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A Microwave Dielectric Biosensor Based on
Suspended Distributed MEMS Transmission Lines

Lijie Li, Member, IEEE, and Deepak Uttamchandani, Senior Member, IEEE

Abstract—Design and characterization of a miniature mi-
crowave dielectric biosensor based on distributed microelectrome-
chanical systems (MEMS) transmission lines (DMTL) is reported
in this paper. The biosensor has been realized by bonding the
DMTL device with an acrylic fluidic channel. In order to demon-
strate the sensing mechanism, the sensor is used to detect the
small variation of the concentration of aqueous glucose solutions
by measuring the electromagnetic resonant frequency shift of the
device. It is observed from the results that the second notch of the
reflection coefficient ����� varies from 7.66 to 7.93 GHz and the
third notch of the reflection coefficient varies from 15.81 to 15.24
GHz when the concentration of the glucose solution ranges from
0 to 347 mg/ml, which indicates that higher order notches have
higher sensitivities if looking at the absolute change in frequency.

Index Terms—Biosensor, distributed microelectromechanical
systems (MEMS) transmission lines (DMTL), glucose.

I. INTRODUCTION

D IELECTRIC sensors play an important role in many
industrial areas such as biological, agriculture, and food

industries as this technology is noninvasive compared with
optical and chemical sensing mechanisms. It usually detects
changes of humidity, temperature, and concentration of aqueous
solutions by measuring changes of impedance. Many radio
frequency (RF) and microwave devices or circuits have been
used for sensor application in the past [1]–[10]. The detection
of the permittivity of aqueous solutions at 10 GHz was achieved
with a microwave resonator composed of sapphire cylinder
and a quartz plate [1]. A microwave dielectric measurement kit
composed of a coaxial reflectometric sensor terminated by a
metallic cylindrical cell to contain the liquid has been developed
to detect the complex permittivity of the liquids under extreme
conditions [2]. Using periodic structures to enhance the sensi-
tivity of microwave planar sensors is an approach that has been
theoretically proposed previously with an electromagnetic band
gap (EBG) structure [3], where the basic principle is to reduce
the wave group velocity to induce greater interaction between
the sensor and the material under test (MUT). A microwave
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resonator based on a coplanar waveguide (CPW)-to-slotline
resonator ring has been reported to form a humidity sensor [4].
The concept of using CPW lines as dielectric sensors has been
presented in reference [5]. A microwave biosensor for detecting
the concentration of aqueous glucose solutions has been devel-
oped based on a cylindrical air gap coupled to a microstrip line
at resonant frequency of 1.68 GHz [6]. A gas sensor has been
reported based on a micromachined membrane supported CPW
structure filled with a mixture of carbon nanotube [7]. Based
on CPW structures, a Goubau transmission line for biosensing
has been reported in [8]. Microwave CPW structures have also
been used as biosensors in the frequency range between 40 Hz
to 26.5 GHz in [9]. A particle sensing and cell counting system
has been developed based on micromachined CPW structures
in [10]. A comprehensive review on the microwave dielectric
measurements on polar liquids has been reported previously
[11].

Distributed microwave transmission lines are basically mi-
crowave transmission lines periodically loaded with active or
passive electronic components, such as transistors or capaci-
tors, are typical slow wave structures. They are usually used
in the electronic applications such as amplifiers, oscillators,
mixers, multipliers and phase shifting circuits. Distributed
transmission lines incorporating MEMS have been realized in
the past. Barker and Rebeiz [12] demonstrated a distributed
MEMS transmission line (DMTL) phase shifter using MEMS
capacitive switches. After their work, much effort has been
directed on design, modification, and fabrication of DMTLs
[13]–[21] for communication applications. Since the distributed
transmission lines are classical slow-wave multiple resonant
structures, which induces higher interaction between sensors
and MUT, they are suitable to construct very sensitive biosen-
sors. Previously a MEMS DMTL biosensor fabricated using
flip-chip technology based on a ceramic substrate has been
demonstrated [22]. In this paper, a biosensor incorporating a
microchannel fabricated with acrylic glass and a monolithic
microfabricated DMTL device is reported.

As shown schematically in Fig. 1, the biosensor consists of
two structures, the bottom structure is a distributed monolithic
MEMS transmission line fabricated on a high resistivity silicon
substrate. The top structure is a microchannel structure fabri-
cated on acrylic material. The two structures are joined together
with strain gauge cement. The sensing mechanism is based on
the electromagnetic interaction between a biosample inside
the channel and the microwave signal propagating through the
DMTL device. Different concentrations of aqueous glucose
solutions were used to characterize the biosensor, and the
results are reported in this paper. In the experiment, the liquid
is pumped into the channel with a standard 5 ml syringe. In

1530-437X/$26.00 © 2009 IEEE

Authorized licensed use limited to: STRATHCLYDE UNIVERSITY LIBRARY. Downloaded on June 30,2010 at 15:11:49 UTC from IEEE Xplore.  Restrictions apply. 



1826 IEEE SENSORS JOURNAL, VOL. 9, NO. 12, DECEMBER 2009

Fig. 1. Schematic of the DMTL biochip. Top figure is the 3D view and bottom
is the cross-section view.

the next section, the design and fabrication of the biosensor
is described in detail, after which the low-frequency to mi-
crowave-frequency measurements and analysis of the DMTL
sensor with fluidic samples are presented.

II. DESIGN AND FABRICATION OF DMTL BIOSENSOR

A. Design and Modeling

The DMTL device has been realised by a commercial MEMS
foundry process—MetalMUMPs. The process uses high resis-
tivity silicon as the substrate in order to reduce electromag-
netic loss through the substrate. For the coplanar waveguide,
the signal and ground lines of the coplanar waveguide (CPW)
are constructed using a layer of nickel with thickness of 20 .
The waveguide is suspended above the silicon substrate with a
25 air gap. The 0.7 polysilicon capacitor bridge is sit-
uated under the nickel waveguide with a 1.1 air gap. The
width of the signal line and the gap between signal line and
ground plane is designed to be 40 and 43 respectively. As
the CPW is on a double-layer dielectric substrate [Fig. 2(a)],
the characteristic impedance and the effective relative dielectric
constant are calculated according the formulas below [23]

(1)

(2)

(3)

Fig. 2. Schematic diagram of the DMTL and its equivalent circuit.

(4)

(5)

where is the characteristic impedance of the CPW, is the
effective dielectric constant of the CPW, is the complete
elliptic integral of the first kind, and are the thicknesses
of the silicon substrate and air gap, and are the centre
conductor width and total width of the CPW line, respectively,
as shown in Fig. 2. The relative dielectric constant of the silicon
layer is 11.9, and the relative dielectric constant of the air

is 1. The width of the central conductor is designed
as 40 , and the gap between central conductor and ground
plane is designed as 43 . The and are calculated to
be around 3.2 and 88.4 using (1)–(5). The per unit-length (the
unit is meter) capacitance and inductance of the unloaded
CPW transmission line are given by [12]

(6)

where is the free space electromagnetic wave velocity. From
(6), and are calculated to be 67.5 pF and 526.9 nH,
respectively.

The CPW line periodically loaded with capacitors can be
modeled as a lumped inductance and a lumped capacitance

with a parallel capacitor to ground due to the polysilicon
bridges , as schematically shown in Fig. 2(c). Ignoring
bridge inductance, and the bridge resistance , the charac-
teristic impedance , and the Bragg frequency are given
by [12]

(6)

(7)
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Fig. 3. Process flow.

where is the periodic spacing between the suspended bridges
of the DMTL. The Bragg frequency is the frequency at which
the characteristic impedance of the DMTL goes to zero, indi-
cating no power transfer. The and of this design are
calculated to be 77.5 and 156 GHz. The equivalent model, i.e.,
Fig. 2(c) based on extracted/calculated electronic components
for analysing DMTL devices is generally acceptable and has
been used in most previous publications [13]–[21]. The equiva-
lent model of the unloaded DMTL has been built and the simu-
lated S-parameters will be shown in the Section III.

B. Fabrication

The monolithic DMTL device was fabricated with multi-
layer MEMS foundry process—MetalMUMPs. The fabrication
process of the DMTL device is summarized as follows (shown
in Fig. 3): a high resistivity silicon wafer is
used as the starting substrate; a layer of silicon oxide is then
deposited and patterned. This oxide layer outlines the area that
will be used to etch a trench in the silicon substrate. A layer
of silicon nitride is deposited, followed by the deposition of a
layer of polysilicon, which will be used to define membrane
capacitor. A second layer of silicon nitride is then deposited to
protect the polysilicon film from being etched in the trench for-
mation process. A second silicon oxide layer is then deposited
and this will be sacrificially removed to leave an air gap be-
tween membrane capacitor and CPW waveguide. A metal layer
consisting of 20 of electroplated nickel with 0.5 of
gold deposited on top of the nickel layer is used for forming the
CPW. The last step in the process is to etch out the sacrificial

Fig. 4. SEM of the fabricated device.

Fig. 5. Schematic and dimensions of the microchannel.

layers as well as to etch a 25 trench in the silicon substrate.
The trench etch of the substrate is determined by the first oxide
layer. Full details of the MetalMUMPs process, together with
Design Rules can be obtained from [9]. The scanning electron
micrograph of the fabricated DMTL device is shown in Fig. 4.

After fabricating the DMTL device, a microchannel was
machined on an acrylic substrate, and the dimensions of the
microchannel device are shown in Fig. 5. Finally, the DMTL
device and microchannel are bonded using KYOWA CC-33A
strain gage cement. The photograph of the completed biosensor
is shown in Fig. 6. Short plastic pipes (3 mm in diameter) are
fixed onto the inlet and outlet of the microchannel to allow the
biosample to be fed in. The fluidic sample was pumped in using
a standard syringe.
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Fig. 6. Left photograph shows a microchannel device with plastic tube; right
photograph shows the completed biosensor device under a GSG probe station.

Fig. 7. Microwave characteristics of the DMTL device.

III. MEASUREMENT

A. Microwave Measurement of the DMTL Chip

The microwave characteristics of the DMTL device has
been measured before assembling with the microchannel
using a Cascade Microtech 9000 GSG probe station and an
Agilent N5230A vector network analyzer. Before microwave
measurement, Line-Reflect-Reflect-Match (LRRM) calibration
technique has been applied using standard calibration substrate
that came with the probe station. The technique is straight for-
ward by following the automatic instruction from the software.
GSG probe was sequentially landed on a standard short, a
standard open, and a standard 50 Ohm line to complete the cali-
bration procedure. The two-port calibrated measurement of the
DMTL device has been obtained, and the reflection coefficient
S11 and transmission coefficient S12 are shown in Fig. 7. It is
seen from S11 that there are four notches in the frequency range
of 0–40 GHz including the one in low-frequency. The circuit
model was built based on the calculated lumped parameters of
the transmission line described in Section II. EM3DS circuit
solver v1.0 has been used to construct the model. The model
basically contains 19 section connected in series, each of which
has been modeled according Fig. 2(c). The capacitance of the
MEMS bridge structure has been experimentally extracted to
be around 6 fF. Series resistance of the polysilicon bridge was
taken into account with estimated value of 1 Ohm. The modeled
results are also shown in the graph for comparison.

B. Microwave Measurement of the Biological Sample

After the assembling of the biosensor was completed, DI
water and aqueous glucose solutions of different concentrations
were injected into the channel. Reflection coefficient S11 was
measured in various conditions. What is known to us that

Fig. 8. Microwave measurement of the glucose solution with different
concentrations.

Fig. 9. Frequency changing at the first notch.

the conducting aqueous solutions (there are free ions in the
solution) can be precisely detected at the low-frequency range
of the DMTL biosensors [22]. In principle, the nonconducting
solutions (such as glucose solutions) can be detected at higher
frequencies. The advantage of using periodic structure is that
there are many notches in the wide frequency band, and very
high resolutions can be achieved at higher frequency notches.
Reflection coefficient S11 of the biosensors loaded with
aqueous glucose solutions of various concentrations ranging
from 0 to 350 mg/ml were measured, and the results are shown
in Fig. 8. The aqueous glucose solution was prepared using
deionized water with the glucose powder. It is shown that there
are three notches in 0–20 GHz frequency band. Very minor
differences can be seen in the first notch (1.8 GHz), and that is
getting obvious at second notch (7.7 GHz). At the third notch
(around 16 GHz), it is clearly seen that as the concentration
gets higher, the resonant peak moves from high to low values.
In order to investigate this in detail, the 1–3 notches are picked
up individually and shown in Figs. 9–11.

It is seen from Fig. 9 that as the concentration of the glu-
cose solution changes, the resonant frequency changes slightly
from lower to higher values. Since the Q factor at the first notch
is very low, it is very hard to obtain any reliable readings. The
changes of resonant frequency upon different concentrations of
the solution are getting obvious at the second notch (resonant
frequency changes from 7.66 to 7.93 GHz as the concentration
of the solution varies from 0 to 347.8 mg/ml). The resonant fre-
quency at third notch becomes more sensitive to the concentra-
tion of the glucose solution (resonant frequency changes from
15.81 to 15.24 GHz as the concentration of the solution varies
from 0 to 347.8 mg/ml). at second and third notches versus
concentration of the glucose solution is shown in Fig. 12. It is
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Fig. 10. Frequency changing at the second notch.

Fig. 11. Frequency changing at the third notch.

Fig. 12. ���� versus concentration of the glucose solution.

Fig. 13. ���� versus temperature, the concentration of the glucose solution is
142.8 mg/ml.

shown that: (a) the frequency varies linearly with the concentra-
tion and (b) absolute changes in frequency at notch 3 are more
than double of the resonant changes at notch 2.

The effect on the biosensor due to different temperatures
has been studied using preheated glucose solutions. The con-

Fig. 14. Concentration versus density for glucose solution.

centration of the glucose solution was chosen randomly at
142.8 mg/ml. It is seen from the result shown in Fig. 13, the
increases slightly as the temperature of the solution rises from
20 to 35 Celsius. Since there is no in situ temperature sensor
integrated with the biosensor, the precise temperature mea-
surement cannot be obtained. However, the result does tell the
trend of the temperature dependent performance of the sensor.
In the future design, an in situ polysilicon temperature sensor
will be designed with the biosensor for precisely extracting the
temperature dependent performance of the device.

As it is known previously, the density of the solution increases
when the concentration of the glucose solution increases. A
simple experiment has been performed to measure the density
of the different concentrations. The result is shown in Fig. 14. It
is shown that the density varies from 1 to 1.1 as the con-
centration of the glucose solution changes from 0 to 210 mg/ml.

IV. CONCLUSION

In this paper, a biosensor that is based on a distributed
MEMS transmission line has been presented. The biosensor
was assembled with a DMTL chip and a microchannel device
that allows biosamples to interact with the electromagnetic
field through the DMTL. The MEMS chip was designed and
fabricated using a commercial foundry process. Both the
DMTL device and assembled biosensor have been measured
in a wide frequency range (0–40 GHz). The measurement of
the DMTL device shows a good agreement with the lumped
element modeling. The RF measurement of the biosensor using
aqueous glucose solutions shows that frequency changes are
greater in the higher order notches.
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