Hence he referred to
Aα as an angular transform. The operator Aα has properties similar to fractional
Fourier transforms, which Zayed considered as a specific example.

As the classical theory of the FrFT has a number of limitations, due primarily
to the fact that many common functions do not belong to either S or L2(R),
several distributional versions have also been developed. In [14], Zayed described
two approaches. The first is analytic and uses the so-called “embedding method”
to define the FrFT on the space E ′ of distributions with compact support. The
second is algebraic, and involves the theory of Boehmians. Prior to this, Kerr [6]
followed the usual “adjoint method” for defining the Fourier transform on the space
S′ of tempered distributions to extend the FrFT to S′. Using the fact that Fα is
a homeomorphism on S, and defining the extended version F̃α on S′ to be the
adjoint of Fα on S, standard results on adjoints established that each F̃α is a
homeomorphism on S′.

Our aim in the current paper is to demonstrate how the Hilbert space
eigenfunction-expansion approach used by Zayed can be adapted to produce a
theory of fractional transforms defined on spaces of generalised functions that are
obtained in a constructive manner. In contrast to [13], where the starting point is
a bounded operator on an L2 space, our strategy involves a symmetric, unbounded
differential operator T that is defined on some subspace A of L2. By assuming
that T has a complete orthonormal system of smooth eigenfunctions in L2 and
using the elegant theory produced by Zemanian [15, Chapter 9] for representing
generalised functions in terms of eigenfunction expansions, we are able to develop a
mathematically rigorous and systematic eigenfunction-based approach for defining
distributional versions of fractional transformations. Moreover, we establish con-
nections with equicontinuous and weak*-continuous groups of operators defined on
locally convex topological vector spaces. As a special case of our general theory, we
shall recover, and also extend, the tempered distribution results obtained by Kerr
in [6] for the FrFT.

We begin in Section 2 by recalling some of the results on fractional transforma-
tions given by Zayed. Then, together with some results on groups of operators, we
develop a general theory of fractional transforms {Gα}α∈R on the Hilbert space
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L2(I). We obtain a self-adjoint operator T in L2(I) such that iT generates a group
of continuous operators {Gα}α∈R on L2(I), and then investigate conditions under
which the fractional transform Gα can be represented as an integral transform.

In Section 3, we extend the L2 theory of fractional transformations to spaces of
test functions. In particular we concentrate on a particular Fréchet space A and
show how {Gα}α∈R is an equicontinuous group of operators on A. In this case we
define a symmetric differential operator T which is a restriction of T and establish
that iT is the infinitesimal generator of the equicontinuous group {Gα}α∈R on A.

In Section 4, the results obtained in Section 3 for spaces of test functions are
extended to the corresponding spaces of generalised functions. Here we obtain a
weak*-continuous group of operators.

Finally, in Section 5, we consider a particular case and describe how the tempered
distribution theory of the FrFT given by Kerr [6] can be obtained in a natural and
constructive manner by using orthonormal series expansions.

2. Fractional Transforms in a Hilbert space

We consider the Hilbert space L2(I), where I is an open interval in R. Given
a complete orthonormal system of smooth eigenfunctions {ψn}∞n=0 ⊂ L2(I) and a
sequence {λn}∞n=0 of real numbers with |λn| → ∞ as n →∞, we define an operator
T by

T φ :=
∑

n

λn(φ, ψn)2ψn, (9)

D(T ) := {φ ∈ L2(I) :
∑

n

λ2
n|(φ, ψn)2|2 < ∞}. (10)

Clearly ψn ∈ D(T ) and T ψn = λnψn for each n = 0, 1, 2 . . . .

Lemma 2.1 The operator T is self-adjoint.

Proof Let φ, ψ ∈ D(T ). Then

(T φ, ψ)2 = (
∑

n

λn(φ, ψn)2ψn, ψ)2 =
∑

n

λn(φ, ψn)2(ψn, ψ)2

= (φ,
∑

n

λn(ψ,ψn)2ψn)2 = (φ, T ψ)2.

Hence T is a symmetric operator and it follows that

D(T ) ⊂ D(T ∗).

Now let ψ ∈ D(T ∗). Then

(T φ, ψ)2 = (φ, T ∗ψ)2, ∀φ ∈ D(T ).

Therefore

(
∑

n

λn(φ, ψn)2ψn, ψ)2 = (
∑

n

(φ, ψn)2ψn, T ∗ψ)2
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and so

∑
n

λn(φ, ψn)2(ψ,ψn)2 =
∑

n

(φ, ψn)2(T ∗ψ,ψn)2.

Choose φ = ψ0, ψ1, ψ2, . . . to obtain

λn(ψ, ψn)2 = (T ∗ψ, ψn)2 ∀n.

Consequently

T ∗ψ =
∑

n

λn(ψ, ψn)2ψn = T ψ,

which gives the required result that T is self-adjoint. ¥

It follows from Stone’s theorem [3, p.32] that iT generates a (C0)-unitary group
{exp (iαT )}α∈R on the space L2(I).

If we now define a family of operators {Gα}α∈R on L2(I) by

Gαφ :=
∑

n

eiλnα(φ, ψn)2ψn ∀φ ∈ L2(I), (11)

then we can prove the following result.

Theorem 2.2 Let {Gα}α∈R be defined by (11). Then {Gα}α∈R is a strongly con-
tinuous group of unitary operators on L2(I). Moreover, the infinitesimal generator
S of {Gα}α∈R is given by iT , where T is defined by (9) and (10).

Proof It is straightforward to prove that {Gα}α∈R satisfies the algebraic properties
of a group, that is G0 = I and GαGβ = Gα+β = GβGα for all α, β ∈ R. Moreover,
for each φ ∈ L2(I),

‖Gαφ− φ‖2
2 =

∑
n

|(eiλnα − 1)|2|(φ, ψn)2|2.

Clearly |eiλnα − 1|2|(φ, ψn)2|2 → 0 as α → 0 for each n. Also,

(eiλnα − 1)(e−iλnα − 1) = 2− 2 cos(λnα) ≤ 4, ∀α

and so

|eiλnα − 1|2|(φ, ψn)2|2 ≤ 4|(φ, ψn)2|2 .

Since

∑
n

|(φ, ψn)2|2 = ‖φ‖2
2 < ∞,

it follows from the Weierstrass M-test [1, p.438] that

‖Gαφ− φ‖2
2 → 0 as α → 0 .
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Hence {Gα}α∈R is a strongly continuous group of operators on L2(I). In addition,
for φ, ψ ∈ L2(I),

(Gαφ, ψ)2 = (
∑
n

eiλnα(φ, ψn)2ψn, ψ)2 =
∑

n

eiλnα(φ, ψn)2(ψn, ψ)2

= (φ,
∑

n

e−iλnα(ψ, ψn)2ψn)2 = (φ,G−αψ)2,

and therefore G∗
α = G−α = G−1

α , establishing that each Gα is unitary.
For the infinitesimal generator of {Gα}α∈R, we show first that if φ ∈ D(T ) then

φ ∈ D(S) and

lim
α→0

∥∥∥∥
Gαφ− φ

α
− iT φ

∥∥∥∥
2

= 0. (12)

Consider

lim
α→0

∥∥∥∥∥
∑
n

(
eiλnα − 1

α
− iλn)(φ, ψn)2ψn

∥∥∥∥∥
2

2

= lim
α→0

∑
n

∣∣∣∣
eiλnα − 1

α
− iλn

∣∣∣∣
2

|(φ, ψn)2|2.

Let

gα(n) =
{

( eiλnα−1
α − iλn)(φ, ψn)2 when α 6= 0

0 when α = 0.

Arguing as above, we obtain

|gα(n)|2 ≤ 4|λn|2|(φ, ψn)2|2 ∀n, ∀α.

Hence, by the Weierstrass M-test,

lim
α→0

∑
n

|gα(n)|2 =
∑
n

lim
α→0

|gα(n)|2 = 0,

and therefore (12) is satisfied. Consequently φ ∈ D(S) and iT φ = Sφ for all
φ ∈ D(T ) ⊂ D(S).

For the converse, suppose that φ ∈ D(S). Then

lim
α→0

∥∥∥∥
Gαφ− φ

α
− Sφ

∥∥∥∥
2

2

= 0.

Also Sφ ∈ L2(I) and can be written as Sφ =
∑

n(Sφ, ψn)2ψn. Therefore

∥∥∥∥
Gαφ− φ

α
− Sφ

∥∥∥∥
2

2

=
∑
n

∣∣∣∣
eiλnα − 1

α
(φ, ψn)2 − (Sφ, ψn)2

∣∣∣∣
2

→ 0 as α → 0.

Thus

lim
α→0

eiλnα − 1
α

(φ, ψn)2 = (Sφ, ψn)2 ∀n,
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that is

Sφ =
∑
n

iλn(φ, ψn)2ψn = iT φ, ∀φ ∈ D(S).

Hence the result follows. ¥

Our aim now is to investigate conditions under which the fractional transform
Gα, defined by (11), has an equivalent representation in the form of an integral
transform. Following Zayed’s approach [13], we define the operator Gα,r as

Gα,rφ :=
∞∑

n=0

rneiλnα(φ, ψn)2ψn, (13)

where 0 < r ≤ 1, and so Gα := Gα,1. Clearly, Gα,r ∈ B(L2(I)) for each α ∈ R and
r ∈ (0, 1], since ‖Gα,rφ‖2

2 ≤ ‖φ‖2
2 for all φ ∈ L2(I). Moreover

Gα,rφ → Gαφ in L2(I) as r → 1−. (14)

This leads immediately to the following result.

Corollary 2.3 For each fixed φ ∈ L2(I), there exists {rj}∞j=1, with rj → 1− as
j →∞, such that

(Gαφ)(x) = lim
j→∞

(Gα,rj
φ)(x),

for almost all x ∈ I.

Proof This is a consequence of a standard result that if a sequence {φn} converges
in L2(I) to φ, then there exists a subsequence {φnk

} that converges pointwise
almost everywhere to φ. ¥

We now assume that, for each x ∈ I,

∞∑

n=0

r2n|ψn(x)|2 < ∞ ∀r ∈ (0, 1), (15)

which will enable us to obtain an integral representation of Gα,r, for α ∈ R and
0 < r < 1.

Lemma 2.4 If (15) holds, then

(Gα,rφ)(x) =
∫

I
kα,r(x, y)φ(y)dy 0 < r < 1, φ ∈ L2(I), (16)

where

kα,r(x, y) =
∞∑

n=0

rneiλnαψn(x)ψn(y). (17)

Proof If (15) holds, then, for each x ∈ I,
∑∞

n=0 rneiλnαψn(x)ψn converges in L2(I)
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to a function which we denote by kα,r(x, ·). Now, for each φ ∈ L2(I) and x ∈ I,

(φ, kα,r(x, ·))2 = (φ,
∞∑

n=0

rne−iλnαψn(x)ψn)2 =
∞∑

n=0

rneiλnα(φ, ψn)2ψn(x).

Therefore,

(Gα,rφ)(x) =
∫

I
kα,r(x, y)φ(y)dy =

∫

I
(
∞∑

n=0

rneiλnαψn(x)ψn(y))φ(y)dy.

¥

Corollary 2.5 If (15) holds, then for each φ ∈ L2(I) there exists {rj}, with
rj → 1− as j →∞, such that

(Gαφ)(x) = lim
j→∞

(Gα,rj
φ)(x) = lim

j→∞

∫

I
kα,rj

(x, y)φ(y)dy

almost everywhere in I.

Proof The proof follows from Corollary 2.3. ¥

Note that, if kα,r(x, y) converges pointwise to kα,1(x, y) as r → 1− and the limit
can be taken inside the integral, then we arrive at

(Gαφ)(x) =
∫

I
kα,1(x, y)φ(y)dy, φ ∈ L2(I).

We shall show in Section 5 that this procedure is valid in the case of the FrFT.

3. Fractional Transforms on Test Functions

In this section, we develop a general theory of fractional transforms on spaces
of test functions that are constructed in a systematic manner. Central to this
are differential operators T : L2(I) ⊃ D(T ) → L2(I) of the type introduced by
Zemanian in [15, Chapter 9]. Therefore throughout the following discussion T will
be a differential expression of the form

T = θ0D
n1θ1D

n2 . . . Dnν θν (18)

where D = d/dt, the nk are positive integers, and the θk are smooth functions on
I. Moreover, it is assumed that T satisfies the symmetry condition

T = θν(−D)nν . . . (−D)n2θ1(−D)n1θ0, (19)

has eigenfunctions {ψn}∞n=0 that form a complete orthonormal basis for L2(I) and
where the corresponding real eigenvalues {λn}∞n=0 are such that |λn| → ∞ as
n →∞. We shall take the domain, D(T ), of T to be

D(T ) :=
{

φ ∈ C∞(I) : T kφ ∈ L2(I), (T kφ, ψn)2 = (φ, T kψn)2,∀ k, n = 0, 1, . . .
}

(20)
where T 0 is the identity operator on L2(I).
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Note that D(T ) is dense in L2(I), since C∞
0 (I) ⊂ D(T ), and each eigenfunction

ψn ∈ D(T ). Moreover, it follows from [15, p.255] that T is symmetric on D(T ) and,
since

Tφ =
∑

n

(Tφ, ψn)2ψn =
∑

n

(φ, Tψn)2ψn

=
∑

n

(φ, λnψn)2ψn =
∑

n

λn(φ, ψn)2ψn

= T φ ∀φ ∈ D(T ),

we deduce that (T, D(T )) is a restriction of the operator (T , D(T )) defined via (9)
and (10).

For such a differential operator T , the Fréchet space A introduced by Zemanian
in [15, Chapter 9] can be defined as follows.

Definition 3.1 The space A is the vector space D(T ) equipped with the topology
generated by the countable multinorm {βk}∞k=0, where

βk(φ) := ‖T kφ‖2 < ∞, k = 0, 1, 2, . . . .

It follows from the definition of βk that T r is a continuous linear operator on A
for each r = 1, 2, 3, . . . .

Now consider the family of operators {Gα}α∈R defined by (11). Our aim is to
show that {Gα}α∈R is an equicontinuous group on the space A. First we shall
establish that each Gα is well defined as a continuous linear mapping from A into
A. For this we require the following result.

Lemma 3.2

(i) The series
∑

n(φ, ψn)2 ψn converges to φ in the topology of A for each
φ ∈ A.

(ii) Let {an} be a sequence of complex numbers. Then
∑

n anψn converges in A
if and only if

∑
n |λn|2k|an|2 converges for every non-negative integer k.

Proof See [15, Lemmas 9.3-2, 9.3-3]. ¥

Lemma 3.3 The operator Gα is continuous on A for all α ∈ R.

Proof Let φ ∈ A. Then

∑
n

|eiλnα(φ, ψn)2|2|λn|2k =
∑

n

|(φ, ψn)2|2|λn|2k < ∞ ∀k = 0, 1, 2, . . . .

Therefore, it follows from Lemma 3.2 that Gαφ ∈ A. To complete the proof we
shall use the result

T kGαφ = GαT kφ, ∀φ ∈ A, α ∈ R, k = 1, 2, . . . , (21)

which can easily be deduced from the linearity and continuity of T k on A. From
(21) we obtain, for each φ ∈ A and k = 0, 1, 2, . . . ,

βk(Gαφ) = ‖T kGαφ‖2 = ‖GαT kφ‖2

= ‖T kφ‖2 = βk(φ), (since Gα is an isometry on L2(I)).

This shows that Gα ∈ L(A), the space of continuous linear operators on A. ¥
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Theorem 3.4 The family of continuous operators {Gα}α∈R is an equicontinuous
group on A.

Proof From Lemma 3.3, {Gα}α∈R ⊂ L(A). The algebraic conditions for {Gα}α∈R
to be a group are satisfied, as in Theorem 2.2, because A ⊂ L2(I). Moreover, for
k = 0, 1, 2, . . .,

βk(Gαφ− φ) = ‖T kGαφ− T kφ‖2

= ‖Gα(T kφ)− T kφ‖2 (from (21))

→ 0 as α → 0 (from Theorem 2.2).

Hence {Gα}α∈R is a strongly continuous group of continuous linear operators on
A. It follows from the argument used in Lemma 3.3 that for each k

βk(Gαφ) = βk(φ) ∀α ∈ R, φ ∈ A. (22)

For equicontinuity, it is sufficient to verify that for each βk there exists a continuous
seminorm qk on A such that

βk(Gαφ) ≤ qk(φ) ∀α ∈ R, φ ∈ A.

But this follows from (22), as we can simply take qk = βk. Hence {Gα}α∈R is
equicontinuous. ¥

The following theorem shows that the infinitesimal generator R of the group
{Gα}α∈R on A is the operator iT ∈ L(A).

Theorem 3.5 Let {Gα}α∈R be the equicontinuous group on the space A defined
by (11), where the series now converges in A. Then the associated infinitesimal
generator is R = iT , where T ∈ L(A) is defined by (18) - (20).

Proof To prove that iT is the generator R of {Gα}α∈R, we need to show that
D(R) = D(T ) = A and Rφ = iTφ, for all φ ∈ A. Clearly D(R) ⊆ D(T ), since iT
is defined on all of A. To prove the reverse inclusion, let φ ∈ D(T ) = A and let k
be any non-negative integer. Then

∑
n |λn|2k|(φ, ψn)2|2 < ∞. Also,

[
βk(

Gαφ− φ

α
− iTφ)

]2

=
∥∥∥∥T k

(
Gαφ− φ

α

)
− iT kTφ

∥∥∥∥
2

2

=
∥∥∥∥
Gα(T kφ)− T kφ

α
− iT (T kφ)

∥∥∥∥
2

2

(from (21))

→ 0 by Theorem 2.2.

Consequently for each φ ∈ D(T ) = A, we have

iTφ = lim
α→0

Gαφ− φ

α
,

and so φ ∈ D(R). Moreover, Rφ = iTφ for all φ ∈ A and the stated result follows.
¥

We now return to to the operators Gα,r defined by (13) and examine their prop-
erties on the space A.
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Lemma 3.6 For φ ∈ A, the series given by (13) converges in A. Also Gα,r ∈ L(A)
and Gα,rφ → Gαφ in A as r → 1−.

Proof That Gα,r ∈ L(A) follows from the fact that βk(Gα,rφ) ≤ βk(φ) for all φ ∈ A
and k = 0, 1, 2, . . . . Also,

T kGα,rφ = Gα,rT
kφ, ∀φ ∈ A, α ∈ R, r ∈ (0, 1], k = 1, 2, . . . ,

and therefore

βk(Gαφ−Gα,rφ) = ‖GαT kφ−Gα,rT
kφ‖2 → 0 as r → 1−, ∀k = 0, 1, 2, . . . .

¥

Note that convergence in A implies convergence in E , where E is the usual space
of C∞ test functions; see [15, Lemma 9.3-4]. Consequently, for φ ∈ A, we can
state that (Gα,rφ)(x) → (Gαφ)(x) for all x, in contrast to Corollary 2.3 where
convergence was for almost all x ∈ I.

4. Fractional Transforms of Generalised Functions

Our next task is to extend the equicontinuous (C0)-group {Gα}α∈R on A to a group
of generalised operators {G̃α}α∈R on A′. Each f ∈ A′ assigns a number < f, φ >
to each φ ∈ A. In the following it is convenient to use the notation

(f, φ) :=< f, φ >, f ∈ A′, φ ∈ A.

Note that each η ∈ L2(I) generates an element η̃ ∈ A′ defined by

(η̃, φ) := (η, φ)2 =
∫

I
η(x)φ(x) dx, φ ∈ A. (23)

It follows that for each η ∈ L2(I) and φ ∈ A,

(G̃αη, φ) =
∑

n

eiλnα(η̃, ψn)(ψ̃n, φ) .

This indicates that the logical extension of Gα to A′ is given by

G̃αf =
∑

n

eiλnα(f, ψn)ψ̃n, f ∈ A′ (24)

where the series converges in A′. We shall return to this series representation of
G̃α later.

First we consider an alternative approach and proceed as follows. Let η ∈ L2(I)
and φ ∈ A. Then by (23) and Theorem 2.2 we have

(G̃αη̃, φ) := (G̃αη, φ) = (Gαη, φ)2 = (η, G−αφ)2 = (η̃, G−αφ).

This suggests that we should define G̃α on A′ as follows.
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Definition 4.1 We define the generalised operator G̃α by

(G̃αf, φ) := (f, G−αφ) f ∈ A′, φ ∈ A. (25)

Then we have

G̃α = (G−α)′ = (G∗
α)′.

Theorem 4.2 Let {G̃α}α∈R be the family of operators on A′ defined by (25). Then
for all α ∈ R, G̃α is a homeomorphism on A′ with inverse G̃−α.

Proof From Theorem 3.4, G−α is a homeomorphism on A with inverse Gα for
each α ∈ R. Definition 4.1 and a standard result on adjoint operators (see [15,
Theorem 1.10-2]) now establish that G̃α is a homeomorphism on A′ with inverse
(G−1

−α)′ = G′
α = G̃−α. ¥

Consider the operator T defined by (18)-(20) and let T̃ denote the generalised
version of T on A′. For T̃ to be an extension of T , we require

T̃ ϕ̃ = T̃ϕ, ∀ϕ ∈ D(T ). (26)

Let φ ∈ A. Then

(T̃ ϕ̃, φ) = (T̃ϕ, φ) = (Tϕ, φ)2 = (ϕ, Tφ)2 = (ϕ̃, Tφ).

This motivates the following definition.

Definition 4.3 We define the operator T̃ on A′ by

(T̃ f, φ) := (f, Tφ) f ∈ A′, φ ∈ A.

Theorem 4.4 T̃ is a continuous linear mapping from A′ into A′.
Proof Since T̃ is the adjoint of T and T ∈ L(A), this follows from [15, Theorem
1.10-1]. ¥

We know that the operator T defined by (9) and (10) is self-adjoint. Moreover
A ⊂ D(T ) and T|A = T . Therefore we have

(T̃ f, φ) := (f, Tφ) ∀f ∈ A′, φ ∈ A.

Hence T̃ = T̃ on A′, that is T̃ is also an extension of T to A′.
Theorem 4.5 The family of operators {G̃α}α∈R, defined on A′ by (25), is a weak*-
continuous group of linear operators on A′. Moreover the infinitesimal generator
of {G̃α}α∈R is (−iT )′ = ĩT .

Proof Since {Gα}α∈R is an equicontinuous group of class (C0) on A with infinitesi-
mal generator iT , it follows that {G−α}α∈R is an equicontinuous group of class (C0)
on A with infinitesimal generator −iT . On applying [7, Proposition 2.1] (adapted
for the case of equicontinuous groups) we deduce that {G̃α}α∈R = {G′−α}α∈R is a
weak*-continuous group on A′ with infinitesimal generator (−iT )′. Since

(ĩT f, ψ) = i(T̃ f, ψ) = (T̃ f,−iψ) = (f,−iTψ)
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for all f ∈ A′, ψ ∈ A, the operator ĩT is also the adjoint of −iT . ¥

To show that our definition of G̃α also agrees with (24), let f ∈ A′. Then, by
Definition 4.1,

(G̃αf, φ) = (f, G−αφ) = (f,
∑

n

e−iλnα(φ, ψn)2ψn)

=
∑
n

eiλnα(f, ψn)(ψn, φ)2 =
∑

n

eiλnα(f, ψn)(ψ̃n, φ).

Since the series on the right-hand side converges for each φ ∈ A, we obtain

(G̃αf, φ) = (
∑

n

eiλnα(f, ψn)ψ̃n, φ), (27)

and so

G̃αf =
∑

n

eiλnα(f, ψn)ψ̃n, f ∈ A′

where the series converges in A′.

5. Fractional Fourier Transforms

We know that {Gα}α∈R = {eiαT }α∈R is an equicontinuous group on the space A
for any differential operator T of the form (18)-(20). We now consider the specific
case when the symmetric operator T is the differential expression E given in (5).
Let I = R and let {ψn}∞n=0 be the complete orthonormal set of eigenfunctions of T
given by (2). The corresponding eigenvalues are λn = n, for all n = 0, 1, . . . . and
therefore we have

Gαφ =
∞∑

n=0

einα(φ, ψn)2ψn.

Comparison with (4) shows that this particular choice of differential operator leads
to the FrFT. Consequently, we shall denote the corresponding fractional transforms
by Fα rather than Gα in this case, that is

Fαφ =
∞∑

n=0

einα(φ, ψn)2ψn, (28)

where ψn is defined by (2). As indicated earlier, Fπ/2 = F , the classical Fourier
transformation.

Our general theory leads immediately to the following.

Theorem 5.1 Let Fα be defined by (28). Then for each α ∈ R, Fα is a homeomor-
phism on L2(R) with inverse F−α. Furthermore, the family of operators {Fα}α∈R
is a strongly continuous group of unitary operators on L2(R), with infinitesimal
generator given by iT where

D(T ) := {φ ∈ L2(R) :
∞∑

n=0

n2|(φ, ψn)2|2 < ∞} (29)
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and

T φ :=
∞∑

n=0

n(φ, ψn)2ψn. (30)

Proof This follows from Theorem 2.2. ¥

We turn now to the FrFT on the space S of test functions of rapid descent.
For this we require the following result which will enable us to use our theory of
{Gα}α∈R on the space A.

Lemma 5.2 If T is the differential operator E given in (5), with domain defined
via (20), then the corresponding space A is the space S of test functions of rapid
descent and A′ is the space S′ of distributions of slow growth.

Proof See [11] and [15, p.267]. ¥

The main properties of Fα on S follow immediately.

Theorem 5.3 For each α ∈ R, Fα, defined by (28), is a homeomorphism on S
with inverse F−α. Moreover, {Fα}α∈R is an equicontinuous group of class (C0) on
S with infinitesimal generator iT , where D(T ) = A = S.

Proof These results are a direct consequence of Theorems 3.4 and 3.5, and Lemma
5.2.

¥

Note that a number of mapping properties of Fα on S were previously established
by McBride and Kerr [4] via different, but lengthier, arguments that relied on the
integral formula (6). The advantage of our approach is that we obtain, not only the
results in [4], but also additional information on the associated group of fractional
Fourier transforms on S as a particular case of a more general theory. We now give
a rigorous justification that the eigenfunction-eigenvalue definition that we have
used leads directly to the integral formula (6).

To obtain an integral representation of Fαφ in the form

(Fαφ)(x) =
∫ ∞

−∞
kα(x, y)φ(y)dy, φ ∈ L2(R), (31)

we define

Fα,rφ :=
∞∑

n=0

rneinα(φ, ψn)2ψn, (32)

where 0 < r ≤ 1. Then from (14),

Fα,rφ → Fα,1φ := Fαφ in L2(R) as r → 1−,

for each φ ∈ L2(R). We now verify that assumption (15) is valid for the specific
case when ψn is defined by (2).

Lemma 5.4 For each x ∈ R,

∞∑

n=0

r2n|ψn(x)|2 < ∞ ∀ r ∈ (0, 1), (33)
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where ψn(x) is defined by (2).

Proof The asymptotic representation of the Hermite polynomial [8, p.67] shows
that, for each fixed x and n sufficiently large, there exists a constant M such that

|Hn(x)| ≤ M2(n+1)/2nn/2e−n/2ex2/2.

Therefore it is sufficient to establish the convergence of the infinite series

∞∑

n=0

un, where un =
r2nnne−n

n!
, n = 0, 1, 2, . . . .

Since un+1/un → r2 < 1 as n →∞, it follows that this series does indeed converge.
¥

Consequently, we have the following lemma.

Lemma 5.5 For φ ∈ L2(R) and 0 < r < 1,

(Fα,rφ)(x) =
∫ ∞

−∞
kα,r(x, y)φ(y)dy, (34)

where

kα,r(x, y) =
∞∑

n=0

rneinαψn(x)ψn(y). (35)

Proof We know from Lemma 5.4 that
∑∞

n=0 r2n|ψn(x)|2 < ∞, ∀ r ∈ (0, 1) and for
each fixed x ∈ R. Hence the result follows from Lemma 2.4. ¥

If we examine the function kα,r given by (35), then we obtain

kα,r(x, y) =
∞∑

n=0

rneinαψn(x)ψn(y)

=
e−( x2+y2

2
)

√
π

∞∑

n=0

(reiα)n Hn(x)Hn(y)
2nn!

.

Now using Mehler’s formula [8, p.61], and setting z = reiα with |z| = r < 1, we
have

kα,r(x, y) =
1√
π

(1−(reiα)2)−1/2 exp
(

2xyreiα

1− (reiα)2
− (

x2 + y2

2
)
1 + (reiα)2

1− (reiα)2

)
. (36)

We shall examine each term in (36) in turn for 0 < |α| < π. Firstly

1 + (reiα)2

1− (reiα)2
=

(1− r4) + 2ir2 sin 2α

(1 + r4)− 2r2 cos 2α
,

and it is straightforward to show that

Re

(
1 + (reiα)2

1− (reiα)2

)
> 0 (37)
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and

lim
r→1−

1 + (reiα)2

1− (reiα)2
= i cotα. (38)

For the term
reiα

1− (reiα)2
in (36), we obtain

reiα

1− (reiα)2
=

(r − r3) cos α + i(r + r3) sin α

1 + r4 − 2r2 cos 2α
, (39)

and so

lim
r→1−

reiα

1− (reiα)2
=

2i sinα

2(1− cos 2α)
=

i

2 sin α
. (40)

Examining now the remaining term in (36) that involves r, we express 1− (reiα)2

in polar coordinates as ρre
iθr , where

ρr = |1− r2e2iα| → 2| sinα| as r → 1−,

and

lim
r→1−

θr = tan−1

( − sin 2α

1− cos 2α

)
= tan−1(− cotα)

=
{

α− π/2, 0 < α < π
α + π/2, −π < α < 0.

Therefore,

(ρre
iθr)−1/2 → 1√

2| sinα|e
i( π

4
α̂−α/2) as r → 1−, where α̂ = sgn(sinα). (41)

Hence, for 0 < |α| < π,

lim
r→1−

kα,r(x, y) = kα(x, y),

where

kα(x, y) =
1√

2π| sinα| exp
(
i
π

4
α̂− α/2

)
exp

(−i

2
(x2 + y2) cot α +

ixy

sinα

)
. (42)

The function kα is the kernel of the integral operator Fα defined by (6).
Our next task is to show that the operators Fα and Fα agree on the space L2(R)

and hence also on S.

Theorem 5.6 Let Fα be defined by (6) and (7), and let Fα be defined by (28).
Then as operators on L2(R), Fα = Fα for all α ∈ R.

Proof Clearly F0 = F0, Fπ/2 = Fπ/2 = F and F−π/2 = F−π/2 = F−1. Also,

(F±πφ)(x) =
∞∑

n=0

(−1)n(φ, ψn)2ψn(x)
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and, since
∫ ∞

−∞
ψn(x)φ(−x) dx =

{
(φ, ψn)2 if n is even
−(φ, ψn)2 if n is odd

= (−1)n(φ, ψn)2,

we obtain

(F±πφ)(x) = φ(−x) = (F±πφ)(x).

Now we proceed to the case when 0 < |α| < π, with α 6= ±π/2. Let φ ∈ C∞
0 (R).

Then

(Fα,rφ)(x)

=
1√
π

e−iθr/2

√
ρr

∫ ∞

−∞
exp

(
2xyreiα

1− (reiα)2
− (

x2 + y2

2
)
1 + (reiα)2

1− (reiα)2

)
φ(y)dy, (43)

where θr = arg(1− r2e2iα) and ρr = |1− r2e2iα|. From (41),

1√
π

e−iθr/2

√
ρr

→ 1√
2π| sinα|e

i( π

4
α̂−α/2), as r → 1−. (44)

Examining the integrand in (43) with x ∈ R fixed, we have, from (39),

∣∣∣∣exp
(

2xyreiα

1− (reiα)2

)∣∣∣∣ = exp
(

2xy(r − r3) cos α

1 + r4 − 2r2 cos2 2α

)
.

Clearly,

2xy(r − r3) cosα ≤ 2|x||y||r − r3|| cosα| ≤ 2|x||y|,∀r ∈ (0, 1].

Moreover,

1 + r4 − 2r2 cos2 2α = (r2 − cos 2α)2 + sin2 2α ≥ sin2 2α, ∀r.

Hence,
∣∣∣∣exp

(
2xyreiα

1− (reiα)2

)∣∣∣∣ ≤ exp
(

2|x||y|
sin2 2α

)
, ∀r ∈ (0, 1].

Also, from (37), we obtain

∣∣∣∣exp
(
−(

x2 + y2

2
)
1 + (reiα)2

1− (reiα)2

)∣∣∣∣ = exp
(
−(

x2 + y2

2
)Re

1 + (reiα)2

1− (reiα)2

)
≤ 1.

Let supp φ ⊆ [−R, R]. Then

∫ ∞

−∞

∣∣∣∣exp
(

2xyreiα

1− (reiα)2

)
exp

(
−(

x2 + y2

2
)
1 + (reiα)2

1− (reiα)2

)∣∣∣∣ |φ(y)|dy

≤ exp
(

2|x|R
sin2 2α

)∫ R

−R
|φ(y)|dy ∀ r ∈ (0, 1].
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Consequently, we can take the limit inside the integral to obtain

(Fαφ)(x) = lim
r→1−

(Fα,rφ)(x)

=
1√

2π| sinα|e
i( π

4
α̂−α/2)

∫ ∞

−∞
e

ixy

sin α e−i x2+y2

2
cot αφ(y) dy. (45)

It follows from Lemma 3.6 that for each φ ∈ S = A, we have Fα,rφ → Fα,1φ = Fαφ
in S as r → 1−. Hence (Fα,rφ)(x) → (Fαφ)(x) uniformly with respect to x on
compact subsets of R. But from (45) we have, for each φ ∈ C∞

0 (R), (Fα,rφ)(x) →
(Fαφ)(x) as r → 1−. We know from Theorem 5.1 that Fα is continuous on L2(R).
Also it has been proved in [5] that Fα is continuous on L2(R). Therefore, since
C∞

0 (R) is dense in L2(R),

Fαφ = Fαφ,

for all φ ∈ L2(R). ¥

Now we turn to the theory of FrFTs on the space of generalised functions A′,
which, in view of Lemma 5.2, can be identified in this particular case with the space
S′ of tempered distributions. We recall that the generalised Fourier transformation
F̃ is defined as a homeomorphism on S′ by

< F̃f, φ >:=< f, Fφ > for f ∈ S′, φ ∈ S. (46)

From (25), we obtain the following definition for the generalised FrFT F̃α.

Definition 5.7 The generalised fractional Fourier transform of order α of f ∈ S′
is given by

(F̃αf, φ) := (f, F−αφ), φ ∈ S. (47)

Since

< F̃αf, φ > = (F̃αf, φ)

= (f, F−αφ) =< f, Fαφ >,

this definition is consistent with (46), which corresponds to the case α = π/2. Note
also that

F̃αη̃ = F̃αη ∀η ∈ L2(I). (48)

Theorem 5.8 Let {F̃α}α∈R be the family of operators defined by (47). Then for
each α ∈ R, F̃α is a homeomorphism on S′ with inverse F̃−α. Moreover,

F̃αf =
∑

n

einα(f, ψn)ψ̃n,

where the series converges in S′.

Proof See Theorem 4.2 and (24). ¥
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Theorem 5.9 For each f ∈ S′ and α, β ∈ R,

(i) F̃αF̃βf = F̃α+βf

(ii) F̃αf → F̃βf in S′ as α → β.

Proof This follows from Definition 5.7 and Theorem 5.3. ¥

Theorem 5.10 The family of operators {F̃α}α∈R, defined on S′ by (47), is a
weak*-continuous group of linear operators on S′. Moreover the infinitesimal gen-
erator of {F̃α}α∈R is (−iT )′ = ĩT , where T̃ is defined via (5), (20) and Definition
4.3.

Proof See Theorem 4.5. ¥

6. Conclusion

We have used a systematic procedure for defining a unitary group of fractional
transformations on L2(I) with infinitesimal generator iT and a corresponding
equicontinuous group on the space of test functions A that was constructed around
a symmetric restriction T of T . This led to a weak*-continuous group of fractional
transforms defined on the space A′ of generalised functions. The generator of this
group is the extended operator ĩT = ĩT ∈ L(A′). As a special case of our theory,
we obtained the distributional theory of the fractional Fourier transform that was
developed, via a different approach, in [6]. Note that the abstract Cauchy problem
associated with ĩT is

du(t)
dt

= ĩTu(t), u(0) = f ∈ A′. (49)

The theory presented above shows that the unique solution to (49) is

u(t) = G̃tf ∈ A′ ∀f ∈ A′,

where we work with the weak*-topology in A′. Full details will be given in a future
paper.

The constructive and general nature of our approach immediately suggests that
it could be used to produce distributional theories for other fractional transforma-
tions. For example, we have obtained similar results for the Hankel transformation
which will be discussed elsewhere.
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