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ABSTRACT
We consider displaced periodic orbits at linear order in
the circular restricted Earth-Moon system, where the third
massless body is a solar sail. These highly non-Keplerian
orbits are achieved using an extremely small sail accel-
eration. In this paper we will use solar sail propulsion
to provide station-keeping at periodic orbits above the L2

point. We start by generating a reference trajectory about
the libration points. By introducing a first-order approx-
imation, periodic orbits are derived analytically at linear
order. These approximate analytical solutions are utilized
in a numerical search to determine displaced periodic or-
bits in the full nonlinear model. Because of the instability
of the collinear libration points, orbit control is needed
for a spacecraft to remain in the vicinity of these points.
The reference trajectory is then tracked using a Linear
Quadratic Regulator (LQR). Finally, simulations are given
to validate the control strategy. The importance of finding
such displaced orbits is to obtain continuous communica-
tions between the equatorial regions of the Earth and the
polar regions of the Moon.

1. INTRODUCTION

Solar sailing technology has been widely investigated over
the past decade. It appears as a promising form of ad-
vanced spacecraft propulsion, which can enable exciting
new space-science mission concepts such as solar system
exploration and deep space observation. A solar sail is
propelled by reflecting solar photons and therefore can
transform the momentum of the photons into a propul-
sive force. Although solar sailing has been considered as
a practical means of spacecraft propulsion only relatively
recently, the fundamental ideas are by no means new (see
McInnes [1] for a detailed description).

Solar sails can also be utilised for highly non-Keplerian
orbits, such as closed orbits displaced high above the eclip-
tic plane (see Waters and McInnes [2]). Solar sails are es-
pecially suited for such non-Keplerian orbits, since they
can apply a propulsive force continuously. This allows
some exciting and unique trajectories. In such trajectories,
a sail can be used as a communication satellite for high
latitudes. For example, the orbital plane of the sail can

be displaced above the orbital plane of the Earth, so that
the sail can stay fixed above the Earth at some distance, if
the orbital periods are equal. Orbits around the collinear
points of the Earth-Moon system are also of great interest
because their unique positions are advantageous for sev-
eral important applications in space mission design (see
e.g. Szebehely [3], Roy [4], Vonbun [5], Gómez et al.
[6]).
In the recent years several authors have tried to determine
more accurate approximations (quasi-Halo orbits) of such
equilibrium orbits [7]. The orbits were first studied by Far-
quhar [8], Farquhar and Kamel [7], Breakwell and Brown
[9], Richardson [10], Howell [11]. Halo orbits near the
collinear libration points in the Earth-Moon system are of
great interest, particulary around the L1 and L2 points be-
cause their unique positions. However, a linear analysis
shows that the collinear libration pointsL1, L2, andL3 are
of the type saddle×center×center, leading to the insta-
bility in their vicinity, whereas the equilateral equilibrium
points L4, and L5 are stable (center× center× center).
Although the libration points L4, and L5 are naturally sta-
ble and require a small acceleration, the disadvantage is
the longer communication path length from the lunar pole
to the sail. It is essential to note that the equilateral libra-
tion points L4 and L5 of the Earth-Moon system can be
found to be unstable if the gravitational effect of the sun is
included (see Szebehely [3]). If the orbit maintains visibil-
ity from Earth, a spacecraft on it (near theL2 point) can be
used to provide communications between the equatorial
regions of the Earth and the lunar poles. The establish-
ment of a bridge for radio communications is crucial for
forthcoming space missions, which plan to use the lunar
poles. McInnes [12]and Simo and McInnes [13, 14] in-
vestigated a new family of displaced solar sail orbits near
the Earth-Moon libration points. In Baoyin and McInnes
[15] and McInnes [16], the authors describe the new or-
bits which are associated with artificial lagrange points
in the Earth-Sun system. These artificial equilibria have
potential applications for future space physics and Earth
observation missions. In McInnes and Simmons [17], the
authors investigate large new families of solar sail orbits,
such as Sun-centered halo-type trajectories, with the sail
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executing a circular orbit of a chosen period above the
ecliptic plane. In Ozimek et al. [18] and Wawrzyniak and
Howell [19], the authors used collocation approach to the
problem of computing solar sail lunar pole-sitter orbits.
We have recently investigated displaced periodic orbits at
linear order in the Earth-Moon restricted three-body sys-
tem, where the third massless body utilizes a hybrid of
solar sail and a solar electric propulsion system (see Simo
and McInnes [20]). Then, a feedback linearization control
scheme was proposed and implemented. The main idea of
this approach is to cancel the nonlinearities and to impose
desired linear dynamics satisfied by the solar sail.

In the present study, we will focuss on linear control
technique to the problem of tracking and maintaining the
solar sail on prescribed orbits. The first-order approxima-
tion is introduced for the linearized system of equations.
The Laplace transform is used to produce the first-order
analytic solution of the out-of plane motion. It will be
shown for example that, with a suitable sail attitude con-
trol program, a 1750 km displaced, out-of-plane trajec-
tory around the L2 point may be executed with a small
sail acceleration.This unstable orbit will therefore be used
as a reference trajectory for the solar sail and tracked us-
ing the Linear Quadratic Regulator (LQR) control method
(see Cielaszyk and Wie [21]). This paper is organized
as follow: Section 2 provides the mathematical expres-
sions describing the motion of the sail in the circular re-
stricted three-body problem. Section 3 is devoted to the
study of the periodic orbits around the Lagrange points in
the Earth-Moon system. The periodic solutions to the lin-
earized equations of motion are derived analytically. In
section 4 a LQR control is developed and implemented.
Section 5 is concerned with the numerical computation
around the libration point L2 in the Earth-Moon system.
Finally some numerical results are presented to illustrate
our approach, and compared to the feedback linearization
control technique, which has been successfully applied in
[20] to reduce the fuel expenditure.

2. SYSTEM MODEL

In this work m1 represents the larger primary (Earth), m2

the smaller primary (Moon) and we will be concerned
with the motion of a hybrid sail that has negligible mass.
It is always assumed that the two more massive bodies are
moving in circular orbits with constant angular velocity ω
about their common center of mass, and the mass of the
third body is too small to affect the motion of the two more
massive bodies. The unit mass is taken to be the total mass
of the system (m1 + m2) and the unit of length is cho-
sen to be the constant separation R? between m1 and m2.
The time unit is defined such that m2 orbits around m1 in
time 2π. Under these considerations the masses of the pri-
maries in the normalized system of units are m1 = 1− µ
and m2 = µ, with µ = m2/(m1 + m2) (see Figure 1).
Thus, in the Earth-Moon system, the nondimensional unit
acceleration is aref = ω2R? = 2.7307 mm/s2 where the
Earth-Moon distance R? = 384400 km. The dashed line
in Figure 1 is a line parallel to the Sun-line direction.
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Figure 1. Schematic geometry of the Earth-Moon re-
stricted three-body problem.

2.1. Equations of Motion

The vector dynamical equation for the solar sail in a rotat-
ing frame of reference is described by

d2r
dt2

+ 2ω × dr
dt

+∇U(r) = a, (1)

where ω = ωẑ (̂z is a unit vector pointing in the di-
rection of z) is the angular velocity vector of the rotating
frame and r is the position vector of the solar sail relative
to the center of mass of the two primaries. The three-body
gravitational potential U(r) and the solar radiation pres-
sure acceleration a are defined by

U(r) = −
[

1
2
|ω × r|2 +

1− µ
r1

+
µ

r2

]
,

a = a0(S · n)2n,

where µ = 0.1215 is the mass ratio for the Earth-
Moon system. The sail position vectors w.r.t. m1 and
m2 respectively, are defined as r1 = [x + µ, y, z ]T and
r2 = [x − (1 − µ), y, z]T , and a0 is the magnitude of the
solar radition pressure force exerted on the sail. The unit
normal to the sail n and the Sun-line direction are given
by

n =
[

cos(γ) cos(ω?t) − cos(γ) sin(ω?t) sin(γ)
]T
,

S =
[

cos(ω?t) − sin(ω?t) 0
]T
,

where ω? = 0.923 is the angular rate of the Sun line
in the corotating frame in a dimensionless synodic coordi-
nate system.

2.2. Linearized system

We now want to investigate the dynamics of the sail in the
neighborhood of the libration points. The libration points
are the equilibrium solutions of the restricted three-body
problem, which describes the motion of a particle (very
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small mass) under the gravitational attraction of two mas-
sive bodies.

We denote the coordinates of the equilibrium point as
rL = (xLi , yLi , zLi) with i = 1, · · · , 5.

Let a small displacement in rL be δr such that r →
rL + δr. We will not consider the small annual changes in
the inclination of the Sun line with respect to the plane of
the system.

Therefore, the linear equations for the solar sail are

d2δr
dt2

+ 2ω × dδr
dt

+∇U(rL + δr) = a(rL + δr), (2)

and retaining only the first-order term in δr = [δx, δy, δy]T

in a Taylor-series expansion, the gradient of the potential
and the acceleration can be expressed as

∇U(rL + δr) = ∇U(rL) +
∂∇U(r)
∂r

∣∣∣∣
r=rL

δr (3)

+O(δr2),

a(rL + δr) = a(rL) +
∂a(r)
∂r

∣∣∣∣
r=rL

δr (4)

+O(δr2).

It is assumed that ∇U(rL) = 0, and the acceleration
is constant with respect to the small displacement δr, so
that

∂a(r)
∂r

∣∣∣∣
r=rL

= 0.

The linear variational system associated with the libration
points at rL can be determined through a Taylor series ex-
pansion by substituting Eqs. (4) and (5) into (2)

d2δr
dt2

+ 2ω × dδr
dt
−Kδr = a(rL), (5)

where the matrix K is defined as

K = −
[
∂∇U(r)
∂r

∣∣∣∣
r=rL

]
.

Using the matrix notation the linearized equation about
the libration point (Equation (5)) can be represented by the
inhomogeneous linear system Ẋ = AX + b(t), where the
state vector X = (δr, δṙ)T , and b(t) is a 6 × 1 vector,
which represents the solar sail acceleration.

The Jacobian matrix A has the general form

A =
(

03 I3
K Ω

)
, (6)

where I3 is a identity matrix, and

Ω =

 0 2 0
−2 0 0

0 0 0

 .

For convenience the sail attitude is fixed such that the
sail normal vector n, which is a unit vector that is perpen-
dicular to the sail surface, points always along the direc-
tion of the Sun line with the following constraint S ·n ≥ 0.

Its direction is described by the pitch angle γ relative to
the Sun-line, which represents the sail attitude.

By making the transformation r→ rL+ δr and retain-
ing only the first-order term in δr = (ξ, η, ζ)T in a Taylor-
series expansion, the linearized nondimensional equations
of motion relative to the collinear libration points can be
written as

ξ̈ − 2η̇ − Uoxxξ = aξ, (7)

η̈ + 2ξ̇ − Uoyyη = aη, (8)

ζ̈ − Uozzζ = aζ , (9)

where Uoxx, U
o
yy, and Uozz are the partial derivatives of the

gravitational potential evaluated at the collinear libration
points, and the solar sail acceleration is defined in terms
of three auxiliary variables aξ, aη , and aζ .

The acceleration components are given by

aξ = a0 cos(ω?t) cos3(γ),
aη = −a0 sin(ω?t) cos3(γ),
aζ = a0 cos2(γ) sin(γ).

3. ANALYTICAL APPROACH

Considering the dynamics of motion near the collinear li-
bration points. We may choose a particular periodic solu-
tion in the plane of the form (see Farquhar [?])

ξ(t) = ξ0 cos(ω?t), (10)
η(t) = η0 sin(ω?t). (11)

By inserting Equations (10) and (11) in the differential
equations, we obtain the linear system in ξ0 and η0,

(
Uoxx − ω2

?

)
ξ0 − 2ω?η0 = a0 cos3(γ),

−2ω?ξ0 +
(
Uoyy − ω2

?

)
η0 = −a0 cos3(γ).

(12)

Then the amplitudes ξ0 and η0 are given by

ξ0 = a0

(
Uoyy − ω2

? − 2ω?
)

cos3(γ)(
Uoxx − ω2

?

)(
Uoyy − ω2

?

)
− 4ω2

?

, (13)

η0 = a0

(
− Uoxx + ω2

? + 2ω?
)

cos3(γ)(
Uoxx − ω2

?

)(
Uoyy − ω2

?

)
− 4ω2

?

, (14)

and we have the equality

ξ0
η0

=
ω2
? + 2ω? − Uoyy

−ω2
? − 2ω? + Uoxx

. (15)

Then the trajectory will be an ellipse centered on the
collinear libration points. We can find the required radia-
tion pressure be solving the equation (13)

a0 = cos−3(γ)

[
ω4
? − ω2

?(Uoxx + Uoyy + 4) + UoxxU
o
yy

Uoyy − 2ω? − ω2
?

]
ξ0.
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By applying the Laplace transform, the uncoupled out-
of-plane ζ-motion defined by the equation (9) can be solved.
The transform version is obtained as

s2Z − sξ0 − ξ̇0 − UozzZ =
a0 cos2(γ) sin(γ)

s
, (16)

(s2 − Uozz)Z = ξ̇0 + sξ0 (17)

+
a0 cos2(γ) sin(γ)

s
,

also

Z(s) =
1

s2 − Uozz

(
ξ̇0+sξ0+

a0 cos2(γ) sin(γ)
s

)
. (18)

The frequency of the out-of-plane motion is given by solv-
ing the equation

s2 − Uozz = 0,

where s1,2 = ±i√|Uozz| = ±iωζ .

Using Mathematica, we can find the inverse Laplace
transform, which will be the general solution of the out-
of-plane component

ζ(t) = ζ0 cos(ωζt) + ζ̇0|Uozz|−1/2 sin(ωζt) (19)
+a0 cos2(γ) sin(γ)|Uozz|−1[U(t)− cos(ωζt)],

= U(t)a0 cos2(γ) sin(γ)|Uozz|−1 (20)
+ζ̇0|Uozz|−1/2 sin(ωζt)
+ cos(ωζt)[ζ0 − a0 cos2(γ) sin(γ)|Uozz|−1],

where the nondimensional frequency is defined as

ωζ = |Uozz|1/2

and U(t) is the unit step function.
Specifically for the choice of the initial data ζ̇0 = 0, equa-
tion (32) can be more conveniently expressed as

ζ(t) = U(t)a0 cos2(γ) sin(γ)|Uozz|−1 (21)
+ cos(ωζt)[ζ0 − a0 cos2(γ) sin(γ)|Uozz|−1].

The solution can be made to contain only the periodic
oscillatory modes at an out-of-plane distance

ζ0 = a0 cos2(γ) sin(γ)|Uozz|−1. (22)

Furthermore, the out-of-plane distance can be maximized
by an optimal choice of the sail pitch angle determined by

d

dγ?
cos2(γ?) sin(γ?) = 0,

γ? = tan−1(2−1/2),
γ? = 35.264◦. (23)
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Figure 2. Magnitude of the total control effort about the
L2 point.
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Figure 3. Accelearation derived from the solar sail about
the L2 point.
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Figure 4. Control acceleration inputs needed for maintain-
ing a 1750− km reference trajectory.

4. TRAJECTORY TRACKING

The nonlinear equations of motion of the solar sail can be
obtained by simply adding the control acceleration vector
u(t) = [uξ uη uζ ]T as

ξ̈ = 2η̇ + (xL2 + ξ)− (1− µ)
(xL2 + ξ) + µ

r31
(24)

−µ (xL2 + ξ)− 1 + µ

r32
+ aξ + uξ,

η̈ = −2ξ̇ + η −
(

1− µ
r31

+
µ

r32

)
η (25)

+aη + uη,

ζ̈ = −
(

1− µ
r31

+
µ

r32

)
ζ + aζ + uζ , (26)

where

r1 =
√

(x+ µ)2 + y2 + z2,

r2 =
√

(x− 1 + µ)2 + y2 + z2.

Similary, the nondimensional linearized equations of
motion can be derived in state space form as

Ẋ = AX + b(t) +Bu(t), (27)

where the state vector X = (δr, δṙ)T , b(t) is a 6× 1 vec-
tor, which represents the solar sail acceleration, u(t) =
[ux uy uz]T , A is given by Eq. (6), and the matrix
B = [O3×3 I3×3]T .

Thus, we can consider a linear state feedback con-
troller of the form

u(t) = −K(x(t)− xref (t)), (28)

where K is the constant gain matrix to be determined,
and the reference trajectory xref (t) = [ξref , ηref , ζref ]T

is given by the analytical solution

5



ξref (t) = ξ0 cos(ω?t),
ηref (t) = η0 sin(ω?t),
ζref (t) = z0.

A feedback controller that minimizes the cost function

J =
1
2

∫ ∞
0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt, (29)

while tracking the reference trajectory has the form

u(t) = −R−1BPx(t), (30)

where P is unique, positive semidefinite solution to the
algebraic Riccati equation

−ATP − PA+ PBR−1BTP −Q = 0. (31)

The matrices Q and R represent the weight of the state
error and the control input.

5. CONTROL ANALYSIS RESULTS

Prior results using the feedback linearization control strat-
egy have been successfully developed to track the linear
displaced trajectory about the L2 point (see [20]). One al-
ternative controller used in this paper is the LQR method.
The simulations show that the LQR as well the feedback
linearization control results are similar.

The simulation was performed around the collinear li-
bration point L2 for a period of one month. The magni-
tude of the total control effort appears in Figure 2. Thus,
the control acceleration effort u(t) required to track the
reference orbit varies up to 0.015 mm/s2 about the L2

point.The acceleration derived from the solar sail (denoted
by aξ, aη, aζ) is plotted in terms of components for one-
month orbits in Figure 3 about L2, and the control accel-
eration inputs needed for maintaining a 1750− km refer-
ence trajectory appears in Figure 4 about L2. The control
acceleration inputs (denoted by uξ, uη, uζ) are order of
10−3−10−4 mm/s2, while the acceleration derived from
the solar sail is approximately 10−2 mm/s2. The small
control acceleration input is then applied to ensure that
displacement of the periodic orbit is constant. The solar
sail provides a constant out-of-plane force. The average
∆V per orbit found by integrating the control acceleration
inputs is about 28 m/s. It was shown in [20] that an av-
erage ∆V per orbit of approximately 23 m/s is needed to
maintain a 1750− km linear displaced orbit about the L2

point. This observation explain why it is useful to develop
more accurate, nonlinear reference orbits that are closer
to an exact periodic solution of the nonlinear equations of
motion. For this reason, the more accurate reference orbits
are utilized to reduce the fuel expenditure.

6. CONCLUSIONS

We consider displaced periodic orbits at linear order in
the Earth-Moon system. Using the linearized equations
of motion around the collinear libration points, periodic
orbits that are displaced can be derived, which will be in-
teresting for future mission design. Due to the instability
of these points, active control is required to maintain the
sail on prescribed orbits. An approximate solution is in-
troduced to design a reference trajectory. An LQR tech-
nique is then implemented to track this orbit. The Linear
Quadratic Regulator control approach is shown to be able
to maintain a linear displaced orbit despite the nonlinear
dynamical effects.
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